-
Miscellaneous
-
C. Prieur (2015),
Mieux modéliser le climat grâce aux statistiques.
Podcast Interstices
lien
-
Book
-
S. Da Veiga, F. Gamboa, B. Iooss, C. Prieur (2021),
Basics and Trends in Sensitivity Analysis: Theory and Practice in R.
SIAM publisher.
Computational science and engineering.
-
J. Dedecker, P. Doukhan, G. Lang, J.R. Léon, S. Louhichi, C.
Prieur (2007),
Weak Dependance: With Examples and Applications.
Springer, New York.
Lecture Notes in Statistics 190.
lien
-
Book chapters
-
C. Prieur and S. Tarantola (2017),
Variance-based sensitivity analysis: Theory and estimation algorithms.
In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds), p. 1217-1239.
-
C. Prieur (2006),
Recent results on weak dependence for causal sequences. Statistical applications to dynamical systems.
Lect. notes in Stat., Springer, Bertail, Patrice; Doukhan, Paul; Soulier, Philippe (Eds.), Vol. 187.
ps
-
J. Dedecker, C. Prieur and P. Raynaud de Fitte (2006),
Parametrized Kantorovich-Rubinstein Theorem and application to the coupling of random variables.
Lect. notes in Stat., Springer, Bertail, Patrice; Doukhan, Paul; Soulier, Philippe (Eds.), Vol. 187.
ps
-
Special issue
- B. Iooss, B. Sudret, S. Lo Piano and C. Prieur
Special Issue on Sensitivity Analysis of Model Outputs.
Reliability Engineering and System Safety, 10477, 2022. link to Editorial
-
C. Prieur, A. Pasanisi et F. Wahl (2011),
Méthodes stochastiques pour l'analyse de sensibilité. (French) [Stochastic methods for sensitivity analysis]
J. SFdS, Volume 152, Issue 1.
lien
-
Journal papers
-
H. Mermoz Kouye, G. Mazo, C. Prieur and E. Vergu (2024),
Performing global sensitivity analysis on simulations of a continuous-time Markov chain model motivated by epidemiology
To appear in Computational and Applied Mathematics hal
- E. Borgonovo, E. Plischke and C. Prieur (2024),
Total Effects with Constrained Features.
Statistics and Computing, Vol. 34, No. 87
link
- M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur (2024),
A probabilistic reduced basis method for parameter-dependent problems
Advances in Computational Mathematics, Vol. 50, No. 19
arXiv
-
M. R. El Amri, C. Helbert, M. Munoz Zuniga, C. Prieur and D. Sinoquet (2023),
Feasible set estimation under functional uncertainty by Gaussian Process modelling.
Physica D: Nonlinear Phenomena, Vol. 455, 133893
hal
-
P. Etoré, J. R. León and C. Prieur (2023),
A probabilistic point of view for the exact or approximated computation of the solution to Kolmogorov hypoelliptic equations.
ESAIM: Probability and Statistics, Vol. 27, 668–693
doi
hal
-
C. Duhamel, C. Helbert, M. Munoz Zuniga, C. Prieur and D. Sinoquet (2023),
A SUR version of the Bichon criterion for excursion set estimation.
Statistics and Computing, Vol. 33, No. 2, 41
hal
-
A. Hirvoas, C. Prieur, E. Arnaud, F. Caleyron and M. Munoz Zuniga (2022),
Wind turbine quantification and reduction of uncertainties based on
a data-driven data assimilation approach.
Journal of Renewable and Sustainable Energy, Vol. 14, No. 5
doi
hal
-
P. Le Gall, A.-C. Favre, P. Naveau and C. Prieur (2022),
Improved Regional Frequency Analysis of rainfall data
Weather and Climate Extremes, Vol. 36, 100456
doi
hal
-
M. Oliver, D. Georges and C. Prieur (2022),
Spatialized Epidemiological Forecasting applied to Covid-19 Pandemic at Departmental Scale in France
Systems & Control Letters, Vol. 164, 105240
doi
hal
-
D. Bigoni, Y. Marzouk, C. Prieur and O. Zahm (2022),
Nonlinear dimension reduction for surrogate modeling using gradient information.
Information and Inference: A Journal of the IMA, Vol. 11 (4), 1597-1639
arXiv
- M. B. Heredia, C. Prieur and N. Eckert (2022),
Global sensitivity analysis with aggregated Shapley effects, application to avalanche hazard assessment.
Reliability Engineering & System Safety, Vol. 222, 108420
hal
- M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur (2022),
A PAC algorithm in relative precision for bandit problem with costly sampling
Mathematical Methods of Operations Research, Vol. 96, 161-185
arXiv
- M. B. Heredia, C. Prieur and N. Eckert (2021),
Nonparametric estimation of aggregated Sobol' indices:
application to a depth averaged snow avalanche model.
Reliability Engineering & System Safety, Vol. 212, p. 107422
hal
- A. Hirvoas, C. Prieur, E. Arnaud, F. Caleyron and M. Munoz Zuniga (2021),
Quantification and reduction of uncertainties in a wind turbine numerical model based on a global sensitivity analysis and a recursive Bayesian inference approach.
International Journal for Numerical Methods in Engineering, Vol. 122 (10), p. 2528-2544
hal
-
L. Gilquin, E. Arnaud, C. Prieur and H. Monod (2021),
Recursive estimation procedure of Sobol' indices based
on replicated designs.
Computational and Applied Mathematics, Vol. 40 (1), p. 1-23 doi
hal
- S. Razavi, A. Jakeman, A. Saltelli, C. Prieur, B. Iooss et al. (2021),
Position Paper:
The Future of Sensitivity Analysis: An Essential Discipline for Systems Modelling and Policy Making.
Environmental Modelling and Software, Vol. 137, p. 104954 hal
- L. Guan, Ch. Prieur, L. Zhang, Cl. Prieur, D. Georges and P. Bellemain (2020),
Transport effect of COVID-19 pandemic in France.
Annual Reviews in Control, Vol. 50, p. 394-408
hal
-
K. Bertin, J. R. León, N. Klutchnikoff and C. Prieur (2020),
Adaptive density estimation on bounded domains under mixing conditions.
Electronic Journal of Statistics Vol. 14, p. 2198-2237
hal
-
M. B. Heredia, N. Eckert, C. Prieur and E. Thibert (2020),
Bayesian calibration of an avalanche model from autocorrelated measurements along the flow: application to high rate photogrammetric image.
Journal of Glaciology Vol. 66 (257), p. 373-385.
-
O. Zahm, P. Constantine, C. Prieur and Y. Marzouk (2020),
Gradient-based dimension reduction of multivariate vector-valued functions.
SIAM Journal on Scientific Computing Vol. 42 (1): A534-A558
arXiv
-
M. R. El Amri, C. Helbert, O. Lepreux, M. Munoz Zuniga, C. Prieur and D. Sinoquet (2020),
Data-driven stochastic inversion via functional quantization.
Statistics and Computing Vol. 30 (3), p. 525-541
hal
-
P. Etoré, C. Prieur, D. K. Pham and L. Li (2020),
Global sensitivity analysis for models described by stochastic differential equations.
Methodology and Computing in Applied Probability Vol. 22, p. 803-831
hal
-
P. Tencaliec, A.-C. Favre, P. Naveau, C. Prieur and G. Nicolet (2020),
Flexible semiparametric Generalized Pareto modeling of the entire range of rainfall amount.
Environmetrics Vol. 31 (2): e2582
hal
-
C. Prieur, L. Viry, E. Blayo and J.-M. Brankart (2019),
A global sensitivity analysis approach for marine biogeochemical modeling.
Ocean Modelling, Vol. 139, 101402 hal
-
B. Iooss and C. Prieur (2019),
Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications.
International Journal for Uncertainty Quantification Volume 9 (5), p. 493-514
hal
-
L. Gilquin, E. Arnaud, C. Prieur and A. Janon (2019),
Making the best use of permutations to compute sensitivity indices with replicated orthogonal arrays.
Reliability Engineering & System Safety 187, p. 28-39 hal
-
M. B. Heredia, C. Junquas, C. Prieur, T. Condom (2018),
New statistical methods for precipitation bias correction applied to WRF model simulations in the Antisana Region (Ecuador).
Journal of Hydrometeorology, 19 (12), p. 2021-2040.
-
E. Di Bernardino and C. Prieur (2018),
Estimation of the Multivariate Conditional-Tail-Expectation for extreme risk levels: illustration on environmental data-sets.
Environmetrics, 29 (7), p. e2510
hal
-
Janon, A., Nodet, M., Prieur, C. and Prieur, C. (2018),
Goal-oriented error estimation for parameter-dependent nonlinear problems.
ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2), p. 705-728
hal
-
Owen, A. B. and Prieur, C. (2017),
On Shapley value for measuring importance of dependent inputs.
SIAM/ASA Journal on Uncertainty Quantification, 5 (1), p.986-1002
arXiv
errata
-
Comte, F., Prieur, C. and Samson, A. (2017),
Adaptive estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. Stochastic Processes and their Applications, 127 (11), p. 3689-3718
hal
-
P. Cattiaux, J. R. León and C. Prieur (2017),
Invariant density estimation for a reflected diffusion using an Euler scheme.
Monte Carlo Methods and Applications, 23 (2), p. 71-88
hal
-
L. Gilquin, T. Capelle, E. Arnaud and C. Prieur (2017),
Sensitivity Analysis and Optimisation of a Land
Use and Transport Integrated Model.
Journal de la Société Française de Statistique, numéro spécial Computer experiments, 158 (1), p. 90-110
hal
-
P. Cattiaux, J. R. León, A. A. Pineda and C. Prieur (2017),
An overlook on statistical inference issues for stochastic damping hamiltonian systems under the fluctuation-dissipation condition.
Statistics, special issue dedicated to the conference held in Paris, May 11-13, 2015 to honor Paul Doukhan, 51 (1), p. 11-29
hal
-
Gilquin, L., Jiménez Rugama, L. A., Arnaud, E., Hickernell, F. J., Monod, H. and Prieur, C. (2017),
Iterative construction of replicated designs based on Sobol' sequences.
C. R. Acad. Sci. Paris, Série 1, 355 (1), p. 10-14.
-
S. Nanty, C. Helbert, A. Marrel, N. Pérot and C. Prieur (2017),
Uncertainy quantication for functional dependent random variables.
Computational Statistics, 32 (2), p. 559-583.
-
S. Nanty, C. Helbert, A. Marrel, N. Pérot and C. Prieur (2016),
Sampling, metamodelling and sensitivity analysis of numerical
simulators with functional stochastic inputs.
SIAM/ASA Journal on Uncertainty Quantification, 4 (1), p. 636-659.
-
A. Janon, M. Nodet, C. Prieur and C. Prieur (2016),
Global sensitivity analysis for the boundary control of an
open channel.
Math. Control Signals Systems, 28 (1), p. 1-27.
-
A. Janon, M. Nodet, C. Prieur (2016),
Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis.
Journal of Scientific Computing, 68 (1), p. 21-41
hal
-
F. Gamboa, A. Janon, T. Klein, A. Lagnoux, C. Prieur (2016),
Statistical inference for Sobol pick freeze Monte Carlo method.
Statistics, 50 (4), p. 881-902
hal
-
P. Cattiaux, J. R. León and C. Prieur (2016),
Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. III. Diffusion term.
Annals of Applied Probability, 26 (3), p. 1581-1619
hal
-
A. Makris, C. Prieur, T. Vischel, G. Quantin, T. Lebel and R. Roca (2016),
Stochastic Tracking of Mesoscale Convective Systems: Evaluation in the West African
Sahel.
Stochastic Environmental Research and Risk Assessment, 30 (2), p. 681-691.
-
P. Tencaliec, A.-C. Favre, C. Prieur and T. Mathevet (2015),
Reconstruction of missing daily streamflow data using dynamic regression models.
Water Resour. Res., 51 (12), p. 9447-9463.
-
L. Gilquin, C. Prieur and E. Arnaud (2015),
Replication procedure for grouped Sobol' indices estimation in dependent uncertainty spaces.
Information and
Inference: A Journal of the IMA, 4 (4), p. 354-379, with the reproducible flag
hal
-
P. Cattiaux, J. R. León and C. Prieur (2015),
Recursive Estimation for Stochastic Damping Hamiltonian Systems.
Journal of Nonparametric Statistics, Volume 27, no. 3, pages 401-424
hal
-
J.-Y. Tissot and C. Prieur (2015),
A randomized Orthogonal Array-based procedure
for the estimation of first- and second-order Sobol' indices.
Journal of Statistical Computation and Simulation, Volume 85, Issue 7, pages 1358-1381
hal
-
M. Champion, G. Chastaing, S. Gadat and C. Prieur (2015),
L2 -Boosting for sensitivity analysis with dependent inputs.
Statistica Sinica, 25 (4), p. 1477-1502
hal
-
G. Chastaing, F. Gamboa, C. Prieur (2015),
Generalized Sobol sensitivity indices for dependent variables: numerical methods.
Journal of Statistical Computation and Simulation, Volume 85, Issue 7, pages 1306-1333
hal
-
P. Cénac, S. Loisel, V. Maume-Deschamps, C. Prieur (2014),
Ann. ISUP , Volume 58, Issue 3, pages 3-26
version preprint
-
P. Cattiaux, J. R. León and C. Prieur (2014),
Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. II. Drift term.
ALEA, Volume 11, Issue 1, pages 359-384
hal
-
A. Makris and C. Prieur (2014),
Bayesian Multiple Hypothesis Tracking of Merging and Splitting Targets.
IEEE Transactions on Geoscience and Remote Sensing
Volume 52, Issue 12, pages 7684-7694
hal
-
E. Di Bernardino and C. Prieur (2014),
Estimation of Multivariate Conditional Tail Expectation using Kendall's Process.
Journal of Nonparametric Statistics
Volume 26, Issue 2, pages 241-267
hal
-
P. Cattiaux, J. R. León and C. Prieur (2014),
Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. I. Invariant density.
Stochastic Processes and their Applications
Volume 124, Issue 3, pages 1236-1260
hal
-
Janon, A., Klein T., Lagnoux A., Nodet M., Prieur C. (2014),
Asymptotic normality and efficiency of two Sobol index estimators.
hal-00665048.
ESAIM P&S, Volume 18, pages 342-364
hal
-
A. Janon, M. Nodet, C. Prieur (2014),
Uncertainties assessment in global sensitivity indices estimation from metamodels.
International Journal for Uncertainty Quantification 4, no. 1, pages 21-36
arxiv
-
A. Janon, M. Nodet, C. Prieur (2013),
Certified reduced-basis solutions of viscous Burgers equation parametrized by initial and boundary values.
ESAIM Math. Model. Numer. Anal.
Volume 47, Issue 2, pages 317-348
arxiv
-
E. Di Bernardino, V. Maume-Deschamps, C. Prieur (2013),
Estimating Bivariate Tail: a copula based approach.
hal-00475386v2.
Journal of Multivariate Analysis.
Volume 119, pages 81-100
hal
-
E. Di Bernardino, T. Laloë, V. Maume-Deschamps & C. Prieur (2013),
Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory.
hal-00580624v2.
ESAIM Probab. Stat.
Volume 17, pages 236-256.
-
G. Chastaing, F. Gamboa, C. Prieur (2012),
Generalized Hoeffding-Sobol Decomposition for Dependent Variables. Application to Sensitivity Analysis.
Electronic Journal of Statistics.
Volume 6, Issue 0, pages 2420-2448
lien
-
J. Y. Tissot, C. Prieur (2012),
Bias correction for the estimation of sensitivity indices based on random balance designs.
hal-00507526v1.
Reliability Engineering & System Safety.
Volume 107, pages 205-213
hal
-
P. Cénac, V. Maume-Deschamps, C. Prieur (2012),
Some multivariate risk indicators; minimization by using a Kiefer-Wolfowitz approach to the mirror stochastic algorithm.
Statistics and Risk Modeling.
Volume 29, Issue 1, pages 47-71
hal
-
A. Antoniadis, C. Helbert, C. Prieur & L. Viry (2012),
Spatio-temporal metamodeling for West African monsoon.
Environmetrics, Special Issue: Spatio-Temporal Stochastic Modelling. (METMAV)
Volume 23, Issue 1, pages 24-36
pdf
-
F. Gamboa, T. Klein, C. Prieur (2012),
Conditional large and moderate
deviations for sums of discrete random variables.
Combinatoric applications.
Bernoulli 18, 4, 1341-1360
pdf
-
O. Mestre, C. Gruber, C. Prieur, H. Caussinus & S. Jourdain (2011),
SPLIDHOM~: a method for
homogenization of daily temperature observations.
Journal of Applied Meteorology and Climatology
50, 11, 2343-2358
pdf
-
N. Garcia, A. Galves, C. Prieur (2010),
Perfect simulation of the $\bar{d}$-minimal coupling between ordered pairs of binary chains of
infinite order.
Journal of Statistical Physics
141, 669-682
pdf
-
N. Guillotin-Plantard, C. Prieur (2010),
Limit theorem for random walk in
weakly dependent random scenery.
Annales de l'Institut Henri Poincaré P&S
46, 4, 1178-1194
pdf
-
N. Guillotin-Plantard and C. Prieur (2010),
Central limit theorem for sampled
sums of dependent random variables.
ESAIM P&S.
14, 299-314
arxiv
-
J. Dedecker and C. Prieur (2009),
Some unbounded functions of intermittent
maps for which the central limit theorem holds.
ALEA
5, 29-45
arxiv
-
B. Laurent, C. Ludena, C. Prieur (2008),
Adaptive estimation of linear
functionals by model selection.
Electronic Journal of Statistics
Vol. 2, 993-1020
lien
-
C. Prieur (2007),
Change Point Estimation by Local Linear Smoothing under a
Weak Dependence Condition.
Math. Methods of Statist.
Vol. 16 No. 1, 25-41
pdf
-
J. Dedecker & C. Prieur (2007),
An empirical central limit theorem for
dependent sequences.
Stochastic Process. Appl.
Vol. 117 No. 1, 121-142
pdf
-
B. Bercu & C. Prieur (2006),
Spectral properties of chaotic processes.
Stochastics and Dynamics.
Vol. 6 No. 3, 355-371
pdf
-
A. L. Fougères, F. Gamboa & C. Prieur (2005),
Some asymptotic results
for the number of generalized records,
Extremes,
Vol. 8, 27-41
pdf
-
J. Dedecker & C. Prieur (2005),
New dependence coefficients. Examples
and applications to statistics.
Probab. Theory and Relat. Fields,
Vol. 132, 203-236
pdf
online paper
-
J. Dedecker & C. Prieur (2004),
Couplage pour la distance minimale.
C. R. Acad. Sci. Paris, Série 1,
338, 805-808
pdf
-
J. Dedecker & C. Prieur (2004),
Coupling for $tau$-dependent sequences
and applications.
Journal of Theoretical Probability,
Vol. 17 No. 4, 861-885
pdf
-
C. Prieur (2002),
An Empirical Functional Central Limit
Theorem For Weakly Dependent Sequences.
Probab. and Math. Statistics, Vol. 22 Fasc.
2 , 259-287
ps
-
C. Prieur (2001),
Estimation de la densité invariante
de systèmes dynamiques en dimension 1.
C.R. Acad. Sci. Paris ,t. 332 Série
1, 761-764
pdf
-
C. Prieur (2001),
Density Estimation For One-Dimensional
Dynamical Systems.
ESAIM , Probab. & Statist. 5, p. 51-76
gzip-ps
-
P. Ango Nze & C. Prieur (2001),
Estimation d'une rupture
en dépendance faible.
C.R. Acad. Sci. Paris ,t. 335 Série
1, 267-270.
Proofs:
ps.file
-
C. Coulon-Prieur & Paul Doukhan (2000),
A triangular
central limit theorem under a new weak dependence condition.
Statistic& Probability Letters ,
47, 61-68
pdf
erratum.pdf
-
Proceedings
-
M. Billaud-Friess, A. Macherey, A. Nouy, and C. Prieur (2018),
Stochastic methods for solving high-dimensional partial differential equations.
International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, p. 125-141. Springer, Cham.
lien
-
E. Grenier, M. Hoffmann, T. Lelièvre, V. Louvet, C. Prieur, N. Rachdi and P. Vigneaux (2014),
Statistical inference for partial differential equations.
ESAIM: Proceedings and Surveys, Vol. 45, p. 178-188. Congrès SMAI 2013, Seignosse le Penon, France, 27-31 mai 2013. Jean-Stéphane Dhersin (Ed.).
lien
-
A. Janon, M. Nodet, C. Prieur and C. Prieur (2014),
Global sensitivity analysis for the boundary control of an open channel.
IEEE Conf. on Dec. and Cont. (CDC'14), Los Angeles (CA), USA, 2014.
lien
-
T. Cartailler, A. Gauss, A. Janon, H. Monod, C. Prieur and N. Saint-Geours (2014),
Sensitivity analysis and uncertainty quantification for environmental models.
ESAIM Proceedings, Vol. 44, Journées MAS 2012.
hal-00789826
lien
-
A. Gauss, A. Bsaibes, T. Cartailler, C. Prieur, E. Lebon, F. Gerard, E. Jallas (2013),
A decision-support system for vineyard water status management based on a modeling approach.
Precision agriculture '13, Editor John V. Stafford. Wageningen Academic Publishers.
9th European Conference on Precise Agriculture (ECPA), Lleida, Catalonia (Spain), 2013.
lien
-
A. Janon, M. Nodet, C. Prieur (2012),
Certified metamodels for sensitivity indices estimation.
Congrès National de Mathématiques Appliquées et Industrielles,
ESAIM Proc. 35, 234-238,
EDP Sci., Les Ulis, 2011.
-
C. Prieur (2002),
Density Estimation for One-Dimensional Dynamical Systems
Proceedings of the Seminar on Stability Problems for Stochastic
Models, Part I (Eger, 2001)
Journal of Mathematical Sciences (New York),
111, 3, 3601-3612.
-
Technical reports
-
C. Blanchet-Scalliet et al.(2024),
Activity report ciroquo research & industry consortium hal
-
S. Anquetin et al. (2022),
Un Institut Environnement - Société à l'UGA Vers une pérennisation de la dynamique impulsée autour des études des trajectoires des socio-écosystèmes dans un contexte d'évolution climatique hal
-
H. Mohammadi, P. Challenor and C. Prieur
Variance-based global sensitivity analysis of numerical models using R arXiv
-
O. Roustant, R. Le Riche, R., J. Garnier et al. (2021),
Chair in applied mathematics OQUAIDO Activity report hal
-
A. Guaus, A. Bsaibes, T. Cartailler, C. Prieur, E. Lebond, F. Gérarda (2013),
Time-dependent sensitivity analysis of a model-driven decision support
system for vineyard water status management.
-
J. Y. Tissot and C. Prieur (2012),
Variance-based sensitivity analysis using harmonic analysis.
hal-00680725
hal
-
Prepublications, submitted for publication
- H. M. Kouye, C. Prieur and E. Vergu (2024),
An extension of Sellke construction and uncertainty
quantification for non-Markovian epidemic models
Soumis pour publication,
hal
- A. Barry, F. Bachoc, S. Bouquet, M. Munoz Zuniga and C. Prieur (2024),
Optimal Design of Physical and Numerical Experiments for Computer
Code Calibration
Soumis pour publication,
hal
- R. Wang, V. Maume-Deschamps and C. Prieur (2024),
Quantile oriented sensitivity analysis with random forest based on pinball loss
Soumis pour publication,
hal
- R. Verdière, C. Prieur and O. Zahm (2023),
Diffeomorphism-based feature learning using Poincaré Inequalities on augmented input space
Soumis pour publication,
hal
- S. Da Veiga, F. Gamboa, T. Klein, A. Lagnoux and C. Prieur (2023),
Efficient estimation of Sobol’ indices of any order from
a single input/output sample
Prépublication,
hal
-
Other report
-
J.M. Bardet et C. Prieur (2003),
Propriétés rhéologiques
de la pâte de ciment.
Rapport de contrat.