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Spatio-temporal metamodeling for West
African monsoon†

Anestis Antoniadisa, Céline Helberta, Clémentine Prieura* and
Laurence Virya

In this paper, we propose a new approach for modeling and fitting high-dimensional response regression models in the
setting of complex spatio-temporal dynamics. This study is motivated by investigating one of the major atmospheric
phenomena, which drives the rainfall regime in Western Africa : West African Monsoon. We are particularly interested
in studying the influence of sea surface temperatures in the Gulf of Guinea on precipitation in Saharan and sub-Saharan.
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1. INTRODUCTION
West African monsoon is the major atmospheric phenomenon, which drives the rainfall regime in Western Africa. It is characterized by a
strong spatio-temporal variability whose causes have not yet been determined in an unequivocal manner. However, there is a considerable
body of evidence suggesting that spatio-temporal changes in sea surface temperatures in the Gulf of Guinea and changes in the Saharan
and sub-Saharan albedo are major factors. One of the interests of physicists is to perform sensitivity analysis on West African monsoon
(see Messager et al. (2004)). The main tool for simulating precipitation is a regional atmospheric model (MAR) whose performances were
evaluated by comparisons with precipitation data. Global sensitivity analysis of a model output consists in quantifying the respective impor-
tance of input factors over their entire range of values. Contrary to deterministic approaches based on gradients, global analyses can be
performed on nonlinear systems. Many techniques have been developed in this field (see Saltelli et al. (2000) for a review). Performing a
global sensitivity analysis implies running the model a large number of times. However, it can not be realized by running the MAR, as we
work on large discretization grids in space and time, thus dealing with huge dimensions. A way for overcoming this issue is to fit a stochastic
model, which approximates the MAR by taking into consideration the spatio-temporal dynamic of the underlying physical phenomenon and
with the ability to be run in a reasonable time. Statistical methods can be used to describe the behavior of a set of observations by focusing
attention on the observations themselves rather than on the physical processes that produced them. One of those statistical methods is regres-
sion, and in this paper, we focus on the regression of precipitation on sea surface temperatures. As far as the statistical description of the data
is concerned, the numerical storage and processing of our model outputs (precipitation) require considerable computational resources; it will
be run in a grid-computing environment (see Caron et al. (2006)). This grid deployment takes into account the scheduling of a huge number
of computational requests and links with data-management between these requests, all of these as automatically as possible. It requires new
developments, which are not at the moment completely achieved. It explains why we fit our model with real data in this study : Reynolds
climatological data for 18 years (1983 to 2000) for sea surface temperatures and data collected by the French Institut de Recherche pour le
Développement during a period of 8 years (1983 to 1990) for precipitation. The regression is achieved on the common period of observation
(from 1983 to 1990). The poor quality of data over longer periods explain our restrictive choice (see Messager et al. (2004)). It is clear that
the study will be enhanced as soon as the grid deployment will be achieved, allowing a regression to be fitted on a longer period of 18 years.

Functional data often arise from measurements on fine time grids, and many examples including environmental data can be found. In
the following work, we consider on each sampled spatial point x (resp. y) as sample unit, the year and the observed period is chosen
from March to November, which corresponds to the active period of the monsoon phenomenon for our application. It is assumed that we
have, for each year, an independent realization of the stochastic process Xx (resp. Y y ) that represents sea surface temperature (resp. pre-
cipitation) along the reference period (March to November). This assumption of independence is certainly too strong to be realistic, as
these data are collected sequentially over time and thus certainly present correlation among them. Prediction of such functional time series
has motivated the development of appropriate functional models, the most popular being the autoregressive model of Bosq (2000) and its
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various extensions particularly useful for prediction, see e.g., Besse (2000), Damon and Guillas (2002), Antoniadis and Sapatinas (2003) and
Aguilera et al. (2008). However, how to specify a model is not clear for many functional time series. The weighted functional principal com-
ponent approach developed in Aguilera et al. (1999) is very interesting as it does not require any prespecified structure for the data. Applying
a weighted scheme for estimating the sample mean and the covariance operator would probably be non-efficient, in our case, without further
and stronger assumptions as we only have eight observed segments (years). In the following, we have chosen functional principal component
approach as a dimensionality reduction technique on the basis of the assumption that our observed segments are independent segments of
the same continuous stochastic process (see Section 3). This choice was guided by recent results in Hörmann and Kokoszka (2010), which
prove the robustness of this tool to weak dependence. More precisely Hörmann and Kokoszka investigated the performance of functional
principal component approach under what they call m-approximation, which is a moment based notion of dependence for functional time
series, not unreasonable on our data, even if the few number of years of observation does not allow us to validate this assumption. Finally,
note that the 4 months gap (between two consecutive observation periods) makes this hypothesis even more plausible.

The present work introduces a new methodology for performing sensibility analysis of a heavy numerical model when handling spatio-
temporal inputs and outputs. The metamodel construction process is based on several steps, including dimension reduction and regression.
More precisely, the three major steps are the following: First, functional principal component analysis of both the predictor (sea surface
temperatures in the Gulf of Guinea) and the response (precipitations in Saharan and sub-Saharan) continuous-time processes is performed
on the common period of observation for each location on the spatial grid. The Karhunen–Loève decomposition is then truncated because
major part of variance is explained by only a few terms. This first step allows the reduction of the infinite dimension of temporal data to
few coefficients. Secondly, a functional clustering algorithm is performed on the selected eigenfunctions to reduce the spatial dispersion of
the Karhunen–Loève eigenfunctions (one decomposition per point). Few areas are identified where the decomposition (set of first eigen-
functions) can be considered constant for all the points of the area without losing accuracy. Thirdly, the relationship between inputs and
outputs is modeled on the coefficients of the decomposition earlier mentioned through a double penalized regression approach. This method-
ology allows controlling the total number of predictors entering the model and consequently facilitates the detection of important predictors.
Finally, the precipitation curves obtained by our Þltering modeling are compared with observations themselves.

The paper is organized as follows. In Section 2, we give a brief description of the data. Our new approach for modeling both sea surface
temperatures and precipitation is described in Section 3. Section 4 is devoted to the regression analysis. To conclude, we mention in Section 5
some of the many interesting perspectives of our study.

2. DATA DESCRIPTION
This section is devoted to the description of our data sets, chosen in accordance with physicists. The data used for sea surface temperatures
(SST) are the so-called Reynolds climatological data, generated by an optimal interpolation technique (Reynolds and Smith (1994)) which
uses satellite and in situ data. We obtain a value for SST at each of the 516 points of a spatial grid G located in the Gulf of Guinea. West
African monsoon is an almost periodic phenomenon, active from May to September. We worked with a time discretization: we have weekly
data from March to November (to cover the active period of the physical phenomenon). For these data we have 18 years of observations,
from 1983 to 2000.

Precipitation data have been recorded by the Institut de Recherche pour le Développement on a spatial grid G0 of size 382 located in
Western Africa with the greatest density of stations located between 5ı N and 15ı N (see Messager (2005)). We have daily data whose mean
is computed on 10 consecutive days from March to November, but only from 1983 to 1990. After removing points on G0 for which data were
incomplete, we worked with 368 points.

Then, we presented a map focusing on the region of interest around the Gulf of Guinea (see left panel of Figure 1). We also showed on the
right panel of the same figure, the 18 time-dependent curves of sea surface temperatures and the 8 time-dependent curves of precipitation at
some fixed spatial point.

Both inputs (SST) and outputs (precipitation) depended on space and time. Spatial and time discretizations result in very high-dimensional
data, which were difficult to analyze with classical multivariate analysis. Functional data analysis (FDA) went one big step further and seems
the appropriate statistical tool to be used for analyzing our data for which time dynamics and spatial dynamics were a major component.
Moreover, an overarching theme in FDA was the necessity to achieve some form of dimension reduction of the infinite-dimensional data
to finite and tractable dimensions and explained our choice to model inputs and outputs through spatio-temporal functional processes. For
an introduction to the field of FDA, the two monographs by Ramsay and Silverman (2002, 2005) provided an accessible overview on
foundations and applications, as well as a plethora of motivating examples.

3. MODELING INPUTS AND OUTPUTS
The modeling for both inputs and outputs is described in this section. Our regression methodology to study the relationship between precip-
itation and the SST was based on such modeling. Our method was a new filtering approach on the basis of Karuhnen–Loève decompositions
and functional clustering. It allowed reducing the dimensions involved in the data.

3.1. Functional modeling

Let T be a finite and closed interval of R. We usually refer to T as time. The spatial regions of interest R and R0 are both subsets of R2. In
our applicative context, T is the annual time period from March to November. The time period is the same for both SST and precipitation,
even if time discretization differs. We modeled inputs (resp. outputs) on the spatial grid G (resp. G0) described in Section 2. The phenomenon
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Figure 1. (a) Zone of interest for the study of West African monsoon and (b) time-dependent curves for SST (left) resp. Precip (right) for each of the 18
(resp. 8) years of observations for some fixed spatial point x 2 G (resp. x0 2 G0)

under study is a periodic phenomenon, with an active period from May to September, observed on N years (N is equal to 18 for SST and
8 for precipitation). Let x be any point on the grid G. Following Yao et al. (2005b), we considered that the i th observed time-dependent
trajectory at point x corresponded to a sampled longitudinal curve viewed as realizations of random trajectories

�
Xxi

�
, i D 1; : : : ; ; N ,

where Xxi was assumed to belong to some Hilbert functional space H � L2.T /. These Xxi ’s were viewed as independent realizations of a
stochastic processXx with unknown smooth mean function EXx.t/D �Xx .t/, and covariance function Cov .Xx.s/; Xx.t//DGXx .s; t/.
The assumption of independence is discussed in the introduction (see Section 1).

It is well known that under very mild conditions, there exists an orthogonal expansion ofGXx (in the L2 sense) in terms of eigenfunctions
em.x; �/ with associated eigenvalues �m.x/ (arranged in nonincreasing order), that is,

GXx .s; t/D
X
m>1

�m.x/em.x; s/em.x; t/; s; t 2 T

The random function Xx.t/ where t denotes time and x location, may be decomposed into an orthogonal expansion

Xx.t/D �Xx .t/C

1X
mD1

˛m.x/em.x; t/; t 2 T

This representation of a random function is known as the Karhunen–Loève expansion, although in the meteorological literature, it is known
as the empirical orthogonal function (EOF) expansion. It can be shown that the truncated decomposition with Nx terms (that is keeping at
location x the first Nx principal components)

X trunc;x.t/D �Xx .t/C

NxX
mD1

˛m.x/em.x; t/; t 2 T (1)

minimized the mean integrated squared error E
˚R

T ŒX
x.t/�X trunc;x.t/�2dt

�
. The spectral representation was optimal in the sense that this

error was minimum compared with Nx terms of any orthogonal system (see, e.g., Cohen and Jones (1977)). In our case, we took Nx as the
truncation needed at point x to explain more than 80% of the variance.

In our analysis, for each spatial grid point in the Gulf of Guinea and each year of observation, SST was measured during the active period
on a temporal grid. A Karhunen–Loève decomposition was then performed at each location on the spatial grid (see e.g., Yao et al. (2005b).
To achieve an optimal (in the least-squares sense) representation of the observed process, the appropriate number of terms Nx depended
on the location on the spatial grid. To simplify the analysis, we considered in the following that Nx is bounded above by a number M
independent of x. As one can see from Figure 2, such an assumption with M D 2 (i.e., with a cumulative percentage of variance explained
that was larger than 70%) seemed perfectly valid for our data on sea surface temperatures.

In our application, the number and shape of the eigenfunctions patterns over time were not known, and the lack of stationarity over space
made them dependent on the spatial location. The estimation of these eigenfunctions at different spatial locations generated great amounts
of high-dimensional data. It seemed therefore reasonable to assume some kind of local stationarity by assuming that at least the resulting
eigenfunctions were spatially piecewise constant. Clustering algorithms became then crucial in reducing the dimensionality of such data.
The choice of the clustering approach was described in Section 3.3. For the moment, let us just assume that we knew that there existed L1
points x0;1; : : : ; x0;L1 (with L1 2 N�) on the spatial grid G partitioning G D [L1

lD1
Gl into L1 subregions Gl that appeared as a ‘natural’
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Figure 2. Percent cumulative variance for the sea surface temperatures (SST) on the map explained by reconstructing the SST using (a) one term, (b) two
terms, (c) three terms, and (d) four terms in the corresponding truncated Karhunen–Loève expansion

system of spatial coordinates that reflected the underlying internal and local stationary structures of the data. Given such a partition, for any
x on G, there existed l 2 f1; : : : ; L1g and a specific point x0;l in Gl such that we have approximated Xx.t/ by

eXx.t/D �Xx .t/C MX
mD1

ęm.x/em.x0;l ; t /; t 2 T (2)

with ęm.x/D RT eXx.t/em.x0;l ; t /dt , for mD 1; : : : ;M
The modeling for precipitation followed the same lines, leading to L2 fixed grid points y0;1; : : : ; y0;L2 (with L2 2 N�) on the spatial

grid G0 partitioning G0 D [L2
lD1

G0
l

into L2 subregions G0
l
. Then, given such a partition, for any y on G0 there existed l 2 f1; : : : ; L2g and a

specific point y0;l in G0
l

such that we have approximated Y y.t/ by

eY y.t/D �Y y .t/C KX
kD1

ě
k.y/fk.y0;l ; t /; t 2 T (3)

with ěk.y/ D R
T eY y.t/fk.y0;l ; t /dt for k D 1; : : : ; K. The truncation number K was also assumed not to depend on y 2 G0 and was

chosen to be equal to 2 for our test case (see Figure 3).
In the following, if nSST (resp. nP ) denotes the number of points on G (resp. G0), we defined the nSST-dimensional (resp. the

nP -dimensional) vectors

˛m D
�ęm.x1/; : : : ;ęm �xnSST

��t
; mD 1; : : : ;M

and

ˇk D
�ě
k.y1/; : : : ;

ě
k

�
ynP

��t
; k D 1; : : : ; K

Note that in our application nSST D 516 and nP D 368.

3.2. Estimation procedure
We now describe our estimation procedure, following the main lines in Yao et al. (2005a). The methodology described later and used for
our analysis has been implemented in MatLab and is freely available in the principal analysis by conditional expectation (PACE) package,
downloadable from the internet (see Yao et al. (2010)).

We only dealt here with SST because the procedure was the same for precipitation. Let x be any point on the spatial grid G. Assume x 2 Gl
for some l 2 f1; : : : ; L1g. In the first step, we estimated the mean function �Xx .�/ on the basis of the data from all individual curves. Mean
and eigenfunctions were assumed to be smooth, and we therefore used local linear smoothers (Fan and Gijbels, (1996)) for function and
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Figure 3. Percent cumulative variance for precipitation on the map explained by reconstructing the precipitation process using (a) one term (b) two terms (c)
three terms, and (d) four terms in the corresponding truncated Karhunen–Loève expansion

surface estimation, fitting local lines in one dimension and local planes in two dimensions by weighted least squares.
The bandwidth b necessary for local smoothing was chosen by minimizing the cross-validation score given by CV.b/ DPN
iD1

PT
jD1

n
Xxi .tj /�b�.�i/.tj I b/o2 =N , where t1; : : : ; tT is the time discretization of T , N is the number of observed curves at x and

b�.�i/.tj I b/ is the estimation of �Xx .tj / obtained without using the i th curve. To estimate the cross-covariance surface GX .s; t/, s, t 2 T
we have used two-dimensional scatterplot smoothing. The raw cross-covariancesGX;i .tj ; tk/D

�
Xxi .tj /�b�Xx .tj /� �Xxi .tk/�b�Xx .tk/�

were considered as input for the two-dimensional smoothing step.More precisely, the local linear surface smoother for the cross-covariance
surface GX .s; t/ was obtained as in Yao et al. (2005a) by minimizing :

NX
iD1

X
1�j;k�T

K2

�
tj � s

h1
;
tk � t

h2

�˚
GX;i .tj ; tk/� f .ˇ; .s; t/; .tj ; tk//

�2

with respect to ˇ D .ˇ0; ˇ1;1; ˇ1;2/, leading to bGX .s; t/D b̌0.s; t/, where f .ˇ; .s; t/; .tj ; tk//D ˇ0C ˇ1;1.s � tj /C ˇ1;2.t � tk/, K2 is
a given two-dimensional kernel, and where the bandwidths h1 and h2 are chosen again by cross-validation.

The estimates of eigenfunctions and eigenvalues corresponded to the solutionsbem.x0;l ; �/ andb�m of the following integral equations:Z
T
bGX .s; t/bem.x0;l ; s/ds Db�mbem.x0;l ; t /

where thebem.x0;l ; �/ are subject to
R
T bem.x0;l ; t /2dt D 1 and

R
T bek.x0;l ; t /bem.x0;l ; t /dt D 0 for m ¤ k �M . The eigenfunctions were

estimated by discretizing the smoothed covariance, as described, for example in Rice and Silverman (1991) or Capra and Müller (1997).
Finally, to complete the estimation procedure for SST, we have to estimate ęim.x/, for i D 1; : : : ; N and m D 1; : : : ;M . We used the

following projection estimates:

TX
jD2

Xxi .tj /bem.x0;l ; tj /.tj � tj�1/
which are just numerical integration versions of ęim.x/ D R

T X
x
i .t/bem.x0;l ; t /dt , for m D 1; : : : ;M . The estimation for each individual

curve was needed in Section 4 for the selection procedure of the regression.

3.3. Functional clustering results

As mentioned previously, clustering algorithms are crucial in reducing the dimensionality of our data. The number and shape of the eigen-
functions patterns over time are not known. An ideal clustering method would provide a statistically significant set of clusters (and therefore
of spatial regions) and curves derived from the data themselves without relying on a pre-specified number of clusters or set of known func-
tional forms. Further, such a method should take into account the between time-point correlation inherent in time series data. Some popular
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methods such as k-means clustering (see Hartigan and Wong (1978)), self-organizing maps (see Kohonen (1997)), or hierarchical clustering
(see Eisen et al. (1998)) do not satisfy this pre-requisite. One promising approach is to use a general multivariate Gaussian model to account
for the correlation structure; however, such a model ignores the time order of the eigenfunctions. The time factor is important in interpret-
ing the clustering results of time series data. A curve-based clustering method called FCM was introduced in James and Sugar (2003) to
cluster sparsely sampled time course genomic data. Similar approaches were proposed in Luan and Li (2003) to analyze time course gene
expression data. In these methods, the mean gene expression profiles are modeled as linear combinations of spline bases. However, with
different choices of bases or of the number of knots, one could obtain an array of quite different estimates of the underlying curves. Effective
methods or guidance on how to select the basis or the number of knots are still lacking, which hinders the effective use of these methods
in real applications. Here, we have used a data-driven clustering method, called smoothing spline clustering (SSC), that overcomes the
aforementioned obstacles using a mixed-effect smoothing spline model and a rejection-controlled EM algorithm (see Ma et al. (2006)). A
distinguishing feature of SSC is that, it accurately estimates individual eigenvalue profiles and the mean eigenfunction profile within clusters
simultaneously, making it extremely powerful for clustering time series data. Let us now present the way we fixed the number of clusters for
our test case.

3.3.1. Sea surface temperatures

We first performed the SSC approach on the 516 estimated first eigenfunctions t !be1.x; �/ obtained by the Karuhnen–Loève decomposition
at each point x of the spatial grid G. To determine a convenient number K of clusters, several data- driven strategies can be defined. For
this study, we use an information theoretic point of view provided by Sugar and James (2003), on the basis of the transformed distortion
curve .K; dK/, where dK denotes the minimum achievable distortion associated with fitting K centers to the data. Sugar and James’ crite-
rion applied to our data leads to K D 3. Given the lack of observations, interpretation of the map with three clusters appeared difficult for
physicists. We thus prefer hereafter a choice of two clusters, which seems to be more robust. Projection on the map for two clusters is drawn
in Figure 5(a). A relevant factor for discrimination validated by physicists is the distance to the coast.

The objective of Figure 4 is to see the overall trend of the first eigenfunctions over time, uncovering spatial-specific variation patterns.
More specifically, we collect for each cluster the estimated curves t !be1.x; �/, x 2 G. It shows that the temperature differences from one
year to another are maximum around June–July for the first group, and July–August for the second one.

Let us now consider what happens for the second eigenfunctions t ! e2.x; �/, x 2 G. Classifying the estimated curves t !be2.x; �/ on
each of the two clusters obtained by applying the SSC procedure on the 18 curves t !be1.x; �/ showed that the clustering structure seems
also adapted for discriminating the second eigenfunctions. It thus validates decomposition (2) with M D 2 announced in Subsection 3.1.
It remains to choose the representative points x0;1 and x0;2 for each cluster. We considered the centroid for each cluster. These two points
were not necessarily on the grid G, thus, for each cluster, we chose the point on the grid which is the closest to the centroid.
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Figure 6. Precipitation data: estimated curves by cluster for the first eigenfunction

3.3.2. Precipitation

The procedure adopted for analyzing precipitation is similar. Sugar and James’ criterion leads to three clusters reduced toK D 2 clusters for
sake of robustness. Projection on the map for two clusters is drawn in Figure 5(b). From physicists point of view, a plausible relevant factor
for discrimination is the topography.

Considering two spatial clusters, in Figure 6, we collect for each cluster, the estimated curves t ! bf 1.y; t/, y 2 G0. It shows a significant
dispersion late August and early September, when the phenomenon of rain vanishes.
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Figure 7. (Relative mean squared error for the reconstruction of sea surface temperatures (left) and of Precipitation (right)

Investigating what happens on the second eigenfunctions t ! f2.y; �/, y 2 G0, we can conclude that no further clustering structure appears
in the estimated curves, which supports the fact that using the two clusters (denoted by G0

l
, l D 1; 2) obtained by SSC on the first eigenfunc-

tions for discriminating the clusters makes sense. It thus validates again decomposition (3) with K D 2 announced in Subsection 3.1. The
difference is that, contrary to what happens for SST, we do not define t ! f2.y0;l ; t / as the second eigenfunction obtained at point y0;l but
as the mean curve t ! f2.t/ of all curves t ! f2.y; t/, y 2 G0. Thus, it does not depend on space. It remains to choose the representative
points y0;1 and y0;2 for each cluster. We considered the centroid for each cluster. These two points are not necessarily on the grid G0, thus,
for each cluster, we chose the point on the grid that is the closest to the corresponding centroid.

Hence, for both precipitation and SST, we obtain a decomposition where the basis functions are those depending on time only and whose
coefficients are spatially indexed and time independent. The relative mean squared error (MSErel) for the reconstruction of SST and precip-
itation is estimated by leave-one-out cross-validation (see Equation (4) for the definition of MSErel ). The panels in Figure 7 display this
relative mean squared error for SST reconstruction (left) and precipitation (right) on the appropriate map.

Leave-one-out cross-validation relative mean squared error estimation for SST at each point x 2 G is defined by

MSErel;SST.x/D
1

22

TX
jD1

1
18

P18
kD1

�eX .�k/;x.tj /�Xxk .tj /�2
1
18

P18
kD1

�
Xx
k
.tj /

�2 (4)

where eX .�k/;x.tj / is the estimation of Xx.tj / obtained without using the kth curve Xx
k
.�/. The procedure for the estimation of the relative

mean squared error for precipitation is similar.

4. MULTIVARIATE REGRESSION MODEL, A DOUBLE PENALIZED APPROACH
This section concerns the regression approach we have adopted for modeling the relation between inputs and outputs (see Subsection 4.1).
We also discuss in this section, the selection procedure of the tuning parameters for our application (see Subsection 4.2).

4.1. Regression procedure

As mentioned in the introduction, we intend to use a novel method recently developed by Peng et al. (2010) in integrated genomic studies,
which we describe later for the sake of completeness. The method uses an `1-norm penalty on a least squares procedure to control the
overall sparsity of the coefficient matrix in a multivariate linear regression model. In addition, it also imposes a group sparse penalty, which
in essence is the same as the group lasso penalty proposed by Bakin (1999), Antoniadis and Fan (2001) and Obozinski et al. (2008). This
penalty puts a constraint on the `2 norm of regression coefficients for each predictor, which thus controls the total number of predictors
entering the model, and consequently facilitates the detection of important predictors.

More precisely, consider a multivariate regression problem with q response variables Y1; : : : ; Yq and p prediction variables X1; : : : ; Xp :

Yj D

pX
iD1

XiBij C �j ; j D 1; : : : ; q (5)

where the error terms �1; : : : ; �q have a joint distribution with mean 0 and covariance †. In this equation, we assume without any loss of
generality that all the response and prediction variables are standardized to have zero mean, and thus, there is no intercept term in
Equation (5). Our primary goal is to identify non-zero entries in the p � q regression coefficient matrix B D .Bij / based on n i.i.d.
samples from this model, which is exactly the problem addressed by Peng et al. (2010). Under normality assumptions, Bij can be inter-
preted as proportional to the conditional correlation Cor.Yj ; Xi jX�.i//, where X�.i/ WD

˚
X 0i W 16 i

0 ¤ i 6 p
�
. In the following, we use
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Yj D
�
Y 1j ; Y

2
j ; : : : ; Y

n
j

�T
and Xi D

�
X1i ; X

2
i : : : ; X

n
i

�T
to denote respectively the sample of the j th response variable and that of the

i th prediction variable. We also use Y D .Y1 W � � � W Yq/ to denote the n � q response matrix, and use X D .X1 W � � � W Xp/ for the n � p
prediction matrix. We shall focus on the cases where both q and p are larger than the sample size n. For example, in the applied study

of West African monsoon discussed later, we regress
�
˛1;˛2

�
on
�
ˇ1;ˇ2

�
. Hence, for this application, the sample size is 8, whereas the

number of spatial components are respectively p D 2� nSST and q D 2� nP . In the application nSST D 516 and nP D 368. When q > n,
whatever the value of p is, the ordinary least square (OLS) solution is not unique, and regularization becomes indispensable. The choice
of suitable regularization depends heavily on the type of data structure we envision. Recently, `1-norm based sparsity constraints such as
lasso (Tibshirani (1996)) have been widely used under such high-dimension-low-sample-size settings. In our application, we will impose
an `1-norm penalty on the coefficient matrix B to control the overall sparsity of the multivariate regression model, but in addition, we put
constraints on the total number of predictors entering the model, which is essentially the remMap idea. This is achieved by treating the
coefficients corresponding to the same predictor (one row of B in model (5) as a group, and then penalizing their `2 norm. A predictor
will not be selected into the model if the corresponding `2-norm is shrunken to 0. Thus, this penalty facilitates the identification of master
predictors, which affect (relatively) many response variables. Specifically, for model (5), we will use the following criterion:

`.�;�/.Y; B/D
1

2
kY�XBk2F C �

pX
jD1

kCj �Bj k1C�
pX
jD1

kCj �Bj k2; (6)

where C is a p � q 0–1 matrix indicating the coefficients of B on which penalization is imposed. In the earlier mentioned equation, Cj and
Bj are the j th rows of C and B , respectively, whereas k � kF denotes the Frobenius norm of matrices, k � k1 and k � k2 are respectively the
`1 and `2 norms of vectors and ‘�’ stands for the Hadamard product (entry-wise multiplication). The selection matrix C is pre-specified on
the basis of prior knowledge: if we know in advance that predictor Xi affects response Yj , then the corresponding regression coefficient
Bij will not be penalized, and we set Cij D 0. When there is no such prior information, C can be simply set to a constant matrix Cij D 1.

Finally, an estimate of the coefficient matrix B is bB�;� WD argminB`.�;�/.Y; B/:
In the earlier-mentioned criterion function, the `1 penalty induces the overall sparsity of the coefficient matrix B . The `2 penalty on

the row vectors Cj � Bj induces row sparsity of the product matrix C � B . As a result, some rows are shrunken to be entirely zero. Con-
sequently, predictors which affect relatively more response variables are more likely to be selected into the model. We will refer to the
proposed estimator bB�;� as the regularized multivariate regression for identifying master predictors (remMap) estimator in connection with
the remMap theory and R-package developed by Peng et al. (2010) for regularized multivariate Regression for identifying master predictors
in integrative genomics studies of breast cancer.

4.2. Implementation and results

In this subsection, we describe the different steps for the implementation of the remMAP procedure on our application. A first step is to fit
both parameters � and �. These parameters are adjusted by v-fold cross-validation. The prediction error obtained by 4-fold cross-validation
is drawn on Figure 8. We note that there does not exist a unique minimum. For � D 1 and � D 4, the error seems to reach a value close to
the minimum.

On Figure 9 we note that the regression coefficients matrix B , estimated using � D 1 and � D 4 for the penalties, is sparse. This is a
consequence of using the remMAP methodology.

It seems quite interesting to display on a map, the spatial points on the grid G corresponding to the nonzero rows of the matrix B (left) and
the spatial points on G0 influenced by the nonzero rows of B (right) (see Figure 10). As one may see, the two regions seem complementary
and cover quite well the region of interest for precipitation.
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Figure 8. Cross validation for the choice of � and � (with two different germs)
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Figure 9. Regression coefficients matrix B estimated with �D 1 and �D 4
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Figure 10. Spatial location for the average responses indicated by the retained coefficients for both predictors (points 1 and 2 on the map)
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Using the results of the regression and given the retained regression coefficients, we then proceed to the reconstruction of precipitation on
the grid G0. Define first

�
ˇ1;reg;ˇ2;reg

�T
D
�
˛1;˛2

� bB
Then for l D 1; 2, for y 2 G0

l
, let

Y y;reg.t/Db�Y y .t/C ˇ1;reg
bf 1.y0;l ; t /C ˇ1;reg

bf 2.t/
The relative mean squared error (RMSE) estimated by leave-one-out cross-validation (see (7)) is displayed on the map (see Figure 11).

Notice, however, some points of high RMSE, which are close to the coast. We have also plot the annual and weekly boxplots for the relative
MSE (see Figure 12). The relative error is between 0:3 and 0:4, which is not so bad if we consider that we did not have many observations
to conduct the study. As one can see on the right panel of the figure, this error is not constant over time, with bad reconstructions for some
weeks.

MSEPrecip;reg.y/D
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22X
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�2 (7)

with ceY y
k
.tj /Db�Y y .tj /Ccěk1.y/bf 1.y0;l ; tj /Ccěk2.y/bf 2.tj /

Finally, on Figure 13, we plotted some fixed points in G0 the curve reconstructed by regression (continuous line) for precipitation, the
one obtained by the filtering modeling of Section 3 (circles), and the observations themselves (dots). As one can see, the regression predic-
tion curve somehow smooths the observations in quite a natural way, and the methodology seems promising for pursuing via this model a
sensitivity analysis, but this is beyond the scope of the present work.

5. CONCLUSION AND PERSPECTIVES
Motivated in investigating the West African monsoon, we present a new approach for modeling and fitting high-dimensional response regres-
sion models in the setting of complex spatio-temporal dynamics. We were particularly interested in developing an appropriate regression
based methodology for studying the influence of SST in the Gulf of Guinea on precipitation in Saharan and sub-Saharan. However, one
central issue in the analysis of such data consists in taking into account the spatio-temporal dependence of the observations. For most of the
applications that we are aware of, the spatio-temporal dynamics are usually modeled as time function-valued (spatially stationary) processes
allowing the development of efficient prediction procedures on the basis of appropriate principal component such as decompositions and
regression. In practice, however, many observed spatial functional time series cannot be modeled accurately as stationary. To handle spatial
variation in a natural way, we have segmented the space into regions of similar spatial behavior using in the process an efficient clustering
technique that clusters the times series into groups that may be considered as stationary so that in each group more or less standard regres-
sion prediction procedures can be applied. Furthermore, to avoid regression models that are far too complex for prediction, and inspired by
similar approaches used in modern genomic data analysis, we have used an appropriate regularization method that has proven to be quite
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Figure 12. Boxplots of the relative mean squared error per year (left) and per week (right)
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Figure 13. For four spatial points selected in the domain G0 a display of the reconstructed precipitation curve (red), the reconstruction curve with truncated
Karhunen–Loève decomposition (circles) and the observed precipitation (dots)

efficient for the data we have analyzed. However, a major lack in this study is that, it was implemented with only eight years of observations.
To overcome this issue, the authors have in mind to perturb initial maps of SST and then to run the regional atmospheric model MAR on
these new inputs. Such a simulation study involves the development of MAR on a computer-grid environment to be achieved. Recall that
fitting an appropriate metamodel is a necessary preliminary step to sensitivity analysis in our context, where the code requires considerable
computational resources. This simulation study will be performed, as far as the sensitivity analysis, in a future work. The main goal achieved
in the present work is to present an original and innovative methodology to reduce the dimension as a first step towards sensitivity analysis.
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