C++ main module for emicrom Package  1.0
Revolution Ellipsoide Example

The Revolution ellipsoide examples consists in studing an ellipsoide of diameters L,L,3.L in the canonical directions (x,y,z).

The matter parameters are as follow (Fer-Alpha type):

Ms Aimantations (A/m) 1.7e6
K1 First Anisotropy (J/m^3) 4.8e5
K3 Secund Anisotropy (J/m^3) 1.5e5
A Exchange (J/m^3) 2.1e-11

The domain is discretized in 64x64x64 cells.

The exchange length is $ L_{ex}=\sqrt \frac{A}{K_m} $ where $ K_m=0.5.\mu_0 M_s^2 $ and $ \mu_0=4.\pi 1.e-7 $.

We well make vary the length of the ellipsoide with respect of a multiple of Lex (2,1,0.5,0.25).

First, we choose L=2.Lex.

The length of the ellipsoide is 2.Lex, the mesh size is 1.0625e-10x1.0625e-10x3.1875e-10

The anisotropy direction U1 is uniformly in the Z-direction with a unaxial crystal type.

The initial magnetism M is uniformly in the Z direction.

The external magnetism field is set to null.

The geometry clipped in 2 orthogonal plan at origin:

matter in domain

The code to generate files:

microm_domain.exe --path=./ --output=./Data --prefix=revolutionEllipsoide-2 --geometry=DISK[3,0,0,0,.00000000680000000000,.00000000680000000000,3*.00000000680000000000] --mesh=[64,64,64] --nMatters=1 --ms=1700000.0 --k1=480000.0 --k3=150000.0 --a=.00000000002100000000 --alpha=0.5 --u=[0,0,1] --v=[0,0,0] --w=[0,0,0] --crystal=UNIAXIAL --Hinit=[0,0,1] make create

The code to compute the magnetism at equilibrium state :

microm_grid3d_openmp.exe --path=./Data --output=./Output --prefix=revolutionEllipsoide-2 --mesh=revolutionEllipsoide-2.geo --matter=revolutionEllipsoide-2.mat --anisotropy=revolutionEllipsoide-2.ani --with-anisotropy=false --with-exchange=true --with-demagnetized=true --with-magnetostriction=false --periodicity=[false,false,false] --nlevels=-1 --Hinit=revolutionEllipsoide-2.aim --Hext=[0,0,0] --iterations=25000 --tolerance=1.e-8 --nthreads=4 --profiling=false --verbose=./Output/revolutionEllipsoide-2.log make run

The relaxation technics converges in 5093 iterations and stops because of the variation of energy is less than 1.e-8.

The computation takes 5 hours.

The value of magnetism field at equilibrium state are plot as follow:

equilibrium magnetism value along x for L=2Lex equilibrium magnetism value along y for L=2Lex equilibrium magnetism value along z for L=2Lex

equilibrium magnetism vector with total magnetism module for L=2Lex equilibrium total magnetism field norm for L=2Lex

When L=1.Lex, the mesh size is 5.3125e-11x 5.3125e-11x1.59375e-10.

The value of magnetism field at equilibrium state are plot as follow:

equilibrium magnetism value along x for L=Lex equilibrium magnetism value along y for L=Lex equilibrium magnetism value along z for L=Lex

equilibrium magnetism vector with total magnetism module for L=Lex equilibrium total magnetism field norm for L=Lex

When L=0.25 Lex, the mesh size is 1.32812e-11 x 1.32812e-11 x 3.98437e-11

The value of magnetism field at equilibrium state are plot as follow:

equilibrium magnetism value along x for L=Lex/4 equilibrium magnetism value along y for L=Lex/4 equilibrium magnetism value along z for L=Lex/4

equilibrium magnetism vector with total magnetism module for L=Lex/4 equilibrium total magnetism field norm for L=Lex/4