1 #ifndef EMM_OptimalTimeStep_H 2 #define EMM_OptimalTimeStep_H 162 static inline SP::EMM_OptimalTimeStep
New() {
tReal mT[4]
Definition: EMM_OptimalTimeStep.h:133
This class describes implements the gradient of the landau Lifschitz function to use optimal time ste...
Definition: EMM_GradGaussLegendreRelaxation.h:24
MATH_P4 mP4
Definition: EMM_OptimalTimeStep.h:130
EMM_OptimalTimeStep(void)
create
Definition: EMM_OptimalTimeStep.cpp:6
#define tUInteger
Definition: types.h:91
virtual tBoolean isSystemCompatible(SPC::EMM_LandauLifschitzSystem system) const
return true if the system is comatible with the computeNewDt() method
Definition: EMM_OptimalTimeStep.h:178
virtual tString toString() const
turn the regular time into a string
Definition: EMM_Stepper.cpp:49
#define tBoolean
Definition: types.h:139
tBoolean computeOptimalTimeStep(EMM_GradGaussLegendreRelaxation &GSystem, tReal &dt)
update the time step
Definition: EMM_OptimalTimeStep.cpp:28
SP::EMM_RealField mGradH_gradF
Definition: EMM_OptimalTimeStep.h:134
virtual tBoolean computeNewTimeStep(tReal &dt, tUInteger &nEvaluations)
compute the new time step
Definition: EMM_OptimalTimeStep.cpp:15
virtual ~EMM_OptimalTimeStep(void)
destroy
Definition: EMM_OptimalTimeStep.cpp:11
virtual tString toString() const
turn the regular time into a string
Definition: EMM_OptimalTimeStep.h:216
virtual tBoolean isSystemCompatible(SPC::EMM_LandauLifschitzSystem system) const
return true if the system is compatible
Definition: EMM_Stepper.h:169
#define tString
Definition: types.h:135
SP_OBJECT(EMM_OptimalTimeStep)
static SP::EMM_OptimalTimeStep New()
build a shared pointer associated to the class
Definition: EMM_OptimalTimeStep.h:162
DEFINE_SPTR(EMM_OptimalTimeStep)
#define tReal
Definition: types.h:118
This class describes the optimal time.
Definition: EMM_OptimalTimeStep.h:119
This class describes a regular time.
Definition: EMM_RegularTimeStep.h:15
class Free introduced for deleting a smart pointer
Definition: CORE_Object.h:141
This class describes a polynom of degre 4 .
Definition: MATH_P4.h:15