Puisque est continue, d'après le théorème des valeurs
intermédiaires, si
ne s'annule pas sur
, alors son signe
reste le même :
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
La fonction
est majorée par
sur
. De
plus la fonction
est continue et
strictement positive sur
. Le
même raisonnement que précédemment donne la majoration
au sens strict suivante.
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |