Il est des personnes, ô roi Gélon, qui pensent que le nombre des grains de sable est infini. Je ne parle point du sable qui est autour de Syracuse et qui est répandu dans le reste de la Sicile, mais bien de celui qui se trouve non seulement dans les régions habitées, mais encore dans les régions inhabitées. Quelques-uns croient que le nombre des grains de sable n'est pas infini, mais qu'il est impossible d'assigner un nombre plus grand. Si ceux qui pensent ainsi se représentaient un volume de sable qui fût égal à celui de la terre, qui remplît toutes ses cavités, et les abîmes de la mer, et qui s'élevât jusqu'aux sommets des plus hautes montagnes, il est évident qu'ils seraient bien moins persuadés qu'il pût exister un nombre qui surpassât celui des grains de sable.
Quant à moi, je vais faire voir par des démonstrations géométriques auxquelles tu ne pourras refuser ton assentiment, que parmi les nombres dénommés par nous dans les livres adressés à Zeuxippe, il en est qui excèdent le nombre des grains d'un volume de sable égal non seulement à la grandeur de la terre, mais encore à celui de l'univers entier.
[...]
Telles sont les suppositions que nous faisons. Mais je pense qu'il est nécessaire à présent d'exposer les dénominations de nombres; si je n'en disais rien dans ce livre, je craindrais que ceux qui n'auraient pas lu celui que j'ai adressé à Zeuxippe ne tombassent dans l'erreur. On a donné des noms aux nombres jusqu'à une myriade et au-delà d'une myriade, les noms qu'on a donné aux nombres sont assez connus, puisqu'on ne fait que répéter une myriade jusqu'à dix mille myriades.
Que les nombres dont nous venons de parler et qui vont jusqu'à une myriade de myriades soient appelés nombres premiers, et qu'une myriade de myriades des nombres premiers soit appelée l'unité des nombres seconds ; comptons par ces unités, et par les dizaines, les centaines, les milles, les myriades de ces mêmes unités, jusqu'à une myriade de myriades. Qu'une myriade de myriades des nombres seconds soit appelée l'unité des nombres troisièmes; comptons par ces unités, et par les dizaines, les centaines, les milles, les myriades de ces mêmes unités, jusqu'à une myriade de myriades ; qu'une myriade de myriades des nombres troisièmes soit appelée l'unité des nombres quatrièmes ; qu'une myriade de myriades de nombres quatrièmes soit appelée l'unité des nombres cinquièmes, et continuons de donner des noms aux nombres suivants jusqu'aux myriades de myriades de nombres composés de myriades de myriades des nombres troisièmes.Bon, vous avez compris, Archimède sait compter jusqu'à beaucoup !