Fast Wavelet Iterative Solvers applied to the Neumann Problem

R. Choquet & V. Perrier


The effectiveness of the resolution of linear systems, arising from a finite element or a finite difference formulation of the Neumann problem, depends on both the treatment of the singularity and the choice of a preconditioner. In this paper, we apply a  Fast Wavelet Transform (FWT) to the linear system. In this discretization we propose a new class of  preconditioners as an alternative of the diagonal wavelet preconditioner. Moreover we present two methods to deal with the singularity of the new system. Numerical results show that the number of matrix-vector products is almost independent of the size of the system.
 


Aerospace Science and Technology, 4, pp. 135-145 (2000). 

Fichier ps comprimé