Fast Wavelet Iterative Solvers applied to the
Neumann Problem
R. Choquet & V. Perrier
The effectiveness of the resolution of linear systems, arising from
a finite element or a finite difference formulation of the Neumann problem,
depends on both the treatment of the singularity and the choice of a preconditioner.
In this paper, we apply a Fast Wavelet Transform (FWT) to the linear
system. In this discretization we propose a new class of preconditioners
as an alternative of the diagonal wavelet preconditioner. Moreover we present
two methods to deal with the singularity of the new system. Numerical results
show that the number of matrix-vector products is almost independent of
the size of the system.
Aerospace
Science and Technology, 4, pp. 135-145 (2000).
Fichier
ps comprimé