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General Presentation

First Part: Definition of the signal decomposition and
highlight on some properties of the extrema of such a
decomposition (maxima lines).
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General Presentation

First Part: Definition of the signal decomposition and
highlight on some properties of the extrema of such a
decomposition (maxima lines).

Second Part: Estimation-detection of transients with the
maxima lines of this signal decomposition.

Third Part: Signal approximation from extrema,
comparison with existing wavelet based methods.

Fourth Part: Blob detection with maxima lines of
wavelet coefficients.
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First Part :Signal Decomposition and Extrema properties

Filters for signal decomposition are related to discrete derivatives of discrete B-splines
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First Part :Signal Decomposition and Extrema properties

Filters for signal decomposition are related to discrete derivatives of discrete B-splines

The continuous B-spline of order n > 0 is:

βn(x) =

n+1
︷ ︸︸ ︷

β0 ∗ β0 ∗ · · · ∗ β0(x), (4)

where β0 is the characteristic function of the interval [0, 1]. The discrete B-spline of
order n > 0, at scale m, is defined as:

bn
m =

n+1
︷ ︸︸ ︷

b0m ∗ b0m ∗ · · · ∗ b0m, (5)

where b0m = 1
m
{1, 1, · · · , 1} and m ≥ 2. We also define b−1

m = δ0. The link between
discrete and continuous B-splines is the dilation equation:

1

m
βn

( x

m

)

= bn
m ∗ βn(x). (6)
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Limit Properties of bn
m

Continuous B-splines decomposition at different scales m involve a basis function with
a regularity given by the order n of the spline. Here, we are going to filter a discrete
signal with bn

m with fixed m and increasing n. Now we consider that bn
m is the filter

obtained by centering b0m in 0 if m is odd, and in 1/2 otherwise and then convolving
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Limit Properties of bn
m

Continuous B-splines decomposition at different scales m involve a basis function with
a regularity given by the order n of the spline. Here, we are going to filter a discrete
signal with bn

m with fixed m and increasing n. Now we consider that bn
m is the filter

obtained by centering b0m in 0 if m is odd, and in 1/2 otherwise and then convolving

For large n, bn
m are approximations of a Gaussian function (i.e. C∞)

Let X denote a discrete random variable with uniform distribution over the set
{−m−1

2
, · · · , m−1

2
} (resp. {−m

2
+ 1, · · · , m

2
}) for m odd (resp. even). Then bn

m[p] is
the probability that the sum of n + 1 independent identically distributed variables Xi is
equal to p (convolution of their probability distributions). The mean of the variable Xi is

0 (resp. 1
2

) if m is odd (resp. even), while its standard deviation is
√

m2−1
12

. Applying
the central limit theorem we get:

n+1∑

i=1
Xi − ε n+1

2

√

(n + 1)(m2 − 1)/12
→

n→+∞
N(0, 1)

in distribution, where ε = 1 if m is even and 0 otherwise. For large n:

bn
m[p] ≈

√

6

π(n + 1)(m2 − 1)
exp

(

6(p − ε n+1
2

)2

(n + 1)(1 − m2)

)

.
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Filters and Coefficients Definitions

Let us define ρ = {1,−1}, ρk =

k
︷ ︸︸ ︷

ρ ∗ · · · ∗ ρ, bn
m,k

= ρk ∗ bn
m. The following

approximation holds, for large n:

bn
m,k

[p] ≈
√

6
π(n+1)(m2−1)

[

exp( 6x2

(n+1)(1−m2)
)
](k)

(p − ε(n+1)+k

2
).
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Filters and Coefficients Definitions

Let us define ρ = {1,−1}, ρk =

k
︷ ︸︸ ︷

ρ ∗ · · · ∗ ρ, bn
m,k

= ρk ∗ bn
m. The following

approximation holds, for large n:

bn
m,k

[p] ≈
√

6
π(n+1)(m2−1)

[

exp( 6x2

(n+1)(1−m2)
)
](k)

(p − ε(n+1)+k

2
).

An approximation of the kth derivative of the Gaussian function is obtained by shifting
the filter bn

m,k
properly :

αn
m,k[p] = bn

m,k[p + b ε(n + 1) + k

2
c]
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k
︷ ︸︸ ︷
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= ρk ∗ bn
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m,k

[p] ≈
√

6
π(n+1)(m2−1)

[

exp( 6x2

(n+1)(1−m2)
)
](k)

(p − ε(n+1)+k

2
).

An approximation of the kth derivative of the Gaussian function is obtained by shifting
the filter bn

m,k
properly :

αn
m,k[p] = bn

m,k[p + b ε(n + 1) + k

2
c]

We consider the correlation of the sequence f [j] with αn
m,k

[j]:

∀p ∈ Z cn
m,k[p] =

∑

j∈Z

αn
m,k[j]f [j + p]

=
∑

j∈Z

αn
m,k[j − p]f [j] for n ≥ −1
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Definition of the Extrema, Study for m = 2

The maxima (resp. minima) of the sequence cn
m,k

are the strictly positive (resp.
negative) coefficients cn

m,k
[p] such that:

cn
m,k[p − 1] ≤ ( resp. <)cn

m,k[p] > ( resp. ≥)cn
m,k[p + 1]

(resp. cn
m,k[p − 1] ≥ ( resp. >)cn

m,k[p] < ( resp. ≤)cn
m,k[p + 1]).

When m = 2, an extremum at scale n arises from a unique extremum of the same
nature at scale n − 1 (Berkner ’99). These extrema define curves in the time-scale
space which are called maxima lines.

The way the extrema propagate is given by (M. et al ’07):

Theorem 1 If n + k is odd (resp even) and if there is an extremum at p in scale n then
there is an extremum of the same nature either at p or p − 1 (resp. at p or p + 1) at
scale n − 1.
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Finite Signal Derivatives Reconstruction from

Multiscale Extrema Representation

With our notations, the kth order discrete derivative of f is c−1
2,k

.

The multiscale extrema representation of the kth order signal derivative up to scale n

enables us to compute many coefficients at smaller scales (M. et al ’07):

Theorem 2 Assume that cn
2,k

[p] is an extremum in scale n and that the value of the
coefficients along the corresponding maxima line is known up to scale n, then we can
compute cn−2q

2,k
[l] for l ∈ {p − q, · · · , p + q}, cn−2q+1

2,k
[l] for l ∈ {p − q, · · · , p + q − 1},

when n + k is odd and for l ∈ {p − q + 1, · · · , p + q} when n + k is even.

Theorem 2 tells us that the knowledge of cl
2,k

[q] along the maxima line corresponding

to the extremum at p in scale n enables to compute c−1
2,k

[l] for l ∈ In
k

[p].

Theorem 3 Assume that f has a finite support, that it is not the null sequence and
that S(c−1

2,k
) is the support of c−1

2,k
. Let us denote Mn

k
the set of indices corresponding

to Rn
k

extrema in scale n. Then the smallest scale for the reconstruction of c−1
2,k

with
our scheme is:

Nk = argmin
N





N⋃

n=−1

Rn
k⋃

r=1

In
k [Mn

k [r]] ⊂ S(c−1
2,k

)



 .
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Second Part: Estimation-Detection of Transients

Definition 1 We call transient some sudden variation in a
signal which can be of different kind.
Definition 2 The estimation of transients is the problem of
the determination of the time when the transient occurs.
Definition 3 The detection of transients is the problem of
the existence of a transient.
Remark: robust detection and good estimation are
somehow contradictory since the former requires a rather
large scale for time integration while the second requires a
rather small scale for time integration

Colloque Franco-Roumain, LAMA, 31 aout 2006 – p. 8



Definition of the variables of interest (M. et al ’05)

As each extremum of the sequence cn
2,k

belongs to a single maxima line, we associate
with each maxima line Lk in the time-scale space (where the time is indexed by p and
the scale by n) the variable DLk,q , with |Lk| ≥ q + 2 (where |Lk| is the length of L)
defined by:

DLk,q =
∑

(p,n)∈Lk,n≤q

(

cn
2,k

[p]
)2

‖αn
2,k

‖2
2

.

N.B: the normalization is to give the same relative importance to each coefficient (in
the l2 sense).
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Definition of the variables of interest (M. et al ’05)

As each extremum of the sequence cn
2,k

belongs to a single maxima line, we associate
with each maxima line Lk in the time-scale space (where the time is indexed by p and
the scale by n) the variable DLk,q , with |Lk| ≥ q + 2 (where |Lk| is the length of L)
defined by:

DLk,q =
∑

(p,n)∈Lk,n≤q

(

cn
2,k

[p]
)2

‖αn
2,k

‖2
2

.

N.B: the normalization is to give the same relative importance to each coefficient (in
the l2 sense).

In practice, the variable DLk,q is not sufficient to properly characterize frequencies
changes in the signal. We therefore add another variable:

FLk,q = O((Lk)+(q)) − O(Lk),

where O(Lk) is the origin of the maxima line Lk and (Lk)+(q) is the maxima line that
follows Lk at rank q.
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Principle of the Estimation-Detection

We compute DLk,q when q ≤ Nk for a part of f assumed to be free of transients.
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Principle of the Estimation-Detection

We compute DLk,q when q ≤ Nk for a part of f assumed to be free of transients.

For any probability Pr, the empirical distribution of DLk,q provides aq and bq such that
P (aq < DLk,q < bq) = Pr. For each maxima line Lk such that |Lk| ≥ q + 2 we have
the standard choice between:

H0(q) : DLk,q is in [aq , bq ]

H1(q) : DLk,q is out of [aq , bq ]
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For any probability Pr, the empirical distribution of DLk,q provides aq and bq such that
P (aq < DLk,q < bq) = Pr. For each maxima line Lk such that |Lk| ≥ q + 2 we have
the standard choice between:

H0(q) : DLk,q is in [aq , bq ]

H1(q) : DLk,q is out of [aq , bq ]

The variable FLk,q takes integer values and we compute its distribution for each
q ≤ Nk. Any probability Pr defines a subset A(q) of N such that
A(q) = {x, P (FLk,q = x) > 1 − Pr}. For each maxima line, we again have the
choice between:

H′
0(q) : FLk,q is in A(q)

H′
1(q) : FLk,q is not in A(q)

Colloque Franco-Roumain, LAMA, 31 aout 2006 – p. 10



Principle of the Estimation-Detection

We compute DLk,q when q ≤ Nk for a part of f assumed to be free of transients.

For any probability Pr, the empirical distribution of DLk,q provides aq and bq such that
P (aq < DLk,q < bq) = Pr. For each maxima line Lk such that |Lk| ≥ q + 2 we have
the standard choice between:

H0(q) : DLk,q is in [aq , bq ]

H1(q) : DLk,q is out of [aq , bq ]

The variable FLk,q takes integer values and we compute its distribution for each
q ≤ Nk. Any probability Pr defines a subset A(q) of N such that
A(q) = {x, P (FLk,q = x) > 1 − Pr}. For each maxima line, we again have the
choice between:

H′
0(q) : FLk,q is in A(q)

H′
1(q) : FLk,q is not in A(q)

Note that from a detection point of view 1 − Pr is the probability of false alarm.
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Non-Parametric Test for Estimation-Detection

We build a non-parametric test to estimate the transients. We consider maxima lines
Lk such that O(Lk) is inside [T − d, T + d]. If |Lk| ≥ q + 2, four cases may occur:

i) Lk satisfies H0(q) ∪ H′
0(q)

ii) Lk satisfies H1(q) ∪ H′
0(q)

iii) Lk satisfies H0(q) ∪ H′
1(q)

iv) Lk satisfies H1(q) ∪ H′
1(q)
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0(q)

ii) Lk satisfies H1(q) ∪ H′
0(q)

iii) Lk satisfies H0(q) ∪ H′
1(q)

iv) Lk satisfies H1(q) ∪ H′
1(q)

Scanning interval [T − d, T + d],the first line Lk that satisfies hypothesis ii) or iv) in
scale q corresponds to a transient T1(q) = O(Lk), while the first line Lk that satisfies
iii) or iv) corresponds to a transient T2(q) = O(Lk).
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Non-Parametric Test for Estimation-Detection

We build a non-parametric test to estimate the transients. We consider maxima lines
Lk such that O(Lk) is inside [T − d, T + d]. If |Lk| ≥ q + 2, four cases may occur:

i) Lk satisfies H0(q) ∪ H′
0(q)

ii) Lk satisfies H1(q) ∪ H′
0(q)

iii) Lk satisfies H0(q) ∪ H′
1(q)

iv) Lk satisfies H1(q) ∪ H′
1(q)

Scanning interval [T − d, T + d],the first line Lk that satisfies hypothesis ii) or iv) in
scale q corresponds to a transient T1(q) = O(Lk), while the first line Lk that satisfies
iii) or iv) corresponds to a transient T2(q) = O(Lk).

We have two vectors T1 and T2 for which the best scales q are those that maximize
the probability of transition. If we denote q1 (resp. q2) the scale associated with T1

(resp. T2), we choose between T1(q1) and T2(q2) taking the one with the highest
probability of transition. The estimated transition T̂ is then:

T̂ = argmax

{

P (T̃ ), T̃ ∈ {T1(argmax
q≤Nk

P (T1(q))), T2(argmax
q≤Nk

P (T2(q)))}
}
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Comparison with Wavelet Based Methods

Let us define Y [b] =
(
Ys[b] =

(
f(t), 1

s
Ψ( t−b

s
)
))

s≤S
. If f is

Gaussian, Y is a Gaussian vector with zero mean
components characterized by its covariance matrix

∑
. In

such a case, Z[b] = Y [b](
∑

)−1Y [b] is χ2 distributed with S

degrees of freedom.

For Gaussian signals, we compare the wavelet approach
to our approach for a variation in frequency or a variation
in amplitude of the signal.

We study both amplitude and frequency variations
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Results
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Perspective for Transients Estimation

The choice of the order of the derivative for the estimation of transients should be
further discussed. To use the maxima lines associated to higher order derivatives may
be interesting in some instances.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.75

0.8

0.85

0.9

0.95

1

PROBABILITY OF FALSE ALARM

P
R

O
B

A
B

IL
IT

Y
 O

F
 D

E
T

E
C

T
IO

N

 

 
k=1,N

1

k=2,N
2

k=3,N
3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
2.5

3

3.5

4

4.5

5

PROBABILITY OF FALSE ALARM

M
E

A
N

 A
B

S
O

LU
T

E
 D

E
V

IA
T

IO
N

 

 

k=1,N
1

k=2,N
2

k=3,N
3

(A) (B)

(A): Computation of ROC curves for k = 1 and N0, and for k = 1 and N1, for k = 2 and N2

and for k = 3 and N3, for a frequency bandwidth change from 20-200Hz to 200-400Hz, (B):
Mean absolute deviation (in ms) for the same parameters and the same frequency
bandwidth change as in A
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For bidimensional problems, one can simply consider maxima lines of the
decomposition of the rows and of the columns. Colloque Franco-Roumain, LAMA, 31 aout 2006 – p. 15



Third Part : Signal Approximation from Multiscale Extrema

For m = 2, the decomposition we use satisfies, for −1 ≤ l ≤ N − 1 (M. et al ’05):

cl
2,k−1[p] = cN

2,k−1[p + bN − l

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 1

2
c] l+k even

cl
2,k−1[p] = cN

2,k−1[p + bN − l + 1

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 2

2
c] otherwise,
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For m = 2, the decomposition we use satisfies, for −1 ≤ l ≤ N − 1 (M. et al ’05):

cl
2,k−1[p] = cN

2,k−1[p + bN − l

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 1

2
c] l+k even

cl
2,k−1[p] = cN

2,k−1[p + bN − l + 1

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 2

2
c] otherwise,

Whatever m one can show that cn
m,k

tends to zero with n, leading to the approximation
(m = 2, l = −1):

c−1
2,k−1[p] ≈ 1

2

N−1∑

n=−1

cn
2,k[p + bn + 2
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Third Part : Signal Approximation from Multiscale Extrema

For m = 2, the decomposition we use satisfies, for −1 ≤ l ≤ N − 1 (M. et al ’05):

cl
2,k−1[p] = cN

2,k−1[p + bN − l

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 1

2
c] l+k even

cl
2,k−1[p] = cN

2,k−1[p + bN − l + 1

2
c] +

1

2

N−1∑

n=l

cn
2,k[p + bn − l + 2

2
c] otherwise,

Whatever m one can show that cn
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tends to zero with n, leading to the approximation
(m = 2, l = −1):

c−1
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2,k[p + bn + 2
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c] = d−1,N
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2
c] = d−1,N

2,k−1[p] otherwise.

This defines a converging approximation of the k − 1th derivative from the kth
derivative.
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Algorithm for Signal Reconstruction

from the Multiscale Extrema of the k-th order Derivative

The signal approximation from the kth order signal derivative multiscale extrema
representation we introduced is carried out using the following procedure:

First, reconstruct the kth order signal derivative from its multiscale extrema
representation

Then, iteratively build approximations of the derivatives of order k − 1, · · · , 1 and
finally of the signal f

In practice, the approximation of the signal f is better from the first derivative than from
higher order derivatives. Indeed, in these later cases, only an approximation of the first
derivative (obtained from the kth derivative) is used to approximate f .

The quality of the approximation increases with N .
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State of the Art on Signal Approximation

from Wavelet Transform Modulus Maxima (WTMM)

Image and signal approximation from wavelet transform modulus maxima (WTMM)
representation or from zero-crossing representation is very popular. These
representations are based on irregular sampling of the continuous dyadic scale
wavelet transform at points which correspond to singularities in the signal.

Berman (Berman ’92) and Meyer (Meyer ’91) showed that the corresponding
(discrete-time or continuous) signal is not, in general, unique.

The uniqueness is related to the completeness of the wavelet sampling basis in the
signal subspace (Liew et al. ’95).

It is however possible to build a consistent signal having the same properties as those
of the original signal described by the WTMM representation (projection-based
methods (Mallat ’ 97, Liew et al. ’95, Cetin ’94), the conjugate gradient error
minimization method (Law et al. ’97) and the least square eigenspace method (Liew et
al. ’00))).

For the 2-D WTMM reconstruction problem, different methods were proposed based
on projection onto a convex space (Mallat et al. ’92, Liew et al. ’97).

Czetkovic (Czetkovic et al. ’95) proposed a consistent discrete-time signal
reconstruction from discrete-time wavelet transform extrema and zero-crossings.
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Numerical Applications:

Comparison with WTMM implemented in WaveLab

n of our decomposition corresponds to the scale
√

n+1
2

(since m = 2 in our case) in

usual sense. Computation of the reconstruction error
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signal approximation from WTMM at dyadic scales

(A): Computation of the reconstruction error for signals with frequency bandwidth 20-200Hz ;
(B): idem but for frequency bandwidth 200-400Hz.

WTMM at dyadic scale is designed to approximate signals with isolated singularities.

The quality of the approximation worsens when unnecessary dyadic scales are taken
into account. WTMM do not allow for the construction of maxima lines that are useful
for other purposes.

Perspective: we are currently working on a bidimensional extension of our
approximation scheme.
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Fourth Part: Blob Detection with Wavelet Maxima Lines

The previous decomposition is too dense for many
applications : we will consider the traditional CWT.
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We propose a novel approach to blob detection based
on the study of wavelet transform modulus maxima
along maxima lines.
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Fourth Part: Blob Detection with Wavelet Maxima Lines

The previous decomposition is too dense for many
applications : we will consider the traditional CWT.

We propose a novel approach to blob detection based
on the study of wavelet transform modulus maxima
along maxima lines.

The algorithm we propose enables automatic blob
detection and blob size determination (robustness to
noise).
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Linear Scale-Space, Scale selection and Wavelet Decomposition

Let g(x) = 1√
2π

exp(−x2

2
) and gt(x) = 1√

t
g( x√

t
), the linear scale-space is

L(x, t) = gt ∗ f(x) =
∫

R

1√
t
g(x−u√

t
)f(u)du.
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Scale selection is then carried out through the study of normalized derivatives of L.
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Linear Scale-Space, Scale selection and Wavelet Decomposition

Let g(x) = 1√
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), the linear scale-space is

L(x, t) = gt ∗ f(x) =
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1√
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g(x−u√

t
)f(u)du.

Scale selection is then carried out through the study of normalized derivatives of L.

Lindeberg (Lindeberg et al. ’97) suggests to normalize the derivatives as follows:

∂m
x,γnormL(x, t) = t

γm
2 ∂m

x L(x, t)

=

∫

R

t
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t
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)
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2 f (m) ∗ gt(x).
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Linear Scale-Space, Scale selection and Wavelet Decomposition
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f (m)(x − u)du = t
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2 f (m) ∗ gt(x).

The modulus maxima of the linear scale-space propagate towards finer scales (heat
equation and maximum principle).
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)

f (m)(x − u)du = t
γm
2 f (m) ∗ gt(x).

The modulus maxima of the linear scale-space propagate towards finer scales (heat
equation and maximum principle).

when γ = 1, we have: ∂m
x,γnormL(x, t) =

∫

R
f(u) 1√
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g(m)(x−u√

t
)du.
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Linear Scale-Space, Scale selection and Wavelet Decomposition
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The modulus maxima of the linear scale-space propagate towards finer scales (heat
equation and maximum principle).

when γ = 1, we have: ∂m
x,γnormL(x, t) =

∫

R
f(u) 1√
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g(m)(x−u√

t
)du.

As g(m) is either odd or even, the normalized derivative corresponds to the CWT (or to
its opposite) at scale

√
t using the g(m) wavelet and a L1 normalization.
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Linear Scale-Space, Scale selection and Wavelet Decomposition

Let g(x) = 1√
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), the linear scale-space is

L(x, t) = gt ∗ f(x) =
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R
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g(x−u√
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)f(u)du.

Scale selection is then carried out through the study of normalized derivatives of L.

Lindeberg (Lindeberg et al. ’97) suggests to normalize the derivatives as follows:
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f (m)(x − u)du = t
γm
2 f (m) ∗ gt(x).

The modulus maxima of the linear scale-space propagate towards finer scales (heat
equation and maximum principle).

when γ = 1, we have: ∂m
x,γnormL(x, t) =

∫

R
f(u) 1√

t
g(m)(x−u√

t
)du.

As g(m) is either odd or even, the normalized derivative corresponds to the CWT (or to
its opposite) at scale

√
t using the g(m) wavelet and a L1 normalization.

Scale selection can be carried out studying the modulus maxima of the CWT along
maxima lines of interest.
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The Bidimensional Case

g(x1, x2) = 1
2π

exp(−x2

1
+x2

2

2
) and gt(x1, x2) = 1

t
g( x1√

t
, x2√

t
).

The bidimensional linear scale-space definition is identical to its one dimensional
counterpart.

Let us define ∂xαL = Lxα = ∂
x

α1

1
x

α2

2

L = L
x

α1

1
x

α2

2

, with α = (α1, α2). We, then,

consider differentiations of the linear scale-space of the form DL =
I∑

j=1
cjL

xαj ,

where |αj | = αj
1 + αj

2 = M is independent on j.

For such differentiations of the linear scale-space, the appropriate normalization of the
operator D is

Dx,γnormL = t
Mγ
2 DL.

The modulus maxima of Dx,γnormL define maxima lines in scale and space.

Blob detection is carried out stuying the maxima of t|∆L|.
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Maxima Lines Selection (Damerval et al. ’06)

The coefficients on maxima lines associated to noise fluctuations increase on average
when the scale decreases.
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It is proved in (Mallat ’92) that for a white noise, on average, the number of modulus
maxima decreases by a factor of 2 when the scale increases by 2.
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The coefficients on maxima lines associated to noise fluctuations increase on average
when the scale decreases.

It is proved in (Mallat ’92) that for a white noise, on average, the number of modulus
maxima decreases by a factor of 2 when the scale increases by 2.

The maxima lines we are interested in are those that are inside the boundary of the
blob and that are not associated to noise fluctuations. These maxima lines join at a
scale which is related to the blob size.

Colloque Franco-Roumain, LAMA, 31 aout 2006 – p. 23



Maxima Lines Selection (Damerval et al. ’06)

The coefficients on maxima lines associated to noise fluctuations increase on average
when the scale decreases.

It is proved in (Mallat ’92) that for a white noise, on average, the number of modulus
maxima decreases by a factor of 2 when the scale increases by 2.

The maxima lines we are interested in are those that are inside the boundary of the
blob and that are not associated to noise fluctuations. These maxima lines join at a
scale which is related to the blob size.

In the case of an isolated blob, the resulting maxima line is spatially stable at scales
larger than the scale of junction. If we denote (x∗, y∗, s∗) the global maximum of the
modulus maxima on a maxima line of interest, the maxima line will be spatially stable
for s ≥ s∗. In practice, as blobs with different size and location may interfere, the
criterion we use to select relevant maxima lines is based on the computation of the
local spatial stability of the maxima lines.
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It is proved in (Mallat ’92) that for a white noise, on average, the number of modulus
maxima decreases by a factor of 2 when the scale increases by 2.

The maxima lines we are interested in are those that are inside the boundary of the
blob and that are not associated to noise fluctuations. These maxima lines join at a
scale which is related to the blob size.

In the case of an isolated blob, the resulting maxima line is spatially stable at scales
larger than the scale of junction. If we denote (x∗, y∗, s∗) the global maximum of the
modulus maxima on a maxima line of interest, the maxima line will be spatially stable
for s ≥ s∗. In practice, as blobs with different size and location may interfere, the
criterion we use to select relevant maxima lines is based on the computation of the
local spatial stability of the maxima lines.

The maxima line characteristic scale is S∗ =
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(x∗ − x0)2 + (y∗ − y0)2
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Maxima Lines Selection (Damerval et al. ’06)

The coefficients on maxima lines associated to noise fluctuations increase on average
when the scale decreases.

It is proved in (Mallat ’92) that for a white noise, on average, the number of modulus
maxima decreases by a factor of 2 when the scale increases by 2.

The maxima lines we are interested in are those that are inside the boundary of the
blob and that are not associated to noise fluctuations. These maxima lines join at a
scale which is related to the blob size.

In the case of an isolated blob, the resulting maxima line is spatially stable at scales
larger than the scale of junction. If we denote (x∗, y∗, s∗) the global maximum of the
modulus maxima on a maxima line of interest, the maxima line will be spatially stable
for s ≥ s∗. In practice, as blobs with different size and location may interfere, the
criterion we use to select relevant maxima lines is based on the computation of the
local spatial stability of the maxima lines.

The maxima line characteristic scale is S∗ =
√

(x∗ − x0)2 + (y∗ − y0)2

Determination of interest points: group the maxima lines {Li, i ∈ I} that join at
(x∗, y∗, s). The interest point is finally given by its location (x∗, y∗) and its
characteristic scale S∗

m = median{S∗
i , i ∈ I}. If the set I contains only one element,

the interest point is (x∗, y∗, S∗
m).
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Examples
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Perspective

Maxima lines approach with nonlinear operator
(determinant of the Hessian matrix of L for corner
detection)

Problem with the stability criterion when the blob are
too close

Definition of object descriptors based on maxima lines
(Lipschitz regularity of edges, blob location and scale,..)
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