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I. INTRODUCTION

Scale-space filtering traditionally consisted in an embedding of a signal into a one-parameter family of

derived signal constructed by convolution with Gaussian kernels of increasing width. Neurophysiological

research [16] have shown that primary visual cortex response can be modeled by the convolution with a

superposition of Gaussian derivatives at increasing scales. In practice, when the scale gets larger, many

techniques have been proposed for efficient implementationof scale-space filtering. Among them, B-

splines or binomials have been widely used to approximate the Gaussian kernel [13][15]. In that context,

tensor-product B-splines naturally define bi-dimensionalscale-space filterings. Tensor-product splines

have been shown to be inappropriate for the modeling of complex objects in numerous applications due

to their definition over arbitrary rectangular parameter domain [12]. An important class of functions that

enables the definition of scale-space filtering without the disadvantages of tensor-product surfaces are

box splines.

In this paper, we propose a new scale-space filtering based ona box spline representation of mul-

tidimensional signals. Having introduced the main definitions on box splines, we recall the equation

they satisfy for a dilation by a factor ofm [2]. We then show how to write this equation whenm is

replaced by an invertible sampling matrixM [11][8]. When the set of vectors that defines the box spline is

invariant under multiplication byM, we derive a similar equation to that of dilation. We, therefore, restrict

ourselves to such box splines. We then define a sequence of piecewise constant functions that converges

to the box spline under specific conditions. The construction of these piecewise constant functions is

based on the convergence of the control net of box splines. Using this function and the property of the

box spline with respect to the matrixM, we are able to define a fast algorithm for multidimensional

continuous scale-space filtering at rational scales and specific locations. This result is a generalization of

that obtained on one dimensional scale-space filtering using a B-spline representation of signals [9].

The sketch of the article as follows. In section II, we recallthe definition of box splines. Then, we

highlight subdivision schemes for box splines. Finally, wereview the convergence properties of the control

net of box splines. Section III is devoted to the derivation of a new scale-space filtering. In section IV,

we study, in 2D, the general form for the sampling matrixM and we put forward, in each case, a vector

set invariant under multiplication byM. Some numerical examples on the new scale-space filtering we

propose conclude the paper.
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II. SUBDIVISION SCHEMES FORBOX SPLINES, CONVERGENCE OF THECONTROL NET OF BOX

SPLINES

A. Definition of Box Splines

Let us define a set ofn vectors, not necessarily distinct, in an s-dimensional space

Xn = {x1,x2, · · · ,xn} ⊂ Z
s \ {0}.

We assume that at leasts vectors ofXn are linearly independent. Let us rearrange the familyXn such

that Xs = {x1, · · · ,xs} are linearly independent. Using the notation[x1, · · · ,xs][0, 1[
s to denote the

collection of linear combinations
s
∑

i=1
λixi with λi ∈ [0, 1[, we define multivariate box splines as follows

[3][10]:

β(x,Xs) =







1
| det(x1,···,xs)| if x ∈ [x1, · · · ,xs][0, 1[

s

0 otherwise

β(x,Xk) =

∫ 1

0
β(x − txk,Xk−1)dt, n ≥ k > s. (1)

One can check by induction that the support ofβ(x,Xn) is [x1,x2, · · · ,xn][0, 1]n.

B. Dilation Equation for Box Splines

The dilation equation satisfied by discrete box splines, defined as in (1), was introduced in [2]. It is

proved thatβ satisfies the relation:

β(
k

m
,Xn) =

∑

p∈Zs

bm[p,Xn]β(k − p,Xn) ∀ k ∈ Z
s (2)

with

bm[p,Xn] =
1

mn−s
(bm[.,x1] ∗ · · · ∗ bm[.,xn]) [p],

wherebm[.,xi] is the succession ofm ones in the direction defined byxi and∗ denotes thes-dimensional

convolution, that is(f∗g)[q] =
∑

l∈Zs

f [l]g[q−l]. Equation (2) is proved using thez-transform ofβ( k
m

,Xn).

A more general result holds for allx ∈ R
s:

β(x,Xn) =
∑

p∈Zs

bm[p,Xn]β(mx − p,Xn) ∀ x ∈ R
s, (3)

which we do not prove since it is a particular case of what we deal with next, takingM = mIs,

where Is is the identity matrix of sizes × s (see the definition ofM in the following). In case we

consider a centered box spline, that isβc(x,Xn) = β(x − 1
2 (x1 + · · · + xn),Xn), relation (3) leads to

βc(x) =
∑

p∈Zs

bm[p,Xn]βc

(

mx − m−1
2 (x1 + · · · + xn) − p

)

. For the sake of simplicity, we will maintain

the definition (1) of box splines.
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C. Non-Separable Dilation Equation for Box Splines

In a more general framework, the dilation factorm can be replaced by an invertible matrixM of

integer entries, having real eigenvalues of modulus strictly larger than1[8]. The matrixM must also be

such that there exists a permutationσ of {1, · · · , n} satisfying

Mxp = λpxσ(p) (4)

with λp a positive integer. When property (4) is satisfied,Xn is said to be invariant under multiplication

by M. The definition ofσ imposes that whenever two distinct vectors are inXn, each of them appears

the same number of times inXn. Let us now state the non-separable dilation equation for box splines.

Theorem 1:Assume thatM satisfies hypothesis (4) and thatβ is defined as in (1) then,

β(x,Xn) =
√

|det(M)|
∑

p∈Zs

g[p,Λn,Xσ(n)]β(Mx − p,Xn),

whereg[.,Λn,Xn] andΛn = (λ1, · · · , λn), is defined by:

g[p,Λn,Xn] =

√

|det(M)|
n
∏

p=1
λp

(bλ1
[.,x1] ∗ · · · ∗ bλn

[.,xn]) [p].

The proof is given in Appendix A. TakingM = mIs, we find equation (3). Going further, we can replace

M by Mm, leading to another non-separable dilation equation.

Theorem 2:Assuming the same hypotheses as for Theorem 1, we have:

β(x,Xn) =
√

|det(M)|m
∑

p∈Zs

gm[p,Λn,Xn]β(Mmx− p,Xn), (5)

with

gm[p,Λn,Xn] =
(

g̃[.,Λn,Xσ(n)] ∗ · · · ∗ g̃[.,Λn,Xσm(n)]
)

[p],

where

g̃[p,Λn,Xσ(n)] = g[p,Λn,Xσ(n)]

and forr ≥ 2,

g̃[p,Λn,Xσr(n)] =

√

|det(M)|
n
∏

p=1
λp



(bλ1
)
↑

r−1
Q

k=1

λσk(1)

[.,xσr(1)] ∗ · · · ∗ (bλn
)
↑

r−1
Q

k=1

λσk(n)

[.,xσr(n)]



 [p].

The proof is given in Appendix B.
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D. Convergence of the Control Net of Box Splines

From now on, we assume that{x1, · · · ,x∗
j , · · · ,xn} spansRs for all j ∈ {1, · · · , n}, wherex∗

j means

we have removedxj from Xn. In the following, we consider a box spline defined as in (1) but the results

are also true for a centered box spline, applying appropriate shifts. With the above hypothesis onXn,

β(x,Xn) is continuous and the span of its shifts contains linear polynomials [10]. In particular, if we

put

np = p +
1

2
(x1 + · · · + xn), p ∈ Z

s, (6)

we have
∑

p∈Zs

npβ(x − p,Xn) = x. Indeed, if we denoten0 = 1
2(x1 + · · · + xn) the center of the box

splineβ then,

∑

p∈Zs

npβ(n0 − p,Xn) = n0

∑

p∈Zs

β(n0 − p,Xn) +
∑

p∈Zs

pβ(n0 − p,Xn)

= n0,

since
∑

p∈Zs

β(n0 − p,Xn) = 1 [10] and β(n0 − p,Xn) = β(n0 + p,Xn) (the box splineβ being

symmetric with respect to its center). Now, if we denoteDxk
the directional derivative in the direction

xk, a simple computation leads to the equalityDxk

(

∑

p∈Zs

npβ(x − p,Xn)

)

= xk, which states the

expected result.

Now, if we defineB(x,Xn) =





x

β(x,Xn)



 andc
p
m =





np

m

bm[p,Xn]



, we can write:

B(x,Xn) =
∑

p∈Zs

cp
mβ(mx − p,Xn).

It was proved by De Boor etal. [6], that if [x1, · · · ,xn]Zn = Z
s, where [x1, · · · ,xn]Zn denotes the

collection of linear combinations with integer coefficients, then‖cp
m − B(x,Xn)‖ = O( 1

m
), for any x

such thatβ(mx − p,Xn) ≥ 0. This equality implies in particular that:

|bm[p,Xn] − β(x,Xn)| = O(
1

m
). (7)

If the box spline is continuously differentiable, then the approximation is inO( 1
m2 ).

III. P IECEWISE CONSTANT APPROXIMATION OFβ AND MULTIDIMENSIONAL SCALE-SPACE

FILTERING

A. Definition of a Piecewise Constant Approximation ofβ

We now explain how to define a sequence of piecewise constant functions that uniformly converges

to β with m, wherem is the dilation factor of equation (3). We recall that the points np

m
, wherenp is
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defined in (6), lie on the gridZ
s

m
translated by 1

2m
(x1 + · · · + xn). We therefore consider the piecewise

constant function:

Fm(x,Xn) = bm[p,Xn] ∀x ∈ supp(β) (8)

with p = argmin
q

(

‖x − nq

m
‖∞
)

and where‖x‖∞ = max
i

|xi|. Conversely, givenp, the set of pointsx

satisfying this property isV m
p =

{

x, ‖x − np

m
‖∞ < 1

2m

}

. Similarly, we define

Vp =

{

x, ‖x − np‖∞ <
1

2

}

. (9)

We now give a simple condition forFm to converge uniformly toβ.

Theorem 3:If we assume thatβ is continuously differentiable, then|Fm(x,Xn)−β(x,Xn)| = O( 1
m

).

PROOF: Any x in supp(β) belongs toV m
p for somep. A first order Taylor expansion atnp

m
leads to:

β(x,Xn) = β(
np

m
,Xn) + O(

1

m
)

= bm[p,Xn] + O(
1

m
) with (7)

= Fm(x,Xn) + O(
1

m
) with (8).�

B. Multidimensional Scale-Space Filtering

The linear scale-space representation is to make a map of a signal by changing the scale parameter

continuously. In the language of wavelet transform, the traditional scale-space approach can be regarded

as a continuous wavelet transform of the signalf ∈ L2(Rs),

Wf(a,x) =

∫

Rs

f(t)
1

as
Ψ(

t− x

a
)dt =

∫

Rs

f(x + t)
1

as
Ψ(

t

a
)dt a > 0.

In a box spline framework, we consider a waveletΨ defined by

Ψ(x) =
√

|det(M)|m
∑

p∈Zs

αm[p,Xn]β(Mmx− p,Xn), (10)

and a multidimensional signalf approximated by

f(x) ≈ f̃(x) =
√

|det(M)|m
∑

p∈Zs

γm[p,Xn]β(Mmx− p,Xn). (11)

To decompose the signalf in such a way is interesting in that the use of non-diagonal sampling matrices

such as quincunx or hexagonal sampling matrices is known to lead to superior results in signal and image

coding [8]. The way the sequenceγm is computed is discussed in the next subsection.
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Since a real number can be approximated arbitrarily close bya rational numbera = m1

m2
, using (11)

and (14), we derive:

Wf̃(
m1

m2
,x) = |det(M)m|

(

m2

m1

)s

∑

(p,q)∈(Zs)2

αm[p,Xn]γm[q,Xn]

∫

Rs

β(
m2

m1
Mmt − p,Xn)β(Mm(x + t) − q,Xn)dt

=

(

m2

m1

)s
∑

(p,q)∈(Zs)2

αm[p,Xn]γm[q,Xn]

∫

Rs

β(
m2

m1
t − p,Xn)β(Mmx + t − q,Xn)dt

=

(

1

m1

)s
∑

(p,q,k,l)∈(Zs)4

αm[p,Xn]γm[q,Xn]bm1
[k,Xn]bm2

[l,Xn]

(β∗̃β̄)(−m2M
mx− m1p + m2q− k + l,Xn),

whereβ̄(x,Xn) = β(−x,Xn) andβ∗̃β̄(x,Xn) =
∫

Rs β(t,Xn)β̄(x−t,Xn)dt. One notices thatβ∗̃β̄(x,Xn) =

β(x, X̃n) with X̃n = [x1,−x1, · · · ,xn,−xn] and is therefore symmetric with respect to zero. Then, taking

x = M−mi
m2

and puttingβ̃d[i] = β(i, X̃n) leads to:

Wf̃(
m1

m2
,
M−mi

m2
) =

(

1

m1

)s
∑

(k,l)∈(Zs)2

((γm)↑m2
∗ bm2

) [l,Xn]((αm)↑m1
∗ bm1

)[k,Xn]β̃d[i − l− k]

=

(

1

m1

)s (

(γm)↑m2
∗ bm2

∗ (αm)↑m1
∗ bm1

∗ β̃d

)

[i,Xn]. (12)

We now see how to use the piecewise constant functionFm to avoid the convolution with̃βd, thus saving

computational time. AsFm uniformly converges toβ whenm tends to+∞, we can write the following

approximation for largem1 andm2, for the case wherem1

m2
is constant:

Wf̃(
m1

m2
,x) ≈

(

m2

m1

)s
∑

((p,q)∈(Zs)2

αm[p,Xn]γm[q,Xn]

∫

Rs

Fm1
(
m2

m1
t− p,Xn)Fm2

(Mmx + t − q,Xn)dt.

Let us then rewrite formally the integral:
∫

Rs

Fm1
(
m2

m1
t − p,Xn)Fm2

(Mmx + t− q,Xn)dt

=
1

ms
2

∑

r∈Zs

∫

Vr

Fm1
(

t

m1
− p,Xn)Fm2

(Mmx +
t

m2
− q,Xn)dt using (9)

=
1

ms
2

∑

r∈Zs

bm1
[r − m1p,Xn]bm2

[r + m2(M
mx− q),Xn].

Consequently, ifx = M−mi
m2

, with i in Z
s, the above expression makes sense. We, finally, get the following

March 20, 2007 DRAFT



8

approximation for the scale-space filtering:

Wf̃(
m1

m2
,
M−mi

m2
) ≈ 1

ms
1

∑

(p,q,r)∈(Zs)3

αm[p,Xn]γm[q,Xn]bm1
[r− m1p,Xn]bm2

[r + i − m2q,Xn]

=
1

ms
1

∑

r∈Zs

∑

q∈Zs

γm[q,Xn]bm2
[r + i − m2q,Xn]

∑

p∈Zs

αm[p,Xn]bm1
[r − m1p,Xn]

=
1

ms
1

∑

r∈Zs

((γm)↑m2
∗ bm2

) [i + r,Xn] ((αm)↑m1
∗ bm1

) [r,Xn]

=
1

ms
1

(

(γm)↑m2
∗ bm2

∗ (αm)↑m1
∗ bm1

)

[i,Xn] = Wf̃a(
m1

m2
,
M−mi

m2
). (13)

As expected, to computeWf̃a instead ofWf̃ avoids the convolution bỹβd. Furthermore, we will see,

in the Numerical Applications section, why such a scale-space filtering based on the lattice
(

M−mi
m2

)

i∈Zs

is interesting.

C. Computation ofαm and γm

Let us first setγ = γ0. The sequenceγ cannot be obtained by interpolation as in the B-spline case

[13] since, in most cases, the decomposition over the span ofshifts of a box spline is not unique. The

uniqueness is proved if and only if the matrix[x1, · · · ,xn] is unimodular, that is if the determinant of any

of its submatrices of sizes2 is 1 or −1 [4]. An approach to compute the coefficients of the decomposition

over shifted box splines is proposed in [3]. It is based on a quasi-interpolation formulation of the problem.

The interpolation problem is to findγ such thatf(p) =
∑

l∈Zs

γ[l]β(p − l,Xn). Taking thez-transform

of both sides of this equality leads toF (z) = Γ(z)∆(z,Xn), where ∆ is the z-transform ofβ. If

we put ∆(z,Xn)−1 = (1 − D(z,Xn))−1, we have the following approximation ofΓ(z) for someq:

Γ(z) ≈ F (z)(1 + D(z,Xn) + · · · + Dq(z,Xn)). The stability of the method requires that the roots

of ∆(z,Xn) be inside the unit ball. This is, in practice, a very strong restriction. For instance, if one

considers the most popular box spline based onXn =
{

[1 0]T , [−1 1]T , [0 1]T , [1 1]T
}

, then we have

∆(z,Xn) =
1

4
z−1
2

(

1 + z−1
2 + z−1

1 + z−1
1 z−1

2

)

,

wherez = (z1, z2). One sees that it is null forz = (1,−1) which is not inside the unit ball. Therefore,

the algorithm proposed in [3] is instable in this case.

We adopt a mean square approach for the computation ofγ. The advantage of such an approach is

that it does not impose any condition onβ. To computeγ, we first define

E(γ) =
1

2

∑

k∈Zs

(

f(k) −
∑

l∈Z2

γ[l]β(k − l,Xn)

)2

.
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If we differentiate this expression with respect toγ, we obtain

∂γE[l] = −
(

f ∗ β̄d

)

[l] +
(

γ ∗ βd ∗ β̄d

)

[l],

whereβd[l] = β(l,Xn) and β̄d[l] = βd[−l]. We then use a gradient descent method to computeγ. In

such a framework, the value ofγ we obtain corresponds to a local minimum forE. In applications, we

always check that the box spline approximation is close to the original image. In [1], a fast approach

for the computation ofγ is proposed since, when initial condition is far from an optimum solution, the

convergence of the gradient descent method may be slow.

Onceγ is computed, we use (5) to write:

f̃(x) =
∑

l∈Zs

γ[l]β(x − l,Xn)

=
√

|det(M)|m
∑

p∈Zs

(gm[.,Λn,Xn] ∗ γ↑Mm) [p]β(Mmx− p,Xn),

where

γ↑Mm [q] =







γ[p] if ∃ p ∈ Z
s such thatq = Mmp

0 otherwise.

This means thatγm = gm ∗ γ↑Mm .

The wavelets we consider are called box spline wavelets (fordetails on these wavelets see [12]) and

are of the form:

Ψ(x) =
∑

p∈Zs

α[p]β(x − p,Xn), (14)

with
∑

p∈Zs

α[p] = 0 whereα is a finite sequence. Indeed, since
∫

Rs β(x,Xn)dx = 1,
∫

Rs Ψ(x)dx = 0. To

get a wavelet with a larger number of vanishing moments wouldrequire to impose stronger conditions

on α, but this is not the point here. Then, with (5), we deduce:

Ψ(x) =
√

|det(M)|m
∑

p∈Zs

(gm[.,Λn,Xn] ∗ α↑Mm) [q]β(Mmx− q,Xn).

In all cases,αm = gm ∗ α↑Mm .

IV. STUDY OF THE MATRIX M WHEN s = 2, DEFINITION OF INVARIANT VECTOR SETS

A. General Form for the MatrixM

We now investigate the cases = 2 in detail and more precisely the influence of (4) on matrixM,

assuming, without any loss of generality, thatXn is composed of distinct vectors. We study the length of

the cycles that make up the permutationσ. A cycle of lengthq is defined by a subsetS of Xn such that
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q is the smallest integer satisfyingMqxi = aixi = λxi for all xi in S. ai is independent fromi since

ai =
∏

i∈JS

λi, whereJS is the set of indices corresponding toS. Since at leasts xis’ are non-collinear,

the existence of a cycle of lengthq ≥ 2 implies

Mq = λI2. (15)

Assume there exists a cycle withq ≥ 3 andq odd. SinceM is invertible, if the eigenvalues ofM area

andb and if u andv are eigenvectors associated witha andb respectively, thenMqu = aqu = λu and

Mqv = bqv = λv. As q is odd, this meansa = b and, consequently,M = λ
1

q I2.

Now, assume there exists a cycle withq ≥ 2 with q even. From (15) and asλ > 0, 1√
λ
M

q

2 is its own

inverse which implies that the eigenvalues ofM
q

2 are±
√

λ.

Let us assumeq2 is odd. If the eigenvalues ofM
q

2 are equal thenM = λ
1

q I2. Otherwise ifu andv

are eigenvectors ofM associated witha andb respectively, then wea
q

2 = −b
q

2 , (the relation is obtained

by applyingM
q
2 times), leading toa = −b. Thus, whenM is not proportional toI2, it is similar to:

Msim =





λ
1

q 0

0 −λ
1

q



 . (16)

When q
2 is even,M

q

2 has a unique eigenvalue
√

λ (we recall that the eigenvalues ofM are real) ; that

is M
q

2 =
√

λI2. Applying the same reasoning as previously we obtain that every matrixM that is not

of the formaI2 and that satisfy property (4) is similar toMsim, defined in (16).

We deduce that any matrixM that is worth studying has a null trace, which leads toM2 = λI2.

Let us now give two illustrations: the first one is the quincunx sampling matrix and the second is the

hexagonal sampling matrix. The quincunx sampling matrix isdefined by [14]

M =





−1 1

1 1



 .

Here,M2 = 2I2 andM is thus similar to




√
2 0

0 −
√

2



 .

The hexagonal sampling matrix is

M =





2 1

0 −2



 .

As M2 = 4I2, λ = 4 leading toM is similar to




2 0

0 −2



 .
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Fig. 1. (A): 32× 32 step-edge image (amplitude of the step-edge =2) with support {0, · · · , 31}×{0, · · · , 31}, the direction of

the edge being the vector[2 1]T ; (B): plot of the scale-space filtering, defined by the hexagonal sampling matrix withm = 1

and applied to image (A), in the direction[1 − 2]T starting from the initial coordinates(20, 0) with respect to the ordinate.

We considera = 1

2
for m1 = 1, m2 = 2 or m1 = 2, m2 = 4 or m1 = 4, m2 = 8 (C): diagonal64 × 64 step-edge image

(amplitude of the step edge = 2), with support{0, · · · , 63} × {0, · · · , 63}; (D): plot of the scale-space filtering, defined by the

quincunx sampling matrix withm = 1 and applied to image (C), in the direction[−1 1]T starting from the initial coordinates

(32, 0) with respect to the ordinate. We considera = 1

2
for m1 = 1, m2 = 2, or m1 = 2, m2 = 4 or m1 = 4, m2 = 8

B. Invariant Sets of Four Vectors

To apply Theorem 3, we need a setXn such that{x1, · · · ,x∗
i , · · · ,xn} spansR2 and we also require

that β be continuously differentiable. WhenXn is made of non-collinear vectors, the latter condition

imposes thatXn contains at least 4 vectors. Indeed,β is in Cr(R2) with

r = min
{

#Y : Y ⊂ Xn,Xn \ Y 6= R
2
}

− 2,
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where#Y stands for the cardinal ofY [5]. We now assume thatXn is composed of 4 non-collinear

vectors.Xn must also be such that property (4) is satisfied. We now show, given M, how to define such

a vector set.

As M2 = λI2,with λ > 0, for any vectoru which is not an eigenvector ofM, if we put Mu = v, we

necessarily haveMv = λu. Therefore, to define a 4 invariant vectors set, it suffices toconsider two vectors

that are not eigenvectors ofM. Let us consider the set{[1 0]T , [0 1]T , [1 1]T , [−1 1]T }. For any matrix

M at least two of these vectors are not eigenvectors. We consider the first two which are not eigenvectors,

to build the invariant set. For instance, for the quincunx matrix, [1 0]T and [0 1]T are not eigenvectors

leading to the invariant vector setXn = {[1 0]T , [−1 1]T , [0 1]T , [1 1]T }. Similarly, for the hexagonal

sampling,[0 1]T and [1 1]T are not eigenvectors leading toXn = {[0 1]T , [1 − 2]T , [1 1]T , [3 − 2]T }.

V. NUMERICAL APPLICATIONS

We now study the behavior of the scale-space filtering we propose. In image processing, it is usual to

consider that the first component of a vector (i.e. abscissa)is the coordinate on the vertical axe oriented

downward while the second component (i.e ordinate) is the coordinate on the horizontal axe oriented

to the right. This convention holds for the rest of the paper.For image boundary conditions, we adopt

mirror conditions that is we symmetrize the image with respect to its boundary [7]. In the following two

subsections, we aim at showing that to choose an appropriatesampling matrix leads to a better resolution

of the scale-space filtering in the direction orthogonal to the edge and, second, that the convergence of

the approximation (13) to the true value (12) is very fast. Aseach sampling matrixM is such thatM2

is proportional toI2, M−m, m odd is proportional toM−1, therefore it is essentially worth studying the

approximation (13) whenm = 1.

A. Scale-Space Filtering on Step-Edge Images

To illustrate the interest of using the hexagonal sampling matrix, we first consider a step-edge image

as that of Figure 1.A which is such that the vector[1 − 2]T is orthogonal to the step-edge. WhenM

is the hexagonal sampling matrix, computing the scale-space filtering (13), form 6= 0 when m = 1

leads to a four times finer resolution in the direction orthogonal to the edge is four times finer than

that with m = 0. For the present example, we thus consider thatM is the hexagonal sampling matrix,

Xn = {[0 1]T , [1 − 2]T , [1 1]T , [3 − 2]T } andm = 1. The waveletΨ we use here is designed to study

the singularities in the direction ofx2 ; it is defined by (14) withα corresponding to the convolution of
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(α̃i)1≤i≤4 that is:

α =
α̃1 ∗ α̃2 ∗ α̃3 ∗ α̃4

max
p∈Z2

∑

k∈Z2

(α̃1 ∗ α̃2 ∗ α̃3 ∗ α̃4) [k]β(p − k,Xn)

with α̃2[−x2] = −1, α̃4[0] = 2, α̃2[x2] = −1 and zero elsewhere and, forj 6= 2, α̃j [−xj ] = 1, α̃j [0] = 2,

α̃j [xj ] = 1 and zero elsewhere. The wavelet thus defined is such that its value at integer locations is less

than one. One can also check that(α[p])p∈Z2 sums to zero.

We apply the scale-space filtering defined by (13) to the step-edge image of Figure 1.A, whose support

is {0, · · · , 31}×{0, · · · , 31}. We considera = m1

m2
= 1

2 , either withm1 = 1,m2 = 2, or m1 = 2,m2 = 4,

or m1 = 4,m2 = 8. We display, in Figure 1.B, the coefficientsWf̃a in the direction of the vector[2 1]T

with respect to the ordinate and starting from the point withcoordinates(20, 0). We do not display the

exact coefficientsWf̃ since whenm1 = 4 andm2 = 8, Wf̃ andWf̃a are visually indistinguishable.

We then consider a diagonal step-edge function as that of Figure 1.C, whose support is{0, · · · , 63} ×
{0, · · · , 63}. Whenm = 1 and the quincunx sampling matrix is used, the resolution of the scale-space fil-

tering is two times finer in the direction orthogonal to the edge than whenm = 0. We therefore implement

the scale-space filtering withM the quincunx sampling matrix andXn = {[1 0]T , [−1 1]T , [0 1]T , [1 1]T }.

The waveletΨ we use is designed to study the singularities in the direction of x2. The filter α is thus

built as previously, taking into account the change of vector set Xn. We display in Figure 1.D, the

coefficientsWf̃a in the direction of the vector[−1 1]T with respect to the ordinate and starting from the

point with coordinates(32, 0). Again, a = m1

m2
= 1

2 either withm1 = 1, m2 = 2, or m1 = 2,m2 = 4 or

m1 = 4,m2 = 8. We do not display the exact coefficient given by (12) since when m1 = 4,m2 = 8 the

approximation and the exact scale-space filtering are visually indistinguishable.

Of course, different edge orientations would require different sampling matricesM but this will be

the topic for future work.

B. An Illustrative Example on a Natural Image

We now apply the scale-space filtering we propose to the imageof Lenna. In this illustrative example,

we consider thatXn is associated to the quincunx sampling, that the wavelet is designed to study the

singularities in the directionx1 = [1 0]T following the same framework as in the previous subsection

and also thatm = 0. We furthermore considera = m1

m2
= 1

2 . As already pointed out, takingm1 = 4 and

m2 = 8 provides an approximation of the scale-space filtering which is visually indistinguishable from

the true value. We display in Figure 2.A, the original image of Lenna and then in Figure 2.B-D, the

approximation of the scale-space filtering for a region of the eye, of the fur and of the hat respectively
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(A)

(B) (C) (D)

Fig. 2. (A): image of Lenna ; (B): scale-space filtering for the region of the eye whenm1 = 4 and m2 = 8; (C): similar

computation to (B) for a region of the fur; (D): similar computation to (C) for a region of the hat.

corresponding to the surrounded regions in Figure 2.A. Through these examples, we notice that the scale

space filtering we propose can both handle geometric and textural parts of images, and that, as expected,

the singularities in the vertical direction (i.e. the direction of x1) are well detected and can be precisely

localized, since they correspond to the coefficients with the largest amplitudes (black or white pixels) in

Figure 2.B-D.

VI. CONCLUSION

In this paper, we have introduced a new scale-space filteringbased on a box spline representation

of multidimensional signals. The scale-space filtering is computed at rational scales and at locations

dependent on some sampling matrix and on a dilation factor (m2 in the paper). Using box splines

is interesting in that it enables the computation of the scale-space filtering on a non Cartesian grid. In

particular, this allows a better localization of the edges at finer scales without increasing the computational

cost. We have also shown that we can save computation time using an approximation of the scale-space
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filtering based on box splines. This approximation does not generate any visual distortion provided the

length of the filters used are large enough. In practice, these may be chosen with a relatively small

size ; this aspect is important to preserve a low computational cost for the proposed method. In a near

future, we will investigate more in detail the relation between the sampling matrix and edge orientation

and wether it is possible to build a scale-space filtering involving box splines associated with different

sampling matrices.

APPENDIX

A. Proof of Theorem 1

We first recall that the Fourier transform ofβ(x,Xn) is [3]

F(β)(χ,Xn) =

n
∏

p=1

1 − e−iχT xp

iχTxp
.

Then, using property (4), we can write

F(β)(MT χ,Xn)

F(β)(χ,Xn)
=

n
∏

p=1

1

λp

1 − e−iλpχT xσ(p)

1 − e−iχT xσ(p)
=

1
√

|det(M)|
G(χ,Xn). (17)

Equation (17) then can be written as follows:

F(β)(MT χ,Xn) =

n
∏

p=1

1

λp
(1 + e−iχT xσ(p) + · · · + e−i(λp−1)χT xσ(p))F(β)(χ,Xn).

Let us now recall some basic properties of the Fourier transform. If (h[n])n∈Zs is a finite sequence,

for an integrable functionf defined onR
s, then F

(

∑

k∈Zs

h[k]f(. − k)

)

(χ) = ĥ(χ)F(f)(χ), where

ĥ(χ) =
∑

n∈Zs

h[n]e−2iπ<n,χ>, with < ·, · > being the Euclidean inner product onRs. From this we

deduce

F(β)(χ,Xn) = F





√

|det(M)|
∑

p∈Zs

g[p,Λn,Xσ(n)]β(Mx − p,Xn)



 (χ), (18)

for all x in R
s where

g[p,Λn,Xn] =

√

|det(M)|
n
∏

p=1
λp

(bλ1
[.,x1] ∗ · · · ∗ bλn

[.,xn])[p].

Both terms in equation (18) are inL2(Rs), so thatβ(x,Xn) =
√

|det(M)| ∑
p∈Zs

g[p,Λn,Xσ(n)]β(Mx−

p,Xn), almost everywhere. Since each term in the equation is continuous, the equality holds for allx.�
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B. Proof of Theorem 2

For anym ∈ N and using the definition ofG given in the proof of Theorem 1, we have:

F(β)((MT )mχ,Xn)

F(β)(χ,Xn)
=

m
∏

r=1

F(β)((MT )rχ,Xn)

F(β)((MT )r−1χ,Xn)
=

m
∏

r=1

1
√

|det(M)|
G((MT )r−1χ,Xn)

=

m
∏

r=1

n
∏

p=1

1

λp
(1 + e−iχT Mr−1xσ(p) + · · · + e−i(λp−1)χT Mr−1xσ(p)).

As for r ≥ 2, Mr−1xσ(p) =
r−1
∏

k=1

λσk(p)xσr(p) and using the same properties of the Fourier transform as

in the proof of Theorem 1, we can write the following equation:

β(x,Xn) =
√

|det(M)|m
∑

p∈Zs

gm[p,Λn,Xn]β(Mmx− p,Xn),

with

gm[p,Λn,Xn] =
(

g̃[.,Λn,Xσ(n)] ∗ · · · ∗ g̃[.,Λn,Xσm(n)]
)

[p],

whereg̃[p,Λn,Xσ(n)] = g[p,Λn,Xσ(n)] and forr ≥ 2,

g̃[p,Λn,Xσr(n)] =

√

|det(M)|
n
∏

p=1
λp



(bλ1
)
↑

r−1
Q

k=1

λ
σk(1)

[.,xσr(1)] ∗ · · · ∗ (bλn
)
↑

r−1
Q

k=1

λ
σk(n)

[.,xσr(n)]



 [p].�
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