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I. I NTRODUCTION

Audio signals are commonly modelled as a sum of AM/FM components with slowly varying amplitude

and instantaneous frequency [19]. Consequently, the retrieval of the components (or modes) of a mul-

ticomponent signal (RCM) is a central issue in many audio processing problems. The most commonly

used techniques to carry out theretrieval are time-frequency or time-scale based signal representations.

For the former, spectrogram reassignment techniques [4], reconstruction based onl1 minimization of the

ambiguity function associated with the Wigner-Ville distribution [7], synchrosqueezing using the short

time Fourier transform [20] or Fourier ridges [3] have all been successfully used. For the latter, i.e., time-

scale representations, wavelet ridges have also proven to be very efficient [14] [13]. In [13], the emphasis

is on the importance of the wavelet choice with regard to the ridge representation. Synchrosqueezing

techniques have also been developed within the wavelet framework [5]. The main difference between

the short time Fourier and wavelet representations is that the latter is more demanding in terms of the

frequency separation of high frequency components.

In this paper, we first propose a new implementation for the RCMfollowing on from some ideas of the

synchrosqueezing transform (SST) and then show how it enables us to find out a relevant non-uniform

sampling set for the signal, i.e., preserving its essentialfrequency characteristics, and finally how it can

be used for signal denoising. The layout of the paper is as follows. In section II, we recall some notation

that is useful to describe the SST and then restate the main theoretical related results [5] with a practical

implementation of the RCM recently proposed by Brevdo etal. in [1] (section II-D). A fundamental

issue in synchrosqueezing-based methods is the mother wavelet choice ; a poor wavelet representation

inevitably leads to a poor SST result. Therefore, in section III, we focus on the difference between wavelet

transforms of pure harmonic and of multicomponent signals.We deduce from this study that a good

wavelet representation for a sum of pure harmonic signals only requires that the mother wavelet fulfills

an appropriateseparation conditionwhile for more general multicomponent signals the mother wavelet

choice must also take into account themodulation parameterassociated with the different components.

Bearing in mind these elements, we propose a new implementation of the RCM in section IV-C. It is

based on an automatic mode detection step followed by a reconstruction step that takes into account the

particular structure of the wavelet transform of multicomponent signals. The numerical simulations of

section V show that the proposed reconstruction algorithm provides good mode separation and compares

favorably toempirical mode decomposition(EMD) [11] and another existing RCM algorithm related to

the SST [1]. Finally, we conclude the paper by proposing a potential use of the proposed RCM technique
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for efficient sampling and denoising of multicomponent signals.

II. SYNCHROSQUEEZINGBASIS

A. Notation

We denote byf̂ the Fourier transform off , defined using the following normalization:

f̂(ξ) =

∫

R

f(x)e−2iπξxdx. (1)

For f ∈ L2(R), we define the continuous wavelet transform (WT):

Wf (a, t) =

∫

R

f(x)
1

a
Ψ(

x − t

a
)dx, (2)

whereΨ ∈ L2(R) is a function called mother wavelet satisfying the condition
∫ +∞
0

|Ψ̂(ξ)|
2

ξ dξ < +∞. It

is said to be analytic if̂Ψ(ξ) = 0, ξ ≤ 0. A particular class of analytic wavelets are those admitting a

unique peak frequencyξΨ defined by:

ξΨ := argmax
ξ

∣

∣

∣Ψ̂(ξ)
∣

∣

∣ . (3)

As an illustration, consider thebump waveletdefined

Ψ̂(ξ) = e
1− 1

1−(
ξ−µ

σ
)2 χ[µ−σ,µ+σ], (4)

which admits the peak frequencyξΨ = µ and whereχI is the indicator function of the setI.

B. Problem Setting

In what follows, we investigate the retrieval of the componentsfk of a multicomponent signalf defined

by:

f(t) =
K

∑

k=1

Ak(t) cos(2πφk(t)) =
K

∑

k=1

fk(t), (5)

whereAk(t) > 0 andφ′
k(t) > 0. The problem can be viewed from two perspectives. The first consists

of computing an approximation of the modes, either by using EMD [11] or via wavelet projections [17].

The second [1] uses the SST to reallocate the WT before proceeding with multicomponent retrieval.
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C. Theoretical Aspects of the SST

For the sake of consistency, we recall some theoretical results stated in [5]. These were established

for a signalf defined as a superposition ofintrinsic-mode-typefunctions (IMT):

Definition 1: A continuous functionf : R → R ∈ L∞(R) is said to be of theintrinsic-mode-type

(IMT) with accuracyǫ (or ǫ-IMT) if f(t) = A(t) cos(2πφ(t)) with A and φ satisfying the following

properties:

A ∈ C1(R)
⋂

L∞(R), φ ∈ C2(R)

inf
t∈R

φ′(t) > 0, sup
t∈R

φ′(t) < ∞, sup
t∈R

|φ′′(t)| < ∞

|A′(t)|, |φ′′(t)| ≤ ǫ|φ′(t)|, ∀t ∈ R

Definition 2: A function f : R → R is said to be a superposition of well-separatedǫ-IMTs with

separationd, the set of which is denoted byAǫ,d in the sequel, if there exists a finiteK such that

f(t) =
K
∑

k=1
fk(t) =

K
∑

k=1
Ak(t) cos(2πφk(t)), where all thefk are ǫ-IMTs satisfying:











φ′
k(t) > φ′

k−1(t)

|φ′
k(t) − φ′

k−1(t)| ≥ d(φ′
k−1(t) + φ′

k(t)).

In the following, the condition involvingd will be called theseparation condition. Consider the following

description of the frequency representation off in the time-scale space:

ω̂(a, t) =
∂tWf (a, t)

2iπWf (a, t)
, (6)

which is only defined for a non zero wavelet coefficient. The main theorem defining the SST was detailed

in [5] and is:

Theorem 1:Let f be a function inAǫ,d and set̃ǫ = ǫ1/3. Select a functionh in C∞
c and a mother

waveletΨ in the Schwartz class such thatΨ̂ is supported in[ξΨ − ∆, ξΨ + ∆], with ∆ < dξΨ/(1 + d).

Consider the function obtained by synchrosqueezingWf , with thresholdǫ̃ and accuracyα, i.e.

Sα
f,ǫ̃(ω, t) =

∫

Aǫ̃,f (t)
Wf (a, t)

1

α
h(

|ω − ω̂(a, t)|

α
)
da

a
,

whereAǫ̃,f (t) = {a ∈ R
+; |Wf (a, t)| > ǫ̃}. Then providedǫ is sufficiently small, the following conditions

hold:

• |Wf (a, t)| > ǫ̃ only when for somek ∈ {1, · · · , K}, (a, t) ∈ Zk := {(a, t); |aφ′
k(t) − ξΨ| < ∆}.

• For eachk ∈ {1, · · · , K}, and for each pair(a, t) ∈ Zk, for which holds|Wf (a, t)| > ǫ̃, we have

|ω̂(a, t) − φ′
k(t)| ≤ ǫ̃

• Moreover, for eachk ∈ {1, · · · , K}, there exists a constantC, such that, for anyt in R,
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∣

∣

∣

∣

lim
α→0

2
CΨ

Re
[

∫

Bǫ̃,k
Sα

f,ǫ̃(ω, t)dω
]

− Ak(t) cos(2πφk(t))

∣

∣

∣

∣

≤ Cǫ̃, where CΨ =
∫ ∞
0 Ψ̂(ξ)dξ

ξ and Bǫ̃,k :=

{ω, |ω − φ′
k(t)| < ǫ̃}.

Remark:This version of the theorem differs slightly from the original since here we deal with real signals

as opposed to complex; in addition, a different normalization of the WT is adopted from that originally

proposed.

Component retrieval using the SST is thus first based on the computation of thesynchrosqueezing

operatorSα
f,ǫ̃ and then on its integration in the vicinity of curves defined byφ′

k(t).

D. Practical Implementation of the RCM in the SST Framework

We recall a practical implementation of the SST proposed by Brevdo etal. in [1] which is based on the

theoretical results described above. To highlight the frequency components involved in the reconstruction

of f , one defines a binning of the frequency{ωl}
∞
l=0 and thenWl = [ωl+ωl−1

2 , ωl+ωl+1

2 ]. With this

in mind, the synchrosqueezing operatorSα
f,ǫ̃ is approximated by:Tf (ωl, t) =

∫

a:|ω̂(a,t)|∈Wl
Wf (a, t)da

a ,

which satisfiesf(t) = 2
CΨ

Re

[

∑

l
Tf (ωl, t)

]

.

By changing variables, we can write:Tf (ωl, t) =
∫

u:|ω̂(2u/nv ∆t,t)|∈Wl
Wf (2u/nv∆t, t) log(2)

nv
du, wherenv is

associated with the discretization of the scalesa into aj = 2j/nv∆t, j = 0, · · · , Lnv−1 and∆t being the

time span. Now, puttingna = Lnv, the Nyquist-Shannon theorem suggests that the maximum frequency is

ω̄ = ωna−1 = 1
2∆t and, under a periodic assumption for the signal, the minimumis ω = ω0 = 1

T = 1
n∆t

where T = n∆t is the signal duration. Assumingω varies on a log scale:ωl = 2l∆ωω, we obtain

∆ω = 1
na−1 log2(n/2). Consequently, fort = q∆t, a discrete version ofTf (ωl, q∆t) can finally be

written as follows:

Td,f (ωl, q) =
∑

0≤j≤na−1, j:|ω̂(aj ,q∆t)|∈Wl

Wf (aj , q∆t)
log(2)

nv
. (7)

This operator satisfiesf(q∆t) ≈ 2
CΨ

Re

[

∑

l
Td,f (ωl, q)

]

. The strategy developed in [1] for the RCM

is to proceed on a component by component basis. The idea is to find a curve(c∗q)q=0,··· ,n−1, in the

time-frequency plane such that it maximizes the energy while forces the modes to be smooth through a

total variation term penalization and is obtained by computing the following quantity:

c∗ = argmax
c∈{0,··· ,na−1}n

n−1
∑

q=0

log(|Td,f (ωcq
, q)|2) −

n−1
∑

q=1

λ∆ω|cq − cq−1|
2. (8)

Due to the complexity of the problem, only an approximation of c∗ is sought using a greedy algorithm.

In the sequel, we will use the implementation detailed in [2]of (8). When c∗q has been found, the

associated component at timeq∆t can be reconstructed by summing upTd,f (ωl, q) for l in Nq :=
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[c∗q −nv/2, c∗q + nv/2] in the above formula. To find the next component, one setsTd,f (ωl, q) for l ∈ Nq

to zero and restarts the minimization procedure on the remaining transform. In section IV-C, we will

propose an alternative approach to this construction whichwill prove to be both more accurate and

computationally much less demanding than the computation of c∗.

III. O N THE SST PARAMETERS

In this section, we consider an analytic wavelet supported in [ξΨ −∆, ξΨ + ∆] in the Fourier domain.

We first discuss the influence of the parameter∆ on the WT of signals made of pure harmonics and

on that of a singleǫ-IMT. We then show that for a general multicomponent signal,it acts as a trade-off

parameter that either favors the separation or the localization of the components in the time-scale space.

A. WT of Pure Harmonic Signals

The WT of a single tonef(t) = A cos(2πφt) is constant with time and equal toWf (a, t) =

1
2Ae2iπφtΨ̂(aφ), centered ina = ξΨ

φ . Its scale support is proportional to∆ since Wf is non zero

only for a such thatξΨ − ∆ < aφ < ξΨ + ∆ ⇔ ξΨ−∆
φ < a < ξΨ+∆

φ . When dealing with a signal made

of pure harmonicsf(t) =
K
∑

k=1
Ak cos(2πφkt), with φk−1 < φk, the separation of the components using

the WT is equivalent to the support of the WT of each componentbeing disjoint that is for allk > 1:

ξΨ + ∆

φk
<

ξΨ − ∆

φk−1
⇔

∆

ξΨ
<

φk − φk−1

φk + φk−1
.

Finally, using the definition of the separation condition introduced in Definition 2, when∆ ≤ ξΨd there

is no interference between the components and|Wf (a, t)| = 1
2

K
∑

k=1
Ak|Ψ̂(aφk)|.

B. WT of anǫ-IMT

Let f(t) = A(t) cos(2πφ(t)) be a mode as defined in Definition 1, the WT off is now approximated

by:

Wf (a, t) ≈
1

2
A(t)e2iπφ(t)Ψ̂(aφ′(t)), (9)

the approximation error being controlled byǫ(C1(f)B1 + C2(f)B2 + C3(f)B3) (see [5]), whereCi,

1 ≤ i ≤ 3, does not depend on the wavelet choice, whileBk :=
∫

R
|x|k|Ψ(x)| dx. So, whenǫ is high, a

low approximation error requires thatBk must be small. One way to ensure this is to impose thatΨ has

a fast decay or equivalently, that∆ be large.
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C. WT of a Superposition ofǫ-IMTs

For a multicomponent signals(t) =
K
∑

k=1
Ak(t) cos(2πφk(t)) as defined in Definition 2, we wish to

have the following kind of approximation:

Wf (a, t) ≈
K

∑

k=1

1

2
Ak(t)e

2iπφk(t)Ψ̂(aφ′
k(t)). (10)

Following [5], this approximation error is again controlled by ǫ(C̃1((fi)i=1,··· ,K)I1+C̃2((fi)i=1,··· ,K)I2+

C̃3((fi)i=1,··· ,K)I3), whereC̃i does not depend on the wavelet choice. So, following the previous study

on a single component, a low approximation error requires that ∆ be large enough. Then, we also want

each component to be well separated from the other components (which is compulsory if we are to use

the WT for modes retrieval), that is for each(a, t) the sum in (10) should be reduced to a single term

which is true provided that:

ξΨ + ∆

φ′
k(t)

<
ξΨ − ∆

φ′
k−1(t)

⇔
∆

ξΨ
<

φ′
k(t) − φ′

k−1(t)

φ′
k(t) + φ′

k−1(t)
.

Taking into account the separation condition (see Definition2), we can deduce that the above inequality

is true as soon as∆ < ξΨd. To illustrate this, we consider successively a sum of two cosine functions

with close frequencies and a sum of two linear chirps with close instantaneous frequencies, such that

both signals satisfy the conditionφ′
1(t) − φ′

2(t) = 1
10(φ′

1(t) + φ′
2(t)). We analyze these signals with a

bump wavelet (see (4)). We takeξΨ = µ = 1 and∆ = σ equal either to0.2, 0.1 or 0.05. In Figure 1,

we illustrate the trade-off role of the parameter∆ for the sum of two chirps, by drawing the magnitude

of the WT (using a logarithmic basis in ordinate for the scales) for the two signals. The time span for

the discretization of the signal is∆t = 4/4095, leading to4096 sampling points and then the scales to

compute the WT are defined, as in section II-D, byaj = 2j/nv∆t, with j = 0, · · · , Lnv − 1, L being

the dyadic length off andnv the number of scales per octave which we set to 32. It is clear that while

the best result for the sum of cosines is obtained whenσ is the smallest (Figure 1 C), for the sum of

two chirps, none of the results are perfect, but the valueσ = 0.1 realizes the best trade-off between the

localization and the separation of the modes (Figure 1 E).

It is worth noting that the behavior of the SST was studied in detail in [8] for two tone signals.

However, no conclusions can be drawn from the latter regarding modulated signals because the modulation

considerably alters the wavelet representation of such signals and consequently the results given by the

SST.

Remark:A very similar study was carried out by Mallat, ( [14], p.102), but using a mother wavelet

which was symmetric and compactly supported in the time domain. In such a case, the second order
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Fig. 1: From top to bottom: the modulus of the wavelet transformof the signalcos(80πt)+cos(65.44πt),

the modulus of the WT ofcos(60π(t + 1/4)2) + cos(49.10π(t + 1/4)2). The bump wavelet is used with

parametersµ = 1 and from left to right:σ = 0.2, 0.1, 0.05. The sampling rate is 4096 points over[0, 4]

and j/nv = log2(
aj

∆t)

terms in the approximation (10) would be negligible only if for all k:

ξ2
Ψ

|φ′
k(t)|

2

|A′′
k(t)|

|Ak(t)|
<< 1 andξ2

Ψ

|φ′′
k(t)|

|φ′
k(t)|

2
<< 1, (11)

provided ξΨ

|φ′

k(t)|
|A′

k(t)|
|Ak(t)| ≤ 1. The second constraint of (11) when applied to anǫ-IMT implies that φk is

such thatφ′
k(t) >> ξ2

Ψǫ, provided that ξΨ

|φ′

k(t)|
|A′

k(t)|
|Ak(t)| ≤ 1, which is true when ξΨǫ

Ak(t) ≤ 1, or equivalently

Ak(t) ≥ ξΨǫ. If we assume that bothAk and φ′
k are bounded below, the quality of the approximation

(10) is all the better thatξΨ is small whenǫ is large. Since one must also have∆ω ≤ ξΨd (where∆ω is

the frequency bandwidth of the wavelet) to ensure separation of the different component,ξΨ cannot be

taken arbitrarily small. In contrast to the previous approach, the trade-off parameter between separation

and localization of the components is nowξΨ.

It is also worth noting that when no assumptions are made regarding the modulation parameter in

the components of the signal, a general study provided in [17] relates the approximation (10) to the

August 1, 2012 DRAFT



9

derivatives of the Fourier transform ofΨ.

To conclude, the size of the frequency support of the mother wavelet plays a fundamental role when

dealing with multicomponent signals ; adjusting this parameter enables us to tune between good separation

and good localization of the modes.In the sequel we will use the previous remark regarding the size of

the frequency support of the mother wavelet to build a new RCMalgorithm.

IV. A N EW ALGORITHM FOR THERETRIEVAL OF MODES IN A SYNCHROSQUEEZINGFRAMEWORK

Note that the matlab code corresponding to the implementation of the RCM algorithm we now propose

is avalailable at [16]. This algorithm aims at identifying the ridge associated with each component from

the magnitude of the WT and then reconstructing the components by using the information in the vicinity

of the different ridges. It is based on three distinct steps:we first determine adaptively the number of

modes, then we compute an optimal wavelet threshold which wefinally use for retrieval of the modes.

A. Automatic Determination of the Number of Modes

Since, for a given timet, the scalesaj = 2j/nv∆t of interest in the SST are those where|Wf (aj , t)|

is large enough, we aim at detecting the modes using the following sets:

Cf (γ, t) = {j, |Wf (aj , t)| < γ and |Wf (aj+1, t)| > γ}. (12)

Note that we could alternatively consider the set{j, |Wf (aj , t)| > γ and |Wf (aj+1, t)| < γ}. The natural

expectation is that givent and whenγ is appropriately chosen, each element ofCf (γ, t) be associated

with a single mode as defined in (12). We must also point out herethat the normalization of the wavelet

transform we use is necessary to give sense to the above set. Indeed, if we consider a sum of pure

harmonics with the same amplitude then the wavelet transform at the frequencies of interest should also

have the same amplitude. In our context and givenγ, we will consider that a mode for a given timet

is associated with a set of successive scalesaj such that|Wf (aj , t)| > γ, and consequently with some

index j0 in Cf (γ, t). With that in mind and given a rangeΓ(t) for γ (the choice forΓ(t) being discussed

later on), we first compute an estimation of the number of modesat time t as follows:

Mf (t) = argmax
N

{
∑

γ∈Γ(t)

δN,#(Cf (γ,t))}

where#X denotes the cardinality ofX andδa,b = 1 if a = b and0 otherwise.Mf (t) indeed corresponds

to the most frequent number of modes detected whenγ varies inΓ(t). We then define the number of
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modes as follows:

Nf = argmax
N

{
∑

t∈T

δN,Mf (t)}.

The quantityNf corresponds to the most frequent number of modes over all times t andγ in Γ(t). In

what follows, we denote byΓ(t)min andΓ(t)max the lower and upper bounds forΓ(t).

B. Wavelet Threshold

Once the number of modes is determined, we first consider the sets:

S0(t) = {γ ∈ Γ(t), s.t. #(Cf (γ, t)) = Nf} , (13)

and defineT0 as the timest associated with non emptyS0(t). A thresholdγ̂(t) for the WT andt in T0

is then computed as follows:

γ̂(t) = median(S0(t)). (14)

It appears that, givent, S0(t) will be non empty provided thata → |Wf (a, t)| has at leastNf maxima

and thatΓ(t) is appropriately chosen. Indeed, we have the following proposition:

Proposition 1: Assume thata → |Wf (a, t)| hasNf maxima located in(ai) or that it has more than

Nf maxima located in(ai) and that|Wf (ai, t)| 6= |Wf (ai′ , t)| if i 6= i′. If Γ(t)min < min
i

|Wf (ai, t)| and

Γ(t)max = max
i

|Wf (ai, t)|, thenS0 is non empty.

PROOF: Remarking thata → |Wf (a, t)| is continuous, ifa → |Wf (a, t)| has exactlyNf maxima, there

exists ǫ > 0 such thatγ = min
i

|Wf (ai, t)| − ǫ is in Γ(t) and #(Cf (γ, t) = Nf so thatS0(t) is non

empty. Now, if a → |Wf (a, t)| has more thanNf maxima, using the fact|Wf (ai, t)| 6= |Wf (ai′ , t)|

if i 6= i′ and the definition ofΓ(t) there existγ0 and γ1 in Γ(t) such that#(Cf (γ0, t)) > Nf and

#(Cf (γ1, t)) ≤ Nf . As |Wf (ai, t)| 6= |Wf (ai′ , t)| if i 6= i′, whenγ varies fromγ0 to γ1 there existsγ2

such that#(Cf (γ2, t)) = Nf andS0(t) is non empty¥.

Remark:The only timet where, whateverΓ(t), γ̂(t) will not be defined is whena → |Wf (a, t)| has less

thanNf maxima. These times will be discarded in the RCM algorithm whose description follows.
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C. Algorithm for Modes Retrieval

For a timet ∈ T0, we successively define#Cf (γ̂(t), t) sets of integersIk(t), 1 ≤ k ≤ #Cf (γ̂(t), t),

as follows:


























Ik(t) = {jk(t), · · · , Jk(t)} s.t. ∀jk(t) ≤ j ≤ Jk(t) |Wf (aj , t)| > γ̂(t)

|Wf (ajk(t)−1, t)| < γ̂(t) and |Wf (aJk(t)+1, t)| < γ̂(t),

jk(t) < jk+1(t).

Each setIk(t) is made of indices corresponding to some scales of interest which can be associated with

one of the modes whent ∈ T0 (because#Cf (γ̂(t), t) = Nf in that case). The RCM algorithm is then

straight forward. We consider for eacht in T0 the setINf−k+1(t), which enables us to retrieve the mode

k by applying the following approximation formula:

fk(t) ≈
2

CΨ
Re







∑

j∈INf −k+1(t)

Wf (aj , t)
log(2)

nv






. (15)

Note that the index ofI in the sum comes from the fact thatIk for smallk corresponds to high frequency

component and that in Definition (2) the components are arranged in increasing frequency order.

Doing so, we avoid both the problem of the binning of the frequency domain as well as the heuristic

procedure involved in the determination of the modes (see section II-D). Furthermore, this reconstruction

procedure is fully automatic and avoids the need to narrow down the curve searching in the time-scale

space before proceeding with the mode retrieval [1]. As already mentioned, the threshold̂γ(t) is computed

to ensure good detection of the different modes. However reconstructing the modes using such a threshold

leads to some large amplitude wavelet coefficients being neglected. To improve the reconstruction, we

comment that sincêΨ is compactly supported inside[ξΨ−∆, ξΨ+∆], then basically the scales of interest

for the componentk at time t are [ ξΨ−∆
φ′

k(t) , ξΨ+∆
φ′

k(t) ]. Invoking (9), the amplitude of the WT attains a local

maximum whenajφ
′
k(t) = ξΨ. A good estimation̄φ′

k(t) of φ′
k(t) is obtained by considering, fort in T0,

ξΨ

aj0

whereaj0 := argmax
aj

{

|W (aj , t)|, jNf−k+1 ≤ j ≤ JNf−k+1

}

. The reason for consideringNf − k + 1

instead ofk is again related to the fact that the modes should be arrangedin increasing frequency order.

This finally leads us to an alternative approximation formula (for t in T0):

fk(t) ≈
2

CΨ
Re





∑

aj∈Lk(t)

Wf (aj , t)
log(2)

nv



 , (16)

where Lk(t) = [ ξΨ−∆
φ̄′

k(t)
, ξΨ+∆

φ̄′

k(t)
]. We investigate in the next section the relevance of the reconstruction

formula (16) and we will also put forward its potential interest for signal sampling and denoising in
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section VI.We should finally mention that the computational cost of the algorithm is essentially related

to the cost of the steps described in sections IV-A and IV-B: for each timet we compare the modulus

of the WT computed atLnv scales with#Γ(t) thresholds (an upper bound of the computational cost is

thusmax
t

#Γ(t) × Lnv × n, T = n∆t being the total duration of the signal).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

time

f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

time

f 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

time

f 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

time

f 1

time

j/n
v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

7

8

9

A B

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 3

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 2

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 1

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 3

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 2

0 0.2 0.4 0.6 0.8 1
−1

0

1

time

es
tim

at
io

n 
of

 f 1

C D

Fig. 2: A: An example of a signal made of the superposition of non trivial IMTs ; B: modulus of the

corresponding WT ; C: reconstruction of the modes of the signal in A using formula (15) and the bump

wavelet (µ = 1 andσ = 0.2) ; D: same as in C but using the reconstruction formula (16).

V. I LLUSTRATIONS OF THERECONSTRUCTIONPROCEDURE ANDCOMPARISONS

In this section, we compare some examples to illustrate the advantage of using the reconstruction

approach described above as opposed to that proposed in section II-D and implemented in [1]. Fur-

thermore, we will compare the proposed method to EMD which extracts the modes by analyzing the
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Fig. 3: A: Contour plot of the modulus of the absolute value ofTd,f associated with the signal of Figure

2 A. B: The curvesc∗, for different values ofλ for the studied signal along with the expected curve.

From top to bottom: the curves associated with modesf1, f2 andf3.

signal in the time domain [11]. In the simulations of this section, the setΓ(t) will be a discretization of

[10−2, max
a

|Wf (a, t)|] (the discretization step being set to10−3).

A. Analysis of Frequency Modulated Multicomponent Signals

To illustrate the reconstruction procedure defined in (15) and (16), we consider the retrieval of the

components of a modulated frequency signalf(t) = f1(t) + f2(t) + f3(t) with f1(t) = sin(3(2π × 6t),

f2(t) = sin(3(2π×46t+21 sin(3πt))) andf3(t) = sin(3(2π×77t+30 sin(3πt))) (see Figure 2 A), which

has a frequency separation conditiond ≈ 0.2 (see Definition 2). The studied signal is made of 2048 equi-

spaced samples on[0, 1] and admits the WT whose modulus is displayed on Figure 2 B computed using

the bump wavelet withµ = 1 andσ = 0.2. The representation uses a logarithmic basis for the discretized

scalesaj = 2j/nv∆t,j =), · · · , Lnv (nv and L being defined as previously), i.e.j/nv = log2(aj/∆t).

We test the two reconstruction methods (15) and (16) on the signal with the results depicted in Figure

2 C and D respectively. To measure quantitatively the improvement in terms of mode retrieval brought

about by the use of the second method over the first one, we compute the SNR (measured in Decibels
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Fig. 4: The results of the EMD decomposition on the signal of Figure 2 A.

(dB)) defined as follows:

SNR = 10 log10(
‖fi‖

2
2

‖f̃i − fi‖2
2

), (17)

for eachfi, i = 1, 2, 3 and f̃i being the estimate. The SNR corresponding tof1, f2 andf3 of Figure 2 A

is 19.1 dB, 11.6 dB and13.6 dB for (15) and31.7 dB , 14.5 dB and22 dB for (16). A careful look at

Figure 2 D shows that a better restoration of the amplitude of the modes is achieved using formula (16)

(for instance, compare Figure 2 C and D betweentimes 0.3 and 0.4). Finally, we should mention that

we have noticed that when the parametersσ and µ are correctly set in accordance with the separation

condition d, using a much larger discretization step forΓ(t) (typically 10−2 instead of10−3) does not

alter the reconstruction performance.

Now, we wish to compare the procedure we proposed for reconstruction to that introduced in section

II-D. First, we remark that formula (8) proposed to determinethe curvesc∗ before reconstruction requires

the knowledge of the number of modes. We aim to show that even if the latter is known, this determination

may be inaccurate. To ensure a fair comparison, we run the implementation available in [2] of formula
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(8) for the signal of Figure 2 A using the bump wavelet still with µ = 1 andσ = 0.2, and then display

the curvesc∗ depending on the value ofλ and the expected one on Figure 3 B (the tested values are

λ = 5.103, 104 and 2.104). We also display the contour plot associated with the modulus of Td,f on

Figure 3 A.

From this last Figure, it is clear that to determine the curvesc∗ only based on the modulus ofTd,f

leads to an accurate curvec∗ associated tof2 because the modulus ofTd,f is much too low in the vicinity

of the expected curve: this motivates the use of the regularization parameterλ. Indeed, consideration of

Figure 3 B is very informative in this regard. For a smallerλ, the curvesc∗ given by (8) are made of

several parts that belong to different frequency bands because the synchrosqueezing part prevails in (8),

i.e. it creates mode-mixing. Taking a largerλ enables to compensate for the small modulus ofTd,f since

the regularization term then prevails over the synchrosqueezing term in (8). Nevertheless, however high

the value forλ is, one cannot retrieve the expected curves and, eventually, if λ is taken too large one

ends up with somec∗ being straight lines. As a result of this inaccuracy in the determination of the

curvesc∗, the reconstruction algorithm based on these curves (see the end of section II-D) is inefficient

in such a case.

Another technique used to represent such signals is EMD [11].The main principle of the technique is

to extract components which are less and less oscillatory from a signal by applying an iterative procedure

called the sifting process (for further details on the method see [11]). We applied the EMD to the signal

of Figure 2 A using the versions given in [18] or in [12] with thedefault parameters in each case.

The components of the decomposition, called IMFs (intrinsic mode functions), sum up to the original

signal. In the EMD context,IMFk for small k corresponds to a high frequency component. We display

on Figure 4 the decomposition given by the implementation of [12] of the EMD (the other leading

to very similar results). We notice some mode-mixing between IMF1 and IMF2. The reason for such

mode-mixing effects is related to the fact that the extraction of the IMFs in the EMD is not frequency

based in contrast with the synchrosqueezing technique. Furthermore, we also comment that if an error

is made in the extraction of the first IMF then it will spread throughout the whole extraction procedure.

A deeper analysis of Figure 3 tends to show that when the real modes are well separated (meaning that
φ′

k(t)−φ′

k−1(t)

φ′

k(t)+φ′

k−1(t)
>> d, typically for 0.2 < t < 0.45) the EMD enables a good separation, the extraction

being more difficult in the opposite case. It is worth noting that for such a signal a good separation of the

modes would be possible using the EMD but would require an astronomical number of sifting iterations

(approximately 20000). We would note that recent developments were proposed in [10] [21] which aim

to redefine EMD to better handle the mode-mixing effect inducedin the original algorithm.
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B. Analysis of Linear Chirp

In this section, we provide another illustration of the method on the extraction of linear chirps. Our

aim is on the one hand to compare the behavior of our method with existing methods, namely EMD

[11] and another version of the RCM based on the SST [1] and also to focus on the importance of the

mother wavelet choice in the synchrosqueezing technique when ǫ is large.
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Fig. 5: The first row contains the estimation off1 using the reconstruction formula (16) with the wavelet

the bump wavelet withµ = 1 and σ = 0.1 andσ = 0.05, σ = 0.01 from left to right. The second row

contains the estimation off2 with the same parameters with regards to the WT

To do so, we analyze the linear chirp signalf(t) = f1(t) + f2(t) with f1(t) = cos(49.1π(t + 1/4)2)

and f2(t) = cos(60π(t + 1/4)2), whose WT was explored in Figure 1. The second row of Figure 1

showed the importance of the parameterσ = ∆, the radius of the support of the Fourier transform of the

wavelet, in terms of the quality of the representation. We now remark that the WT associated with the

bump wavelet (see (4)) defined by the set of(rµ, rσ) is the same as that obtained taking(µ, σ) except

that the scales are dilated by a factor ofr. Thus, not changing the amplitude of the wavelet transform,

does not alter the behavior of our RCM algorithm. So, without any loss of generalityµ can be set to1,

σ being the only parameter that may vary.
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In the present case, sinced = 1/10 and sinceµ is taken equal to1, the maximum value for∆ = σ

should be0.1. Now, we show the importance of choosingσ as close as possible to this upper bound

for mode retrieval. We use the reconstruction formula (16) as suggested by the previous simulations on

frequency modulated multicomponent signals again using the bump wavelet for analysis. Our simulations

consider the value0.1, 0.05 and0.01 for σ.

The results of Figure 5 show that by improving the accuracy of approximation (9), the mode retrieval

procedure works much better. Note that when the reconstruction formula returns zero, i.e.t /∈ T0, this

means that our algorithm is not able to separate the mode fromthe wavelet representation and we find it

wiser not to propose any decomposition in such cases: when the analysis tools are inefficient this should

be explicit. The rationale underlying this view is to make themost of the wavelet decomposition without

extrapolating when the information is unclear. To measure quantitatively the improvement in terms of

mode retrieval brought about by the variation onσ, we compute, for the time indices such thatt > 0.8,

the SNR (measured in Decibels (dB), see (17)) associated withthe retrieval offi, i = 1, 2.

σ = 0.1

µ = 1

t > 0.8

σ = 0.05

µ = 1

t > 0.8

σ = 0.01

µ = 1

t > 0.8

SNR (in dB,f1 estimate) 20.8 14 1.2

SNR (in dB,f2 estimate) 24 14.5 1.6

TABLE I: Influence of the parameterσ on the mode retrieval procedure

The results (depicted in Table I) confirm our basic insight thatbetter reconstruction is achieved for

smaller times by movingσ closer to its upper bound given by the separation condition.Note also that to

take a largerσ worsens the wavelet representation for larget in the sense that its spreads the information

over a larger number of scales. However, for theset, since the reconstruction procedure is basically a

summation over scales given by the wavelet support, to take alargerσ has no impact on the quality of the

estimation of the modes. Finally, we again notice that when the parametersµ andσ are set according to

the separation condition, taking a much larger discretization step for the setΓ(t) (typically 10−2 instead

of 10−3) does not alter the reconstruction performance.

We are also concerned with comparing our method for mode extraction to the EMD and to the technique

of extraction of the modes given by (8). For EMD, the useful information is mainly contained in the
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Fig. 6: A: The first two IMFs associated with the decomposition of the linear chirp ; B: The curvesc∗

given by the formula (8) withλ = 1000 along with the expected curves

first two IMFs, which are displayed in Figure 6 A. The reconstruction error (measured in dB) is for

the first and second modes (considering times larger thant > 0.8 to ensure a fair comparison with the

synchrosqueezing technique)2.09 dB and2 dB respectively. Again, as the EMD does not analyze the

signal in the frequency domain it seems to be inefficient at separating components with close frequency

characteristics. We finally investigate how the curve seeking procedure given by formula (8) works on

the studied signal. To do so, we consider the decomposition of the linear chirp signal with the bump

wavelet takingµ = 1 and σ = 0.1, the parameterλ for curve seeking is set to1000. Again we notice

that the formula (8) for curve seeking results in mode-mixing (to display the corresponding modes is

then worthless), other values ofλ would offer no improvement.

VI. A PPLICATION OF THERCM TO SIGNAL NON-UNIFORM SAMPLING AND DENOISING

A. Application of the RCM to Multicomponent Signals Non-Uniform Sampling

In this section, we investigate the potential interest of the RCM for efficient non-uniform sampling of

multicomponent signals. Let us defineg as the cubic spline interpolant off at the sample points(tm). Then

if D = max
m

|tm+1− tm|, the interpolation errore satisfies‖e‖L∞ ≤ 5
584D4‖f (4)‖L∞ . Note that ifg were

defined using a piecewise cubic Hermite interpolant instead,we would have:‖e‖L∞ ≤ 1
384D4‖f (4)‖L∞ ,

which suggests that, given a set of samples(tm, f(tm))), a lower interpolation error should be achieved
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by using a piecewise cubic interpolant. However, writing the upper bound of the error as previously

wipes out the locality of the error estimation. Indeed, we write the following when the piecewise cubic

interpolant is used [9]:

‖e‖L∞ ≤
1

384
max

m

{

(tm+1 − tm)4‖f (4)‖L∞,[tm,tm+1]

}

, (18)

where‖.‖L∞,[tm,tm+1] stands for the supremum on the interval[tm, tm+1]. This means that wheref (4) is

large, the sample pointstm and tm+1 should be close.

To adaptively choose non-uniform samples to minimize the interpolation error is a thorny issue. A

method inspired by the EMD consists of selecting the extrema of the signal, such that they depend

locally on the strength of the oscillations. Another possibility would be to choose equi-spaced sample

points over the whole signal duration.

We seek to show that the location of the extrema of the high frequency component obtained after

applying our RCM algorithm are more relevant as sample points for f than the locations of the extrema

of the signal itself. The result will be measured in terms of the magnitude of the errore. Indeed, let

us consider the following three signal reconstruction procedures. The first (resp. second) one consists of

considering as non-uniform sample points forf the location of the extrema of the high frequency mode

given by the RCM we propose (resp. of the original signal) andthen piecewise cubic Hermite interpolation

of f at these points. The third approach follows the same framework as the first two, the sample points

being equi-spaced with the same average sampling rate. We display in Figure 7, the interpolation errors

associated with the three different cases (the number of interpolation points being the same in each case)

for the signal defined in Figure 2 A. Note that by choosing the sample points as the location of the

extrema of the high frequency component obtained with our RCM algorithm, we manage to significantly

reduce the interpolation error compared to the other two methods. Figure 7 C shows that to maintain

that error at a low level, the sample points have to be chosen according to the frequency content of the

signal.

B. Sensitivity to Sampling of the RCM Algorithm

We now investigate the sensitivity of the RCM we propose to sampling. For that purpose, given a set of

non-uniform signal samples, we compute the RCM of the interpolating signal (using again the piecewise

Hermite interpolant) and compare it with the RCM of the signal itself. To quantify the error we make

when computing the RCM on the signal interpolant, we computefor each mode the SNR corresponding

to the discrepancy between the mode computed using the wholesignal and that computed using different
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Fig. 7: A: display of the interpolation error of the signal of Figure 2 A where(tm) are the location

of the extrema of the high frequency mode obtained with our RCM algorithm ; B: same computation

where(tm) are the location of extrema of the signalf ; C: same computation when the sample points

are equi-spaced on[0, 1]. The number of sample points equals 462 in each case.

kinds of sample points. As previously, we compare the results of the RCM when the sample points are

either equi-spaced, the location of the extrema of the signal or that of the high frequency mode. Table II

summarizes the results still for the signalf of Figure 2 A and shows that the RCM is much more accurate

when the sample points are the extrema of the high frequency mode. Bearing in mind the previous study,

this suggests that the accuracy of the RCM applied to the interpolating signal of at non-uniform samples is

directly related to the interpolation error. The investigation into the theoretical reasons why the algorithm

behaves this way is the subject of further research which we will report subsequently.

Uniform Extrema Extrema of

of f high frequency mode

SNR (in dB,f1 estimate) 12.4 26.3 30

SNR (in dB,f2 estimate) 18.6 27.5 30.4

SNR (in dB,f3 estimate ) 37 43.1 51.3

TABLE II: SNR associated with RCM based on signal interpolantsversus RCM based on the original

signal, for different sets of sample points.
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C. Sensitivity to Noise, Denoising Algorithm

In this subsection we show that the RCM enables us to define a denoising algorithm that outperforms

the wavelet denoising technique for a wide range of noise level.

When dealing with noise, we must take into account the noise level in the determination ofΓ(t).

We do not change the value forΓ(t)max which still equalsmax
a

|Wf (a, t)|, but to determine the lower

bound forΓ(t) we proceed as follows. Assume the standard deviation of the noise η is known, taking

into account (9) which divides the amplitude of the originalsignal by 1/2, it is natural to take into

account only the coefficients that are aboveη
2 . To estimate the standard deviation of the noise, we use

a robust estimator̄η of η based on the finest detail coefficients of an orthogonal waveletdecomposition

[14] (in our simulations, we have used the symmlet with 4 vanishing moments, changing the number of

vanishing moments does not change the estimate a great deal). The lower bound forΓ(t) is finally set

to Γ(t)min = η̄
2 .

Our point is to show that the RCM algorithm we have proposed isan efficient tool for the denoising

of multicomponent signals. We again consider the multicomponent signal which we previously studied

for signal interpolation to which we add a Gaussian white noise. Using different standard deviations for

the noise, we obtain SNRs before denoising between the original and noisy signals. Then, we apply our

RCM to the noisy signal (still considering the bump wavelet with µ = 1 andσ = 0.2 as in the noise-free

case) and we obtain the so-called denoised signal by summingup all the obtained modes. We finally

compute the SNR after denoising between the denoised and the original signals and plot these in Figure

8 versus the SNR before denoising (curve labelled RCM on that Figure). We now compare the behavior

of the RCM algorithm in terms of denoising to two other wavelet thresholding techniques: the translation

invariant hard wavelet thresholding [6] and the block thresholding technique proposed in [15].

The results depicted on Figure 8 clearly show that the block thresholding technique and the denoising

technique based on the RCM we propose behave much better thanthe traditional translation invariant

wavelet thresholding (TIWT). The main reason for that behavioris that the first two methods are basically

time-frequency like tools, while the TIWT is well suited for signals containing singularities. We also

believe that our algorithm behaves better than the TIWT for the reason that the threshold applied to the

wavelet coefficients in the latter technique is computed depending on the octave the coefficients belong to,

whereas the threshold in the RCM method is adapted for each time t depending on the number of modes

found. The comparison of our method with the block thresholding (BT) method shows better behavior

for SNRs between 6 and 12 dB. For a high SNR, our method behaves worse than the BT mainly because
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the approximation (9) becomes too crude. For a low SNR our method behaves worse than the BT as

soon as the correct number of modes is not found (typically inthat case for a SNR smaller than 5 dB).

In future work, we will address this issue by seeking to take into account second order terms in (9) to

better handle the denoising of signal when the SNR is high.
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Fig. 8: SNR after denoising as a function of the SNR before denoising either using the RCM technique

we propose (RCM), the translation invariant wavelet thresholding (TIWT) or the block thresholding (BT)
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VII. C ONCLUSION

In this paper, we have presented a novel algorithm for the retrieval of the components of a multicom-

ponent signal based on some ideas exploited by the synchrosqueezing transform. After emphasising the

importance of the accuracy of the wavelet representation for so-calledǫ-IMTs, we then profited from the

structure of the wavelet transform of multicomponent signals to develop a novel algorithm for retrieving

the component of these signals. We then showed that with regard to the mode-mixing issue,the proposed

algorithm behaves better than EMD or another existing implementation of mode retrieval based on the

synchrosqueezing method. We then showed that in the noise-free configuration, the proposed algorithm
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can be used to find out an appropriate sampling of multicomponent signals which ensures the stability to

the mode retrieval algorithm we proposed. Finally we showed that the algorithm also provides a natural

way to denoise multicomponent signals which outperforms, for a wide range of SNRs, the most up-

to-date time-frequency denoising algorithm based on block-thresholding. Future work requires a deeper

theoretical study of the component retrieval algorithm we proposed along with some new developments

on synchrosqueezing-like techniques, especially by working on better approximations of the wavelet

representation.
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