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. INTRODUCTION

Audio signals are commonly modelled as a sum of AM/FM comptsesith slowly varying amplitude
and instantaneous frequency [19]. Consequently, theevelriof the components (or modes) of a mul-
ticomponent signal (RCM) is a central issue in many audia@ssing problems. The most commonly
used techniques to carry out theretrieval are time-frequem time-scale based signal representations.
For the former, spectrogram reassignment techniquesddynstruction based dn minimization of the
ambiguity function associated with the Wigner-Ville distrtion [7], synchrosqueezing using the short
time Fourier transform [20] or Fourier ridges [3] have alebesuccessfully used. For the latter, i.e., time-
scale representations, wavelet ridges have also provea Yery efficient [14] [13]. In [13], the emphasis
is on the importance of the wavelet choice with regard to itlger representation. Synchrosqueezing
techniques have also been developed within the waveleteiramk [5]. The main difference between
the short time Fourier and wavelet representations is tiatdtter is more demanding in terms of the
frequency separation of high frequency components.

In this paper, we first propose a new implementation for the RGIMwing on from some ideas of the
synchrosqueezing transform (SST) and then show how it enablés find out a relevant non-uniform
sampling set for the signal, i.e., preserving its essefrigjuency characteristics, and finally how it can
be used for signal denoising. The layout of the paper is agviisll In section Il, we recall some notation
that is useful to describe the SST and then restate the mairetioad related results [5] with a practical
implementation of the RCM recently proposed by Brevdaaktin [1] (section 1I-D). A fundamental
issue in synchrosqueezing-based methods is the mothelewvaVmice ; a poor wavelet representation
inevitably leads to a poor SST result. Therefore, in sectignd focus on the difference between wavelet
transforms of pure harmonic and of multicomponent signéle. deduce from this study that a good
wavelet representation for a sum of pure harmonic signals r@guires that the mother wavelet fulfills
an appropriateseparation conditiorwhile for more general multicomponent signals the mothevehet
choice must also take into account tmedulation parameteassociated with the different components.
Bearing in mind these elements, we propose a new implen@mtaf the RCM in section IV-C. It is
based on an automatic mode detection step followed by a s&oation step that takes into account the
particular structure of the wavelet transform of multicampnt signals. The numerical simulations of
section V show that the proposed reconstruction algorithoriges good mode separation and compares
favorably toempirical mode decompositigitMD) [11] and another existing RCM algorithm related to

the SST [1]. Finally, we conclude the paper by proposing a piatemge of the proposed RCM technique
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for efficient sampling and denoising of multicomponent signa

[I. SYNCHROSQUEEZINGBASIS
A. Notation

We denote byf the Fourier transform of, defined using the following normalization:

1O = [ s@ema ®
For f € L?(R), we define the continuous wavelet transform (WT):
1_x—t
Witat) = [ @) 0(*—")da, @)

where¥ € L?(R) is a function called mother wavelet satisfying the condiitj @df < Ho0. It
is said to be analytic iﬁl(g) =0, £ < 0. A particular class of analytic wavelets are those adngjtén

unique peak frequencyy defined by:

fu = arggna@(g)\ . (3)

As an illustration, consider theump waveletlefined

= 1- 17#2
\;[J(f) = e 5D X[p—o,utols (4)

which admits the peak frequengy, = . and wherey; is the indicator function of the sdt

B. Problem Setting
In what follows, we investigate the retrieval of the compatsef;, of a multicomponent signgl defined

by:
K K
F(t) = Ap(t) cos(2men(t) = D fult), (5)
k=1 k=1

where A, (t) > 0 and ¢},(t) > 0. The problem can be viewed from two perspectives. The first stmsi
of computing an approximation of the modes, either by usind>ENML] or via wavelet projections [17].

The second [1] uses the SST to reallocate the WT before progeediih multicomponent retrieval.
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C. Theoretical Aspects of the SST

For the sake of consistency, we recall some theoreticaltgestated in [5]. These were established
for a signalf defined as a superposition witrinsic-mode-typdunctions (IMT):

Definition 1: A continuous functionf : R — R € L*(R) is said to be of thentrinsic-mode-type
(IMT) with accuracye (or e-IMT) if f(t) = A(t)cos(2m¢(t)) with A and ¢ satisfying the following
properties:

Ac C'R)NL>®R), ¢ € C*(R)

inf ¢/(t) > 0, sup ¢'(t) < oo, sup|¢’(t)] < oo
teR teR teR

[A'()], 16" (1) < el (1)], VE € R
Definition 2: A function f : R — R is said to be a superposition of well-separatetMTs with
separationd, the set of which is denoted by, ; in the sequel, if there exists a finit& such that

flt) = fj fe(t) = fj Apg(t) cos(2moi(t)), where all thef,, aree-IMTs satisfying:
k=1 k=1

Pi(t) > P (1)
|61.(8) = G, ()] = d(dp_, (1) + G1.(1))-

In the following, the condition involving will be called theseparation conditionConsider the following
description of the frequency representationfoifh the time-scale space:

0Wiy(a,t)

S lat O0Wy(a,t)
w(a,?) 2inWy(a,t)’

(6)

which is only defined for a non zero wavelet coefficient. The mh@otem defining the SST was detailed
in [5] and is:

Theorem 1:Let f be a function inA.; and seteé = ¢!/3. Select a functioru in C¢° and a mother
wavelet® in the Schwartz class such thétis supported if¢y — A, &y + A, with A < dég /(1 + d).
Consider the function obtained by synchrosqueeing with thresholdé and accuracyy, i.e.

da

1
Sag ,t :/ W ,t *h )
felot) = [ Wil h(E=TEE

‘w — d)(av t)‘

where4; ((t) = {a € R";|W/(a,t)| > €}. Then provided is sufficiently small, the following conditions
hold:
o |W¢(a,t)| > € only when for some: € {1,--- , K}, (a,t) € Z;, == {(a,t); |ag,(t) — Eu| < A}
o For eachk € {1,---, K}, and for each paifa,t) € Z, for which holds|W(a,t)| > €, we have
|w(a,t) — g (t)] <€
« Moreover, for eactk € {1,--- , K}, there exists a constaft, such that, for any in R,
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lim - Re ., S§elw,t)dw| — Ax(t) cos(2men(t)| < Ce, where Cy = [5* ¥(€)% and Bey :=
{w, |w— (0] <&,

Remark:This version of the theorem differs slightly from the oridgisance here we deal with real signals
as opposed to complex; in addition, a different normaloratf the WT is adopted from that originally
proposed.

Component retrieval using the SST is thus first based on the datigou of the synchrosqueezing

operator S¢; and then on its integration in the vicinity of curves defineddyy?).

D. Practical Implementation of the RCM in the SST Framework

We recall a practical implementation of the SST proposed by@®retal. in [1] which is based on the
theoretical results described above. To highlight thedeaqy components involved in the reconstruction
of f, one defines a binning of the frequenéy;}?°, and thenW, = [“F2=t “Feia] \With this
in mind, the synchrosqueezing operatf; is approximated byT's(wi,t) = [, 5 (a.njem Wr(a, t)da,
which satisfiesf(f) = 2 Re {; Tf(wl,o].

By changing variables, we can Writ€j (wi, t) = [,.j5(20/m0 att)jew W (24 At, t)%du, wheren, is
associated with the discretization of the scalésto a; = 21/mAt, j=0,---, Ln,—1 andAt being the
time span. Now, putting, = Ln,, the Nyquist-Shannon theorem suggests that the maximumeney is
@ = wy,—1 = 5x; and, under a periodic assumption for the signal, the mininBm = wy = 7 = —&;
where T = nAt is the signal duration. Assuming varies on a log scaley;, = 2/4“w, we obtain
Aw = ﬁlogQ(nﬁ). Consequently, for = ¢At, a discrete version of y(w;, ¢At) can finally be

written as follows:
log(2)

Ny

(7)

Ty r(wi,q) = > Wy(aj, qAt)
Ogjgna_L jzldj(ajqut)‘GWl

This operator satisfieg(qAt) =~ C%Re [Z de(tdl,q):|. The strategy developed in [1] for the RCM
l
is to proceed on a component by component basis. The idea isdafeurve(c;),=o,.. n-1, in the

time-frequency plane such that it maximizes the energyemuices the modes to be smooth through a

total variation term penalization and is obtained by cormguthe following quantity:

n—1 n—1
& = argmax Z log(|Tu.f(we,,q)|?) — Z Muwleg — cq-1]* (8)
{0, ,n,—1}7 q=0 q=1

Due to the complexity of the problem, only an approximatidrcois sought using a greedy algorithm.
In the sequel, we will use the implementation detailed in ¢2](8). When ¢ has been found, the

associated component at time\¢ can be reconstructed by summing @p (w;,¢) for I in N, =
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[c; —nw/2,c; +n, /2] in the above formula. To find the next component, one Bgtgw;, q) for I € A
to zero and restarts the minimization procedure on the minmaitransform. In section IV-C, we will
propose an alternative approach to this construction whithprove to be both more accurate and

computationally much less demanding than the computatiati.o

Ill. ON THE SST ARAMETERS

In this section, we consider an analytic wavelet suppomeldd — A, £y + A] in the Fourier domain.
We first discuss the influence of the parameteron the WT of signals made of pure harmonics and
on that of a single-IMT. We then show that for a general multicomponent sigitadcts as a trade-off

parameter that either favors the separation or the lodaliz®f the components in the time-scale space.

A. WT of Pure Harmonic Signals

The WT of a single tonef(t) = Acos(2m¢t) is constant with time and equal td/;(a,t) =

%Ae%wt\i’(aqﬁ), centered ina = %f . Its scale support is proportional th since W, is non zero

only for a such thatéy — A < a¢ < {u + A & 252 < a < 22 When dealing with a signal made
K

of pure harmonicsf (t) = Y A cos(2moyt), with ¢r_1 < ¢, the separation of the components using
k=1

the WT is equivalent to the support of the WT of each compomeirig disjoint that is for alk > 1:

A - A A — ¢p—
Sot A _ Sw P k|

Pk Pr—1 Sv bkt dro1
Finally, using the definition of the separation condition aainced in Definition 2, wher < ¢y d there

K -
is no interference between the components @fig(a, )| = 3 > Ag|¥(ady)|.
k=1

B. WT of ane-IMT

Let f(t) = A(t) cos(2m¢(t)) be a mode as defined in Definition 1, the WT fofs now approximated

by:

Wilet) = SABA™OF(ar (1), ©

the approximation error being controlled kyC:(f)B1 + Ca2(f)B2 + C3(f)Bs) (see [5]), whereC;,
1 <14 < 3, does not depend on the wavelet choice, wiile:= [ |z|¥|¥(x)| dz. So, whene is high, a
low approximation error requires that, must be small. One way to ensure this is to impose thats

a fast decay or equivalently, that be large.
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C. WT of a Superposition efIMTs

K
For a multicomponent signal(t) = Y. Ax(t) cos(2m¢i(t)) as defined in Definition 2, we wish to
k=1

have the following kind of approximation:

Wy(a,t) =~ kil;Ak(t)e%m(t)\if(aqs;(t)). (10)
Following [5], this approximation error is again contrallby e(él((fi)izl,...,K)Il +C~'2((fi)i:17...7[()]2+
Cs3((fi)i=1.. 1) I3), whereC; does not depend on the wavelet choice. So, following the pusvitudy
on a single component, a low approximation error requiras thbe large enough. Then, we also want
each component to be well separated from the other compmiehich is compulsory if we are to use
the WT for modes retrieval), that is for ea¢h, ¢t) the sum in (10) should be reduced to a single term
which is true provided that:

Gt A G -A A G~ 0)
) ) e A+ ()

Taking into account the separation condition (see Definiiprwe can deduce that the above inequality

is true as soon ad < &yd. To illustrate this, we consider successively a sum of twsired functions
with close frequencies and a sum of two linear chirps wittselinstantaneous frequencies, such that
both signals satisfy the conditiofi (t) — ¢5(t) = 15(¢;(t) + #4(t)). We analyze these signals with a
bump wavelet (see (4)). We takg = 1 = 1 and A = ¢ equal either ta).2, 0.1 or 0.05. In Figure 1,
we illustrate the trade-off role of the parameterfor the sum of two chirps, by drawing the magnitude
of the WT (using a logarithmic basis in ordinate for the sspl®r the two signals. The time span for
the discretization of the signal &t = 4/4095, leading t04096 sampling points and then the scales to
compute the WT are defined, as in section II-D, dy= 2i/me At, with j = 0,---,Ln, — 1, L being
the dyadic length off andn, the number of scales per octave which we set to 32. It is clerwhile
the best result for the sum of cosines is obtained wtes the smallest (Figure 1 C), for the sum of
two chirps, none of the results are perfect, but the value 0.1 realizes the best trade-off between the
localization and the separation of the modes (Figure 1 E).

It is worth noting that the behavior of the SST was studied iraitleh [8] for two tone signals.
However, no conclusions can be drawn from the latter reggndiodulated signals because the modulation
considerably alters the wavelet representation of suamatsgand consequently the results given by the
SST.

Remark: A very similar study was carried out by Mallat, ( [14], p.10®ut using a mother wavelet

which was symmetric and compactly supported in the time diorma such a case, the second order
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01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
time time

B C

Fig. 1: From top to bottom: the modulus of the wavelet transfofrthe signakos(807t) + cos(65.44t),
the modulus of the WT ofos (607 (¢ + 1/4)?) + cos(49.107 (¢t + 1/4)?). The bump wavelet is used with
parameterg, = 1 and from left to right.c = 0.2, 0.1, 0.05. The sampling rate is 4096 points o\er 4]

andj/n, = logQ(Z—"t)

terms in the approximation (10) would be negligible onlyaf @all k:

& 140 2 |95(1)]
<< 1and¢ << 1, (11)

|6 (6)1* [Ar (D)) MEACE
provided Mfﬁ% < 1. The second constraint of (11) when applied toedMT implies that ¢y, is
such thatg) (t) >> &3¢, provided that_sx 140l < 1, which is true When% < 1, or equivalently

9% (D] TAx ()]
Ai(t) > &ye. If we assume that bothl;, and ¢, are bounded below, the quality of the approximation
(20) is all the better thaty is small whene is large. Since one must also hatg, < &yd (WhereA,, is
the frequency bandwidth of the wavelet) to ensure separatiche different componenty cannot be
taken arbitrarily small. In contrast to the previous apptgahe trade-off parameter between separation
and localization of the components is n@w.
It is also worth noting that when no assumptions are maderdeagathe modulation parameter in

the components of the signal, a general study provided i fdlates the approximation (10) to the
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derivatives of the Fourier transform df.

To conclude, the size of the frequency support of the motharelet plays a fundamental role when
dealing with multicomponent signals ; adjusting this pagtanenables us to tune between good separation
and good localization of the modes.In the sequel we will iseprevious remark regarding the size of

the frequency support of the mother wavelet to build a new Ragbrithm.

IV. ANEW ALGORITHM FOR THERETRIEVAL OF MODES IN A SYNCHROSQUEEZINGFRAMEWORK

Note that the matlab code corresponding to the implememntati the RCM algorithm we now propose
is avalailable at [16]. This algorithm aims at identifyingethidge associated with each component from
the magnitude of the WT and then reconstructing the comgsrsnusing the information in the vicinity
of the different ridges. It is based on three distinct steps:first determine adaptively the number of

modes, then we compute an optimal wavelet threshold whicliivedly use for retrieval of the modes.

A. Automatic Determination of the Number of Modes

Since, for a given time, the scalesi; = 27/ At of interest in the SST are those whéi&;(a;,t)|

is large enough, we aim at detecting the modes using thenfivitp sets:
Cr(v,t) = {7, Wy(aj, 1)| <~ and|[Wy(ajt1, )] >~} (12)

Note that we could alternatively consider the §&t{W;(a;,t)| > v and |Wy(a;+1,t)| < ~}. The natural
expectation is that given and wheny is appropriately chosen, each element(gf(y,t) be associated
with a single mode as defined in (12). We must also point out tiexethe normalization of the wavelet
transform we use is necessary to give sense to the abovendeed, if we consider a sum of pure
harmonics with the same amplitude then the wavelet tramsairthe frequencies of interest should also
have the same amplitude. In our context and givenve will consider that a mode for a given time
is associated with a set of successive scalesuch that|iW;(a;,t)| > v, and consequently with some
index jo in C¢(v,t). With that in mind and given a rand&t) for ~ (the choice forl'(¢) being discussed
later on), we first compute an estimation of the number of maidsnet¢ as follows:

My(t) = argma{ Y On4(cs(r)}

vET(t)

where# X denotes the cardinality oX andd,;, = 1 if a = b and) otherwise.M(t) indeed corresponds

to the most frequent number of modes detected whesries inI'(¢). We then define the number of
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10

modes as follows:

Ny = argmaxd oy, )-
N ger

The quantityN; corresponds to the most frequent number of modes over adistinand~y in I'(¢). In

what follows, we denote bY(¢)min andI'(#)max the lower and upper bounds foxt).

B. Wavelet Threshold

Once the number of modes is determined, we first consider tse se

So(t) = {vel(t), st.#(Cr(y,t)) = N¢}, (13)

and defin€eTj as the timeg associated with non emptyy(¢). A threshold4(t) for the WT andt in Ty

is then computed as follows:
F(t) = mediar{Sy(t)). (14)

It appears that, given, Sy(t) will be non empty provided thai — |W;(a,t)| has at leastV; maxima
and thatl'(¢) is appropriately chosen. Indeed, we have the following psdjon:

Proposition 1: Assume thats — |Wy(a,t)| has Ny maxima located ina’) or that it has more than
N; maxima located ir{a’) and that| Wy (a®, t)| # |Wy(a®,t)] if i # &', If T(#)min < min|Wy(a’,t)| and
T'(t)max = HliaX|Wf(ai,t)|, then.S; is non empty. Z
PrROOF. Remarking thats — |Wy(a,t)| is continuous, ifa — |Wy(a,t)| has exactlyN; maxima, there
existse > 0 such thaty = min |Wy(a;,t)| — € is in I'(t) and #(C¢(v,t) = Ny so thatSy(t) is non
empty. Now, ifa — |Wf(a,t3| has more thanV; maxima, using the factiV;(a’,t)| # |W;(a",t)|
if i # ' and the definition ofl’(¢) there existy, and ~; in I'(t) such that#(C¢(yo,t)) > Ny and
#(Cr(m,t)) < Ny As |[Wy(al, t)| # [Wy(a®, t)] if i # i, when~ varies fromy, to 1 there existsy.
such that#(C¢(y2,t)) = Ny and Sy(t) is non emptyl.

Remark:The only timet where, whatever'(t), 4(¢) will not be defined is whea — |W¢(a,t)| has less

than V; maxima. These times will be discarded in the RCM algorithm sehdescription follows.
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11

C. Algorithm for Modes Retrieval

For a timet € Tj, we successively defingC(7(t),t) sets of integerdy(t), 1 < k < #C¢(¥(t),1),

as follows:
Ii(t) = {Ge(t), -, Je(®)} s.t. Vir(t) <5 < Ji(t) [Wilas, t)] > A(t)
(Wi(aj,@y-1,t) <A(@) and |[Wy(a, @+1, )] < 5(1),

Jk(t) < Jr41(t).
Each setl;(¢) is made of indices corresponding to some scales of interegtwan be associated with
one of the modes whehe Tj (because#C¢(Y(t),t) = Ny in that case). The RCM algorithm is then
straight forward. We consider for eaclin Ty the setl,_;1(t), which enables us to retrieve the mode

k by applying the following approximation formula:

ft)~ 2Re| T Wf(aj,t)loi@). (15)

Cv e
Note that the index of in the sum comes from the fact thht for small & corresponds to high frequency
component and that in Definition (2) the components are aecig increasing frequency order.

Doing so, we avoid both the problem of the binning of the fesgry domain as well as the heuristic
procedure involved in the determination of the modes (setosell-D). Furthermore, this reconstruction
procedure is fully automatic and avoids the need to narrowndthe curve searching in the time-scale
space before proceeding with the mode retrieval [1]. Asaalyanentioned, the thresholdt) is computed
to ensure good detection of the different modes. Howevamscucting the modes using such a threshold
leads to some large amplitude wavelet coefficients beingectgfl. To improve the reconstruction, we
comment that sinc& is compactly supported insidéy — A, &y + A, then basically the scales of interest
for the component: at time¢ are[$:—2 2448

¢ () 7 ¢t
maximum when; ¢} (t) = &y. A good estimationy),(¢) of ¢/.(¢) is obtained by considering, farin T,

|. Invoking (9), the amplitude of the WT attains a local

Lf\” wherea;, := argmax{|W aj, t)|,jn,—k+1 < j < Jn,—k+1}- The reason for consideriny; — k + 1

J0

instead ofk is again ‘related to the fact that the modes should be arraingedreasing frequency order.

This finally leads us to an alternative approximation formdida ¢ in 7p):

Folt) ~ = Re 3 Wf<aj,t)1°g(2) , (16)

C n
v a; €L (t) v

where L (t) = [fg&s, %’Jt?]. We investigate in the next section the relevance of thenstcaction

formula (16) and we will also put forward its potential irgst for signal sampling and denoising in
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section VI.We should finally mention that the computationagtcof the algorithm is essentially related
to the cost of the steps described in sections IV-A and IVas:dach timet we compare the modulus
of the WT computed alLn, scales with#I'(¢) thresholds (an upper bound of the computational cost is

thUSmtax #I'(t) x Ln, x n, T'= nAt being the total duration of the signal).

hnwn UI!M.,
’ umn'ﬂ.‘.‘.‘" MBS WMWW”\"‘WM UMMM 11

g

- W“Jmuﬂwm il wwmwmm a.www“ A

[T

)

Lo
W

TSI

C D

Fig. 2: A: An example of a signal made of the superposition af trivial IMTs ; B: modulus of the
corresponding WT ; C: reconstruction of the modes of theaigm A using formula (15) and the bump

wavelet (4 =1 ando = 0.2) ; D: same as in C but using the reconstruction formula (16).

V. ILLUSTRATIONS OF THERECONSTRUCTIONPROCEDURE ANDCOMPARISONS

In this section, we compare some examples to illustrate thewrdage of using the reconstruction
approach described above as opposed to that proposed ionsdeb and implemented in [1]. Fur-

thermore, we will compare the proposed method to EMD whicliaek$ the modes by analyzing the
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Fig. 3: A: Contour plot of the modulus of the absolute valuepl; associated with the signal of Figure

2 A. B: The curvesc*, for different values of\ for the studied signal along with the expected curve.

From top to bottom: the curves associated with mgdeg, and fs.

signal in the time domain [11]. In the simulations of thistsat, the sefl’(¢) will be a discretization of

[10—2,m3x [W(a,t)|] (the discretization step being set16~3).

A. Analysis of Frequency Modulated Multicomponent Signals

To illustrate the reconstruction procedure defined in (15) é6), we consider the retrieval of the

components of a modulated frequency sigfifll) = f1(t) + fo(t) + f3(t) with f1(¢t) = sin(3(27 x 6t),

fa(t) = sin(3(2m x 46t+21 sin(37t))) and f3(t) = sin(3(27 x 77t+30sin(37t))) (see Figure 2 A), which

has a frequency separation conditidr 0.2 (see Definition 2). The studied signal is made of 2048 equi-

spaced samples df, 1] and admits the WT whose modulus is displayed on Figure 2 B ctedpusing

the bump wavelet withh = 1 ando = 0.2. The representation uses a logarithmic basis for the dizetet

scalesa; = 21/m At,j =),--- , Ln, (n, and L being defined as previously), i.¢/n, = log,(aj/At).

We test the two reconstruction methods (15) and (16) on tpeasiwith the results depicted in Figure

2 C and D respectively. To measure quantitatively the imgnoent in terms of mode retrieval brought

about by the use of the second method over the first one, we dentipel SNR (measured in Decibels
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Fig. 4. The results of the EMD decompaosition on the signal of FEgRIrA.

(dB)) defined as follows:

11£il1
Ifi — fill3
for eachf;, i = 1,2,3 and f; being the estimate. The SNR correspondingitof, and f5 of Figure 2 A
is 19.1 dB, 11.6 dB and13.6 dB for (15) and31.7 dB , 14.5 dB and22 dB for (16). A careful look at

SNR = 10log;( )s a7)

Figure 2 D shows that a better restoration of the amplitudén@fmbodes is achieved using formula (16)
(for instance, compare Figure 2 C and D betweentimes 0.3 af)d Binally, we should mention that
we have noticed that when the parameterand i are correctly set in accordance with the separation
conditiond, using a much larger discretization step foft) (typically 10-2 instead of10~3) does not
alter the reconstruction performance.

Now, we wish to compare the procedure we proposed for reaartigin to that introduced in section
II-D. First, we remark that formula (8) proposed to determntime curves:* before reconstruction requires
the knowledge of the number of modes. We aim to show that d\vbe latter is known, this determination

may be inaccurate. To ensure a fair comparison, we run thémgntation available in [2] of formula
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(8) for the signal of Figure 2 A using the bump wavelet stilllwit = 1 ando = 0.2, and then display
the curvescx depending on the value of and the expected one on Figure 3 B (the tested values are
A = 5.103, 10* and 2.10%). We also display the contour plot associated with the meslaf 7, ; on
Figure 3 A.

From this last Figure, it is clear that to determine the cuw/esnly based on the modulus af; ;
leads to an accurate curvé associated t¢f, because the modulus @F; ¢ is much too low in the vicinity
of the expected curve: this motivates the use of the regaléon parametek. Indeed, consideration of
Figure 3 B is very informative in this regard. For a smallerthe curvesc* given by (8) are made of
several parts that belong to different frequency bandsusecthe synchrosqueezing part prevails in (8),
i.e. it creates mode-mixing. Taking a largeenables to compensate for the small modulugof since
the regularization term then prevails over the synchrosgjng term in (8). Nevertheless, however high
the value for)\ is, one cannot retrieve the expected curves and, eventifallyis taken too large one
ends up with some* being straight lines. As a result of this inaccuracy in théedaination of the
curvesc*, the reconstruction algorithm based on these curves (seeriti of section II-D) is inefficient
in such a case.

Another technique used to represent such signals is EMD THg.main principle of the technique is
to extract components which are less and less oscillatory & signal by applying an iterative procedure
called the sifting process (for further details on the mdtkee [11]). We applied the EMD to the signal
of Figure 2 A using the versions given in [18] or in [12] with thiefault parameters in each case.
The components of the decomposition, called IMFs (intrinsadenfunctions), sum up to the original
signal. In the EMD context] M F}, for small k& corresponds to a high frequency component. We display
on Figure 4 the decomposition given by the implementation 1@ [of the EMD (the other leading
to very similar results). We notice some mode-mixing betwddF, and IMF,. The reason for such
mode-mixing effects is related to the fact that the extoactf the IMFs in the EMD is not frequency
based in contrast with the synchrosqueezing techniquehémnbre, we also comment that if an error
is made in the extraction of the first IMF then it will spreadaihghout the whole extraction procedure.

A deeper analysis of Figure 3 tends to show that when the redemare well separated (meaning that

5, (1) — ¢k 1 (t)
O () +5 1 (1)

being more difficult in the opposite case. It is worth notingttfor such a signal a good separation of the

>> d, typically for 0.2 < t < 0.45) the EMD enables a good separation, the extraction

modes would be possible using the EMD but would require amasimical number of sifting iterations
(approximately 20000). We would note that recent develogmwere proposed in [10] [21] which aim

to redefine EMD to better handle the mode-mixing effect inducetthe original algorithm.
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B. Analysis of Linear Chirp

In this section, we provide another illustration of the noetton the extraction of linear chirps. Our
aim is on the one hand to compare the behavior of our methad ewisting methods, namely EMD
[11] and another version of the RCM based on the SST [1] and al$ocus on the importance of the

mother wavelet choice in the synchrosqueezing techniquenwlis large.
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Fig. 5: The first row contains the estimation ff using the reconstruction formula (16) with the wavelet

05 1 15 2 25 3 35 4
time
-1
0 05 1 15 2 25 3 35 4
time

the bump wavelet with, = 1 ando = 0.1 andr = 0.05, ¢ = 0.01 from left to right. The second row

contains the estimation gf, with the same parameters with regards to the WT

To do so, we analyze the linear chirp signfdt) = f1(t) + fo(t) with f1(t) = cos(49.1x(t + 1/4)?)
and f>(t) = cos(60n(t + 1/4)?), whose WT was explored in Figure 1. The second row of Figure 1
showed the importance of the parametet A, the radius of the support of the Fourier transform of the
wavelet, in terms of the quality of the representation. Wer memark that the WT associated with the
bump wavelet (see (4)) defined by the set(of, ro) is the same as that obtained takifg o) except
that the scales are dilated by a factorrofThus, not changing the amplitude of the wavelet transform,
does not alter the behavior of our RCM algorithm. So, withaut Bbss of generality: can be set td,

o being the only parameter that may vary.
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In the present case, sinde= 1/10 and sincey is taken equal td, the maximum value fo\ = o
should be0.1. Now, we show the importance of choosiagas close as possible to this upper bound
for mode retrieval. We use the reconstruction formula (16¥aggested by the previous simulations on
frequency modulated multicomponent signals again usiadthmp wavelet for analysis. Our simulations
consider the valu®.1, 0.05 and0.01 for o.

The results of Figure 5 show that by improving the accuracy pf@gamation (9), the mode retrieval
procedure works much better. Note that when the recongirudrmula returns zero, i.€. ¢ T, this
means that our algorithm is not able to separate the mode thierwavelet representation and we find it
wiser not to propose any decomposition in such cases: wheearthlysis tools are inefficient this should
be explicit. The rationale underlying this view is to make thest of the wavelet decomposition without
extrapolating when the information is unclear. To measwentjtatively the improvement in terms of
mode retrieval brought about by the variation @nwe compute, for the time indices such that 0.8,

the SNR (measured in Decibels (dB), see (17)) associatedthethetrieval off;, i = 1, 2.

c=0.1 o =0.05 o =0.01
p=1 p=1 p=1
t>0.8 t>08 t>0.8
SNR (in dB,f; estimate)| 20.8 14 1.2
SNR (in dBf, estimate)| 24 145 1.6

TABLE I. Influence of the parameter on the mode retrieval procedure

The results (depicted in Table 1) confirm our basic insight thetter reconstruction is achieved for
smaller times by moving closer to its upper bound given by the separation conditiwte also that to
take a larger worsens the wavelet representation for latge the sense that its spreads the information
over a larger number of scales. However, for thgssince the reconstruction procedure is basically a
summation over scales given by the wavelet support, to td&earc has no impact on the quality of the
estimation of the modes. Finally, we again notice that whenpérameterg ando are set according to
the separation condition, taking a much larger discretinastep for the sef(t) (typically 102 instead
of 10~3) does not alter the reconstruction performance.

We are also concerned with comparing our method for modaetitn to the EMD and to the technique

of extraction of the modes given by (8). For EMD, the usefubiniation is mainly contained in the
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Fig. 6: A: The first two IMFs associated with the decompositiontaf tinear chirp ; B: The curves*

given by the formula (8) with\ = 1000 along with the expected curves

first two IMFs, which are displayed in Figure 6 A. The reconstautterror (measured in dB) is for
the first and second modes (considering times larger thar0.8 to ensure a fair comparison with the
synchrosqueezing techniqu2) 9 dB and2 dB respectively. Again, as the EMD does not analyze the
signal in the frequency domain it seems to be inefficient aaisimg components with close frequency
characteristics. We finally investigate how the curve sagkirocedure given by formula (8) works on
the studied signal. To do so, we consider the decompositidheolinear chirp signal with the bump
wavelet takingy = 1 ando = 0.1, the parameteh for curve seeking is set tb000. Again we notice
that the formula (8) for curve seeking results in mode-ngx{to display the corresponding modes is

then worthless), other values afwould offer no improvement.

VI. APPLICATION OF THERCM TO SIGNAL NON-UNIFORM SAMPLING AND DENOISING
A. Application of the RCM to Multicomponent Signals Non-Umfd8ampling

In this section, we investigate the potential interest ef RCM for efficient non-uniform sampling of
multicomponent signals. Let us defipas the cubic spline interpolant gfat the sample pointg,,). Then
if D= max |tm+1—tm|, the interpolation erroe satisfies||e|| L~ < %D”t“f(‘l)“m. Note that ifg were
defined using a piecewise cubic Hermite interpolant insteedywould haveije| -~ < ﬁD‘*Hf(‘*)HLm,

which suggests that, given a set of samples, f(¢,,))), a lower interpolation error should be achieved
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by using a piecewise cubic interpolant. However, writing thpper bound of the error as previously
wipes out the locality of the error estimation. Indeed, wétevthe following when the piecewise cubic

interpolant is used [9]:

1
- 384

] stands for the supremum on the interi@l, ., 11]. This means that wherg®) is

lellzw < e masx { (bmst = tm) 1Dl bl | (18)

where|.| .= . ...,
large, the sample points, andt,,; should be close.

To adaptively choose non-uniform samples to minimize therpolation error is a thorny issue. A
method inspired by the EMD consists of selecting the extrefth® signal, such that they depend
locally on the strength of the oscillations. Another posisjowould be to choose equi-spaced sample
points over the whole signal duration.

We seek to show that the location of the extrema of the highuleacy component obtained after
applying our RCM algorithm are more relevant as sample pdimt f than the locations of the extrema
of the signal itself. The result will be measured in terms @& thagnitude of the erroe. Indeed, let
us consider the following three signal reconstruction pchaes. The first (resp. second) one consists of
considering as non-uniform sample points fothe location of the extrema of the high frequency mode
given by the RCM we propose (resp. of the original signal) #ueesh piecewise cubic Hermite interpolation
of f at these points. The third approach follows the same frameasithe first two, the sample points
being equi-spaced with the same average sampling rate. $ffadiin Figure 7, the interpolation errors
associated with the three different cases (the number efgdatation points being the same in each case)
for the signal defined in Figure 2 A. Note that by choosing the @ampoints as the location of the
extrema of the high frequency component obtained with ouMR(yorithm, we manage to significantly
reduce the interpolation error compared to the other twachotst. Figure 7 C shows that to maintain
that error at a low level, the sample points have to be choseording to the frequency content of the

signal.

B. Sensitivity to Sampling of the RCM Algorithm

We now investigate the sensitivity of the RCM we propose to@ang. For that purpose, given a set of
non-uniform signal samples, we compute the RCM of the imtiatprg signal (using again the piecewise
Hermite interpolant) and compare it with the RCM of the sigiteelf. To quantify the error we make
when computing the RCM on the signal interpolant, we compateeach mode the SNR corresponding

to the discrepancy between the mode computed using the styslal and that computed using different
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Fig. 7: A: display of the interpolation error of the signal ofgkie 2 A where(t,,) are the location

of the extrema of the high frequency mode obtained with ouMRalgorithm ; B: same computation

where (t,,,) are the location of extrema of the signal; C: same computation when the sample points

are equi-spaced o}, 1]. The number of sample points equals 462 in each case.

kinds of sample points. As previously, we compare the resafliithe RCM when the sample points are

either equi-spaced, the location of the extrema of the $ignthat of the high frequency mode. Table II

summarizes the results still for the sigrfabf Figure 2 A and shows that the RCM is much more accurate

when the sample points are the extrema of the high frequemgenBearing in mind the previous study,

this suggests that the accuracy of the RCM applied to thepiokgting signal of at non-uniform samples is

directly related to the interpolation error. The investigatinto the theoretical reasons why the algorithm

behaves this way is the subject of further research which Weeport subsequently.

Uniform  Extrema Extrema of
of f high frequency mode
SNR (in dB, f; estimate) 12.4 26.3 30
SNR (in dB, f> estimate) 18.6 27.5 304
SNR (in dB, f5 estimate ) 37 43.1 51.3

TABLE II: SNR associated with RCM based on signal interpolar@ssus RCM based on the original

signal, for different sets of sample points.
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C. Sensitivity to Noise, Denoaising Algorithm

In this subsection we show that the RCM enables us to define @igiilegp algorithm that outperforms
the wavelet denoising technigue for a wide range of noisellev

When dealing with noise, we must take into account the nassellin the determination of (¢).
We do not change the value fol(t)max Which still equaISmgx\Wf(a,t)\, but to determine the lower
bound forI'(¢) we proceed as follows. Assume the standard deviation of ¢gemn is known, taking
into account (9) which divides the amplitude of the origiségnal by 1/2, it is natural to take into
account only the coefficients that are abdyeTo estimate the standard deviation of the noise, we use
a robust estimaton of n based on the finest detail coefficients of an orthogonal wadgebmposition
[14] (in our simulations, we have used the symmlet with 4 shimg moments, changing the number of
vanishing moments does not change the estimate a great d@balJower bound fo'(¢) is finally set
t0 T'(t)min = 2.

Our point is to show that the RCM algorithm we have proposeahi€fficient tool for the denoising
of multicomponent signals. We again consider the multicongmt signal which we previously studied
for signal interpolation to which we add a Gaussian whitesaolsing different standard deviations for
the noise, we obtain SNRs before denoising between the afigimd noisy signals. Then, we apply our
RCM to the noisy signal (still considering the bump wavelé&hw: = 1 ando = 0.2 as in the noise-free
case) and we obtain the so-called denoised signal by sumuogpngll the obtained modes. We finally
compute the SNR after denoising between the denoised andithieab signals and plot these in Figure
8 versus the SNR before denoising (curve labelled RCM on tlwair€). We now compare the behavior
of the RCM algorithm in terms of denoising to two other wavdtgesholding techniques: the translation
invariant hard wavelet thresholding [6] and the block thadding technique proposed in [15].

The results depicted on Figure 8 clearly show that the blodakstimlding technique and the denoising
technique based on the RCM we propose behave much bettethtbanaditional translation invariant
wavelet thresholding (TIWT). The main reason for that behaigithat the first two methods are basically
time-frequency like tools, while the TIWT is well suited foigeals containing singularities. We also
believe that our algorithm behaves better than the TIWT ferrgason that the threshold applied to the
wavelet coefficients in the latter technique is computed déing on the octave the coefficients belong to,
whereas the threshold in the RCM method is adapted for eawtdepending on the number of modes
found. The comparison of our method with the block thresmgdiBT) method shows better behavior

for SNRs between 6 and 12 dB. For a high SNR, our method behawse wwan the BT mainly because
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the approximation (9) becomes too crude. For a low SNR our ogetiehaves worse than the BT as
soon as the correct number of modes is not found (typicallthat case for a SNR smaller than 5 dB).
In future work, we will address this issue by seeking to tak®e iaccount second order terms in (9) to

better handle the denoising of signal when the SNR is high.
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Fig. 8: SNR after denoising as a function of the SNR before dampisither using the RCM technique
we propose (RCM), the translation invariant wavelet thoéding (TIWT) or the block thresholding (BT)
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VIlI. CONCLUSION

In this paper, we have presented a novel algorithm for theevad of the components of a multicom-
ponent signal based on some ideas exploited by the synaleesmg transform. After emphasising the
importance of the accuracy of the wavelet representatiosdecallede-IMTs, we then profited from the
structure of the wavelet transform of multicomponent signa develop a novel algorithm for retrieving
the component of these signals. We then showed that withhdeégahe mode-mixing issue,the proposed
algorithm behaves better than EMD or another existing implaation of mode retrieval based on the

synchrosqueezing method. We then showed that in the na@seebnfiguration, the proposed algorithm
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can be used to find out an appropriate sampling of multicommutasignals which ensures the stability to

the mode retrieval algorithm we proposed. Finally we shoved the algorithm also provides a natural

way to denoise multicomponent signals which outperforros, & wide range of SNRs, the most up-

to-date time-frequency denoising algorithm based on btboksholding. Future work requires a deeper

theoretical study of the component retrieval algorithm weppsed along with some new developments

on synchrosqueezing-like techniques, especially by waorkon better approximations of the wavelet

representation.
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