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In this paper, we present a new class of nonlinear cell-average multiscale signal

representations. After having introduced the general multiscale framework, we recall

convergence and stability results for such multiscale representations and then build a

particular example which appears to be relevant for piecewise smooth functions

denoising.

& 2012 Elsevier B.V. All rights reserved.
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1. Introduction

This paper introduces a new nonlinear multiscale
representation for piecewise smooth functions containing
jump singularities whose locations are a priori unknown.
The proposed multiscale representation, inspired by the
framework of Harten [8–10], involves the concept of
essentially non-oscillatory (ENO) and subcell resolution

(SR) reconstructions, which are basically linear multiscale
representations locally modified in the vicinity of the
jump singularities. The construction of such representa-
tions consists of two steps: a multiscale jump singularities
detection (MJSD) followed by the definition of the non-
linear multiscale representation (NMR) based on the
former detection. Such NMRs are derived from nonlinear
prediction operators that can be built using polynomial
interpolation and extrapolation [2], wavelet analysis [4],
83

85

87

ll rights reserved.

þ33 4 76 63 12 63.

Mateı̈),

gnen, Nonlinear cell-
), http://dx.doi.org/1
quasi-interpolation by splines and then least-square
fitting [11]. Arandiga et al. [2,1] and Chan et al. [4] have
proposed extensions of such representations for images.

The new NMR we introduce is based on a prediction
operator constructed using polynomial cell-average inter-
polation and belongs to the class of ENO-SR representa-
tions. More precisely, the prediction operator is linear
away from the jump singularities and nonlinear in their
vicinity with a special treatment for the intervals contain-
ing singularities. Arandiga et al. [3] proposed to define the
prediction operator by shifting the stencil on which the
interpolation polynomial is defined so that it does not
intersect the singularity. On the contrary, we propose to
diminish the degree of the interpolation polynomial close
to a singularity which enables us to build convergent
NMRs in L1. A similar degree diminishing technique was
proposed for image representation by Claypoole et al. [5]
but the convergence of the representation was not carried
out. Finally, the practical interest of nonlinear representa-
tions is also dependent on their stability of which we give
a theoretical characterisation.

The paper is organised as follows. In Section 2, We first
recall the concept of linear multiscale representations
89
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associated with the cell-average interpolation and then
detail the NMR construction assuming the singularities
location are known. Then, we define the MJSD and recall
L1 convergence and stability results respectively in
Sections 3 and 4. Finally, an example of a convergent
NMR is given along with some numerical results compar-
ing the proposed multiscale representations to wavelet
methods in terms of signal denoising.
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2. Multiscale cell-average representations

2.1. Linear multiscale representations

In the following we will use multiscale representations
based on the cell-average interpolation: the discrete
signal we study can be viewed as a sequence vJ

k corre-
sponding to the average of some function v over the
interval IJ

k ¼ ½2
�Jk,2�J

ðkþ1Þ�:

vJ
k ¼ 2j

Z
IJ

k

vðtÞ dt: ð1Þ

From that representation, we define the projection operator

acting from level jr J to level j�1 by

vj�1
k ¼

1
2ðv

j
2kþvj

2kþ1Þ, ð2Þ

which computes a coarse version vj�1 of vj. We also define
the linear prediction operator computing an ‘approximation’
v̂

j
of vj from vj�1, by considering a polynomial pN, of degree

2N satisfying the interpolation conditions:

2j�1
Z

Ij�1
kþ n

pNðtÞ dt¼ vj�1
kþn, n¼�N, . . . ,N,

and then by putting

v̂
j
2k ¼ 2j

Z
Ij

2k

pNðtÞ dt and v̂
j
2kþ1 ¼ 2j

Z
Ij

2kþ 1

pNðtÞ dt: ð3Þ

This definition of v̂
j

from vj�1 will be denoted by

v̂
j
¼ Slv

j�1, ð4Þ

and referred to as the linear prediction operator. By project-
ing the predicted values v̂

j
we exactly get vj�1 which

corresponds to the consistency between the two interscale
operators. Therefore, the prediction error ej :¼ vj�v̂

j
is in

the kernel of the projection operator. Using a basis E of this
kernel, one writes the error ej in a non-redundant way, i.e.,
ej ¼ Edj�1. This non-redundancy implies the preservation of
the size of the data through the decomposition. Iterating
this process from the initial data, we obtain the following
linear multiscale representation:

Mlv
J ¼ ðv0,d0, . . . ,dJ�1

Þ: ð5Þ

Since the polynomial pN used to define v̂
j

is independent
from k, the linear prediction operator does not take into
account the presence of singularities in the signal. In what
follows, we explain how to define a prediction operator
dependent on the singularities location which we will call
data dependent prediction operator.
Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
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2.2. Data dependent prediction operator

Our approach to define a data dependent prediction

operator is based on the introduction of the set of poly-
nomials pN,r , with 0rrrN of degree Nþr interpolating
the following cell-averages:

2j�1
Z

Ij�1
kþ n

pN,rðtÞ dt ¼ vj�1
kþn, n¼�N, . . . ,r,

and the set of polynomials pr,N , with 0rrrN of degree
Nþr defined by the following interpolation conditions:

2j�1
Z

Ij�1
kþ n

pr,NðtÞ dt ¼ vj�1
kþn, n¼�r, . . . ,N:

Note that with these notations, pN,N ¼ pN . Associated
prediction rules are then respectively defined by

v̂
j
2k,N,r ¼ 2j

Z
Ij

2k

pN,rðtÞ dt and v̂
j
2kþ1,N,r ¼ 2j

Z
Ij

2kþ 1

pN,rðtÞ dt,

v̂
j
2k,r,N ¼ 2j

Z
Ij

2k

pr,NðtÞ dt and v̂
j
2kþ1,r,N ¼ 2j

Z
Ij

2kþ 1

pr,NðtÞ dt:

ð6Þ

For the sake of simplicity, in what follows, we will denote
v̂

j
2k,N,N (resp. v̂

j
2kþ1,N,N) by v̂

j
2k,N (resp. v̂

j
2kþ1,N) which

corresponds to the linear prediction.
To define the data dependent prediction operator, we

then assume that we have located intervals, labelled SR

(for subcell resolution), containing jump singularities at
level j�1. Let Ij�1

k be such an interval. Our strategy is then
to use polynomials that do not intersect the singularity to
predict on neighbouring intervals of Ij�1

k :
�

aver
0.10
On subintervals of Ij�1
k�q (resp. Ij�1

kþqÞ with 0oqrN

the prediction uses the polynomial interpolating
fvj�1

k�q�N , . . . ,vj�1
k�1g (resp. fvj�1

kþ1, . . . ,vj�1
kþqþNgÞ.
�
 When q4N, we use the linear prediction operator
Sl to predict.

�
 On Ij�1

k , the prediction will take the following form:

v̂
j
2k,sr ¼ vj�1

k þ
XN

r ¼ 1

brðv
j�1
k�r�vj�1

k Þþgrðv
j�1
kþ r�vj�1

k Þ,

v̂
j
2kþ1,sr ¼ vj�1

k �
XN

r ¼ 1

brðv
j�1
k�r�vj�1

k Þþgrðv
j�1
kþ r�vj�1

k Þ

 !
,

ð7Þ

the parameters br and gr being constrained by con-
vergence conditions that will be studied in Section 4.
We first remark that we expect the set of intervals
defining the interpolation polynomials in the first case
not to contain any singularities which is only true when
these are separated by at least 2Nþ1 intervals. Still in that
case, by increasing the degree of the interpolation poly-
nomial while moving away from the singularity, one
enables smooth transitions between the sets of intervals
defining the interpolation polynomials. Finally, the first
prediction rule on SR-intervals (see (7)) is a trade-off
between the prediction on the right and on left hand sides
age multiscale signal representations: Application to
16/j.sigpro.2012.05.005
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Fig. 1. A chain of admissible intervals linked by an arrow.
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of the singularity while the second rule ensures the
consistency property.

By defining a prediction rule on each type of intervals
depending on the singularities location, we have defined a
nonlinear prediction operator S that, applied to vj�1,
approximates vj. Due to the consistency property we can
define as in the linear case a nonlinear multiscale repre-

sentation (NMR) of the signal:

MvJ ¼ ðv0,d0, . . . ,dJ�1
Þ, ð8Þ

where dj�1 is this time associated with the difference
between vj and the nonlinear prediction v̂

j
.

3. Construction of the MJSD and determination
of SR-intervals

The definition of the nonlinear prediction operator
assumes that SR-intervals are known. In the following,
we focus on the determination of these intervals through
the definition of a multiscale jump singularities detector
(MJSD). The model signals we study are piecewise con-
tinuous functions having discontinuities at some locations
xi, i.e.,

vðxþi Þavðx�i Þ: ð9Þ

For that type of functions, there exist many approaches to
locate the singularities. These can either be signal based,
i.e., one detects large signal amplitude variations using an
appropriate threshold [4] or multiscale coefficients based
[2,3], i.e., one uses the coefficients vj to locate the
singularities at level j. In the latter case, one can possibly
use a criterion based on the first or second order differ-
ences of vj [2,3], the singularities detection being carried
out at each level independently.

On the contrary, we propose a strategy to relate the
detected jump singularities at level j to those detected at
other levels. First, we explain how to carry out the
detection at each level and then to make inter-level
connections. Defining Hj

k :¼ 9Dvj
k9þ9Dvj

kþ19, with Dvj
k ¼

vj
kþ1�vj

k, we first detect intervals Ij
k potentially contain-

ing a jump singularity as those associated with (j,k)
satisfying:

Hj
k4Hj

kþ r and Hj
k�14Hj

k�1�r , r¼ 1, . . . ,ð2Nþ1Þpj,

ð10Þ

where pjZ1 and where vj is obtained by successive
projections of vJ. In our numerical applications we will
set pj ¼ pJ�Jþ j which means that the minimal level j

(corresponding to the maximal depth of decomposition),
denoted by jmin, to compute Hk

j
is equal to Jþ1�pJ . We

will explain later why we use a varying pj instead of pj¼1.
Note that there might exist (j,k) and ðj,k�1Þ satisfying
(10), so that intervals of interest at level j are either a
single interval or a group of two intervals separated by
more than ð2Nþ1Þpj other intervals. To eliminate the case
of two neighbouring intervals of interest, we consider that
Ij
k (resp. Ij

k�1) potentially contains a singularity if it
satisfies (10) and if

Hj
kZðresp:o ÞHj

k�1: ð11Þ
Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
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We finally extract from the set of intervals of interest a set
of admissible intervals as follows:
Definition 1. An interval of interest Ij
k, i.e., satisfying (10)

and (11), for jmino jr J is called admissible if there exists
a singularity in one of the following three intervals
Ij�1
bk=2cþ i, i¼�1;0,1.

The motivation for the above definition of admissible
intervals is based on the study of the behaviour of Hk

j

when j decreases. Indeed, consider a step edge located in
the interval Ij

2k (resp. Ij
2kþ1). Then, we obtain Hj

2k ¼Hj
2k�1

(resp. Hj
2k ¼Hj

2kþ1). With property (11) we obtain the
index 2k (resp. 2kþ1) for the location of the singularity.
By using the projection operator we get Hj�1

k�1 ¼Hj
2k and

Hj�1
k ¼Hj�1

k�2 ¼
1
2 Hj

2k (resp. Hj�1
k ¼Hj�1

k�1 ¼Hj
2kþ1), leading to

a detected singularity in the interval k�1 (resp. k). Note
that Hj

k computed at the singularity location is indepen-
dent from j in this simple case. We also derive from this
simple study that such type of singularity should propa-
gate from level J to lower levels j deterministically.
However, in situations where Hj

k is identical on two
neighbour intervals in the noise-free case the detector
may choose either of these intervals when noise is
added. Consequently, it is much more robust to consider
the propagation rule for admissible intervals given
by Definition 1. A part of such a chain of intervals is
displayed on Fig. 1.

Using Definition 1, we build the MJSD by considering
the chains of admissible intervals that propagate from
level jminþ1 to level J along with the intervals at level jmin

that are connected to an admissible interval at level
jminþ1. Finally, for each jminr jr J, SR-intervals corre-
spond to these chains of intervals.

Let us remark that these chains of intervals are robust
to noise for the following reason. Assume that vJ is a pure
Gaussian white noise with standard deviation s. Since the
standard deviation of such a noise is s=

ffiffiffiffiffiffiffiffi
2J�j

p
at level

j (the projection operator being associated to an L1-
normalised orthonormal basis), the relative importance
of the noise decreases when j decreases which makes the
detector work in a noisy context provided j is sufficiently
small (we will indeed numerically check that Hk

j
com-

puted on noise has the same decay with j as the noise
itself).
average multiscale signal representations: Application to
0.1016/j.sigpro.2012.05.005
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4. Convergence and stability theorems in L1ðRÞ for an
NMR

We now recall under which conditions the nonlinear
prediction operator defined in Section 2.2 leads to a
convergent NMR in L1ðRÞ. The notion of convergence for
the sequence ðv0,ðdj

ÞjZ0Þ corresponds to the existence of
some limit function v to the sequence of functions

vjðxÞ ¼
X
k2Z

vj
kjj,kðxÞ, ð12Þ

where jj,k ¼jð2
j
� �kÞ, with j the compactly supported

function satisfying the scaling equation:

j¼
X
k2Z

gkjð2 � �kÞ with
X

k

gk ¼ 2, ð13Þ

where g is related to the linear prediction operator
through: Slvk ¼

P
l2Zgk�2lvl.

Let us now assume that the nonlinear prediction
operator S has the form

ðSvj�1
Þ2kþ i :

¼ v̂
j
2kþ i ¼ ðSlv

j�1Þ2kþ iþFiðD
2vj�1

kþq1
, . . . ,D2vj�1

kþqr
Þ, ð14Þ

for some fixed set fq1, . . . ,qrg, where D2vj�1
k ¼ vj�1

kþ2�

2vj�1
kþ1þvj�1

k and Fi is bounded in the following sense:

9FiðD
2vj�1

kþq1
, . . . ,D2vj�1

kþqr
Þ9rC max

p ¼ q1 ,...qr

9D2vj�1
kþp9:

Furthermore, we say that Sl reproduces affine polynomials
if for any affine polynomial P, defining uk :¼ PðkÞ, we have
ðSluÞk ¼ Pðk=2ÞþD, where D is a constant. From (14), it
immediately follows that if Sl reproduces affine poly-
nomials so does S and then there exists Sð2Þ such that [6]

D2Sv¼ Sð2ÞD2v: ð15Þ

The following convergence theorem of the NMR is based
on the contractivity of the operator Sð2Þ, i.e., r1ðS

ð2Þ
Þo1,

where r1ðS
ð2Þ
Þ is the joint spectral radius in ‘1ðZÞ of Sð2Þ,

with definition:

Definition 2. The joint spectral radius in l1ðZÞ of Sð2Þ is
given by

r1ðS
ð2Þ
Þ :¼ inf

j40
JðSð2ÞÞjJ‘1ðZÞ-‘1ðZÞ

¼ inf
j40
fr,(jJD2SjvJ‘1ðZÞtrjJD2vJ‘1ðZÞ,8v 2 ‘

1ðZÞg:

Theorem 1. Assume that S satisfies (14), that Sl reproduces

affine polynomials, that Sð2Þ is such that r1ðS
ð2Þ
Þo1 and that

Jv0J‘1ðZÞ þ
X
jZ0

Jdj
J‘1ðZÞoþ1, ð16Þ

then, the limit function v belongs to L1ðRÞ and

JvJL1ðRÞrJv0J‘1ðZÞ þ
X
jZ0

Jdj
J‘1ðZÞ:

The proof of this theorem being a particular case of
Theorem 2 of [13] we omit the proof here. We will see in
the next section how the proposed NMR fits into the
hypotheses of this convergence theorem. Having recalled
the convergence results for NMRs, we state a result on
Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
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their stability. The stability is a key issue in applications
since the multiscale data may be corrupted by some
process like noise for instance. Since we study nonlinear
representations, convergence does not imply stability. We
thus present a stability result in L1ðRÞ for NMRs:

Theorem 2. Let ðv0,ðdj
ÞjZ0ÞÞ and ð ~v0,ð ~d

j
ÞjZ0ÞÞ be two multi-

scale representations. Assume that S satisfies (14), that

Sl reproduces affine polynomials and that there exists a

ro1 such that for some n:

JðSð2ÞÞnD2vj�ðSð2ÞÞnD2 ~vj
J‘1ðZÞrrnJD2

ðvj� ~vj
ÞJ‘1ðZÞ: ð17Þ

Furthermore, assume that Fi, introduced in (14), is Lipschitz

with respect to its argument. If vj and ~vj converges respec-

tively to v and v in L1ðRÞ, then we have

Jv� ~vJL1ðRÞtJv0� ~v0
J‘1ðZÞ þ

X
jZ0

Jdj
� ~d

j
J‘1ðZÞ: ð18Þ

This theorem is a particular case of Theorem 4 of [13]
so we again omit the proof here.

5. Construction of a convergent and stable NMR
when N¼1

In this section, we show how to build a NMR of the
kind defined in Section 2.2 that satisfies the above con-
vergence and stability theorems.

We first locate SR-intervals Ij�1
k , jmino jr J, following

the algorithm given in Section 3. Then, starting from
j¼ jminþ1 and since N¼1 we are led to consider, as
explained in Section 2.2, the following prediction rules:
�

aver
0.10
On interval Ij�1
k�1 (resp. Ij�1

kþ1) we use the polynomial
interpolating vj�1

k�2 and vj�1
k�1 (resp. vj�1

kþ1 and vj�1
kþ2) to

predict leading to

v̂
j
2k�2;1,0 ¼

3
4 vj�1

k�1þ
1
4 vj�1

k�2 ðresp: v̂
j
2kþ1;0,1 ¼

5
4 vj�1

kþ1�
1
4vj�1

kþ2Þ,

v̂
j
2k�1;1,0 ¼

5
4 vj�1

k�1�
1
4 vj�1

k�2 ðresp: v̂
j
2kþ2;0,1 ¼

3
4 vj�1

kþ1þ
1
4vj�1

kþ2Þ:

These intervals are respectively labelled L and R.

�
 On any intervals Ij�1

~k
separated by at least one interval

from an SR-interval we use the linear prediction
operator that is

v̂
j

2 ~k
¼ vj�1

~k
þ1

8ðv
j�1
~k�1
�vj�1

~kþ1
Þ,

v̂
j

2 ~kþ1
¼ vj�1

~k
�1

8ðv
j�1
~k�1
�vj�1

~kþ1
Þ:

These intervals are labelled by C.

�
 On SR-interval Ij�1

k the prediction given by (7) takes
the following form:

v̂
j
2k,sr ¼ vj�1

k þbðv
j�1
k�1�vj�1

k Þþgðv
j�1
kþ1�vj�1

k Þ,

v̂
j
2kþ1,sr ¼ vj�1

k �bðv
j�1
k�1�vj�1

k Þ�gðv
j�1
kþ1�vj�1

k Þ: ð19Þ
Fig. 2 summarises the different situations when N¼1.
The nonlinear prediction operator still depends on a and
b. The next theorem tells us how to fix them to obtain a
convergent NMR.
age multiscale signal representations: Application to
16/j.sigpro.2012.05.005
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Fig. 2. Labels of intervals in the vicinity of a singularity.
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Theorem 3. If g¼ b� 1
4 then S admits a second order

difference operator Sð2Þ and then the NMR is convergent in

L1 if 0obo1=4.

The proof of this theorem is given in the Appendix.
Now, let us discuss more in detail the choice for b. We
estimate the jump singularity location by computing the
following parameter a:

vj�1
k ¼ avj�1

k�1þð1�aÞvj�1
kþ1 3 a¼

vj�1
k �vj�1

kþ1

vj�1
k�1�vj�1

kþ1

:

Then, recalling the particular form taken by the prediction
operator on SR-intervals:

v̂
j
2k,sr ¼ ð

5
4 �2bÞvj�1

k þbvj�1
k�1þðb�

1
4Þv

j�1
kþ1:

It is natural to define the prediction operator on SR-
intervals as a perturbation of the linear prediction opera-
tor as follows:
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95

P
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If 0oao1, the influence of vj�1
kþ1 (resp. v�1

k�1 ) on the
computation of v̂

j
2k,sr and v̂

j
2kþ1,sr should progressively

vanish as soon as a approaches 1 (resp. 0). Further-
more, if a¼ 1=2 we should use the centred prediction
corresponding to b¼ 1=8. We will therefore put
b¼ 1

8 þða�
1
2Þð1�eÞ=4 in that case.
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Fig. 3. Block diagram summarising the denoising procedure.
If a41, we put b¼ 1
4�e=8 and if ao0, we put b¼ e=8

to ensure that b is continuous with respect to a.

The parameter e is only necessary for the NMR to be
convergent and has no impact in practice provided its
value is taken sufficiently small (in application we will
take e¼ 10�6). As far as the stability is concerned, let us
consider two multiscale representations ðv0,ðdj

ÞjZ0Þ and
ð ~v0,ðdj

ÞjZ0Þ having, for each j, the same admissible inter-
vals. Then, as these intervals fix the prediction operator, it
is the same in both cases. Consequently, the functions
Fi are Lipschitz with respect to their arguments and, as
r1ðS

ð2Þ
Þo1, we obtain that there exists a ro1 and an n

such that

JSð2ÞD2vj�Sð2ÞD2 ~vj
J‘1ðZÞ ¼ JSð2ÞðD2vj�D2 ~vj

ÞJ‘1ðZÞ

rrnJD2
ðvj� ~vj

ÞJ‘1ðZÞ,

which implies that the NMR is stable when the perturba-
tion does not change the locations of the admissible
intervals.

6. Denoising algorithm based on convergent NMRs

In this section, we consider vJ to be a noisy signal
obtained by adding a Gaussian white noise with standard
deviation s to a noise-free signal. We now define a new
denoising algorithm based on the nonlinear multiscale
lease cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
ignal denoising, Signal Processing (2012), http://dx.doi.org/1
representations introduced in the previous section. This
algorithm is straightforward and consists of the following
four steps:
1.
ave
0.1
Label the intervals Ij
k as C, SR, R or L for levels

jminr jo J.

2.
 Perform the nonlinear multiscale representation

taking into account the determined labels, that is

MvJ ¼ ðvjmin ,djmin , . . . ,dJ�1
Þ:
3.
 Hard-threshold the decomposition using a threshold
T to obtain

MvJ
¼ ðvjmin ,djmin , . . . ,dJ�1

Þ:
4.
 Invert the decomposition using the labels computed at
step 1 to obtain the denoised signal vJ .
To compute the threshold T, the standard deviation of the
noise is first estimated using a robust estimator based on
the component median [12]

ŝ ¼medianð9dJ�19Þ=0:6745: ð20Þ

Then, we either make use of the renormalised universal
threshold T ¼ ŝ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J�1�j

p
logeðLÞ, where L is the length of

vJ (the renormalisation is related to the representation
being L1-normalised) or of the scale dependent threshold
given by the BayesShrink algorithm [14] depending on the
noise level as shown later. Note also that with our
approach, the hard-thresholding technique is preferred
because of better performance. The diagram of Fig. 3
summarises the procedure.
rage multiscale signal representations: Application to
016/j.sigpro.2012.05.005
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7. Numerical results

In this section, we investigate the performance of the
denoising algorithm associated with the convergent NMR
defined for N¼1. In our study we consider the signals of
Fig. 4 which we will denote by ‘‘Piecewise-Polynomial’’,
‘‘Blocks’’ and ‘‘Piecewise-Regular’’ (from top to bottom in
Fig. 4). We first investigate the behaviour of Hj on noisy
signals and then determine the optimal pJ for denoising by
considering the signals of Fig. 4. Finally, we compare our
denoising algorithm to modern wavelet denoising algo-
rithms such as SUREshrink [7] and BayesShrink [14].
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Fig. 5. Standard deviation of vj computed on a pure noise signal along

with the standard deviation of the corresponding Hj.
7.1. Behaviour of Hj and computation of the optimal pJ

for denoising

We first show that the quantity Hj corresponding to a
pure noise signal obeys the same decay as vj. If one
considers vJ to be a Gaussian white noise with standard
deviation s then vj should have standard deviation
s=

ffiffiffiffiffiffiffiffi
2J�j

p
. Taking such a vJ with standard deviation 1, we

plot in Fig. 5, the theoretical expectation of its standard
deviation at level j along with the computed one as well
as the standard deviation of Hj. We indeed check that the
standard deviation of vj obeys the theoretical expectation
and that the standard deviation of Hj decreases when
j decreases following almost the same law as the standard
deviation of vj.

Now we illustrate the behaviour of Hj computed on
noisy signals obtained by adding noise to the signals of
Fig. 4. We plot on top of Fig. 6 the signal called ‘‘Piece-
wise-Regular’’ with an additive noise along with the value
of Hj when J�5r jr J. As the signal contains different
types of singularities such as jumps or Ca singularities
with ao1 (meaning the signal is continuous but not C1) it
is very informative to study the behaviour of Hj on that
type of signal. We indeed notice that as expected, the
jump singularities lead to an almost constant Hj, when j is
sufficiently small (typically jr J�3 but this of course
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Fig. 4. (a) Piecewise-Polynomial signal, (b) Blocks signal, (c) Piecewise-

Regular signal.

Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
signal denoising, Signal Processing (2012), http://dx.doi.org/1
depends on the noise level) while for Ca singularities Hj

increases when j decreases so that the detection of these
singularities is also possible at lower levels j (this beha-
viour is closely related to the decay of wavelet coefficients
for Ca functions [12] but we will not get into such
considerations here).

Looking at the behaviour of Hj, we also see that, as the
signal is downsampled by a factor of two between each
level, the singularities are closer as the level j decreases,
so that jmin determining the depth of decomposition
cannot be arbitrarily small. We have already mentioned
that the depth of decomposition is fixed by the parameter
pJ (see Section 3). Our idea is to determine pJ as the one
giving the best denoising performance on the signals of
Fig. 4. For that purpose, we compute the SNR associated to
the denoised signal, obtained using the NMR denoising
defined in Section 6, as a function of the SNR before
denoising. The tested values for pJ are 4, 5, 6 and 7
(corresponding to respective depths of decomposition of
3, 4, 5 and 6). The results depicted in Fig. 7, corresponding
to the mean SNR after denoising computed over 40
realisations of the noise in each case, show an overall
better behaviour for pJ¼6, i.e., a depth of decomposition
equal to 5. We notice that when pJ is too small and when
the SNR is low some singularities are missed by the
detector leading to a worse reconstruction while when
pJ is too large some singularities may merge at the lowest
level leading to a bad detection. This however pleads in
favour of a variable pj to find admissible intervals. The
choice pJ¼6 is thus a good trade-off and we will keep it
for comparison with the wavelet methods that follows.

7.2. Denoising performance: comparison with wavelet

methods

We now compare our denoising procedure with some
modern wavelet methods such as SUREshrink [7] and
BayesShrink [14]. Contrary to the original wavelet thresh-
olding, these techniques have the ability to compute different
denoising thresholds adaptively for each subband of wavelet
average multiscale signal representations: Application to
0.1016/j.sigpro.2012.05.005

dx.doi.org/10.1016/j.sigpro.2012.05.005
dx.doi.org/10.1016/j.sigpro.2012.05.005
dx.doi.org/10.1016/j.sigpro.2012.05.005


1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

0 1000 2000 3000 4000
−100

0

100

0 1000 2000 3000 4000
0

50

J

0 500 1000 1500 2000
0

20

40

J−1

0 200 400 600 800 1000
0

20

40

J−2

0 100 200 300 400 500
0

20

40

J−3

0 50 100 150 200 250
0

20

40

J−4

0 20 40 60 80 100 120
0

20

40

J−5

Fig. 6. Noisy version of the Piecewise-Regular signal along with the

associated Hj computed for J�5r jr J.

B. Mateı̈, S. Meignen / Signal Processing ] (]]]]) ]]]–]]] 7
coefficients. BayesShrink is known to perform better when
the power of the noise is of the same order as that of the
signal [14]. As far as the NMR denoising is concerned we will
use either the renormalised universal threshold as intro-
duced earlier or that threshold at high SNRs (in our simula-
tion SNR412) and the threshold given by BayesShrink for
lower SNR. These methods are respectively denoted by NMR,
UT (for universal threshold) and NMR, HT (for hybrid thresh-
old) in the simulations. As we fix pJ¼6 corresponding to a
Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
signal denoising, Signal Processing (2012), http://dx.doi.org/1
decomposition depth of 5, we also consider the same depth
of decomposition for the wavelet methods, the wavelet used
in each case being the symmlet with four null moments. As
for the wavelet methods the hard-thresholding technique
behaves significantly worse than the soft-thresholding one,
we only compare our method with the latter. The results of
the denoising procedures applied to noisy versions of the
signals of Fig. 4 are depicted in Fig. 8 and show the average
SNR after denoising computed over 40 realisations of the
noise for each SNR. It appears that the denoising performance
are slightly better when one uses the NMR denoising when
the SNR is high, while one still obtains very comparable
results to wavelet methods at low SNR provided the thresh-
old associated to the BayesShrink method is used instead of
the universal threshold.

What the previous study does not say is related to the
number of coefficients that are kept to build the denoised
signal. The particularity of the NMR denoising is that it
keeps much less coefficients than the wavelet methods to
get denoised signals of the same quality. Indeed, in Fig. 9(a),
we plot the number of non-zero detail coefficients that are
kept after denoising as a function of the SNR for the different
methods and for the signal called ‘‘Piecewise-Polynomial’’
(the results are the same with the other signals). We notice
that when the SNR is high our method requires much less
detail coefficients to reconstruct the signal correctly than
the wavelet methods do but, at lower SNR, to maintain the
reconstruction performance at a good level, one needs to
consider about the same number of detail coefficients (see
the curve relative to the hybrid thresholding in Fig. 9(a)). In
this regard, we shall also mention that due to the low
number of detail coefficients kept by the NMR denoising,
the proposed representation does both compression and
denoising which is not the case with the wavelet denoising
techniques. Finally, the nature of the denoised signal
obtained with NMR denoising is very different from that
given by wavelet thresholding. Indeed, for a given SNR, the
denoised signal using a wavelet method exhibits higher
frequency oscillations than the one obtained with the NMR
denoising does (see Fig. 9, for the signal ‘‘Piecewise-Poly-
nomial’’, with SNR¼10). This is directly related to high
frequency detail coefficients being only located at the
singularities in the NMR.

8. Conclusion and perspectives

In this paper, we have presented a new nonlinear
multiscale signal representation technique, based on non-
linear cell-average interpolation. After we recalled con-
vergence and stability results, we designed a particular
type of multiscale representation that fits into the theo-
retical framework. We then proposed a denoising algo-
rithm based on that nonlinear multiscale representation
that behaves similarly to the wavelet denoising techni-
ques. The main difference between the proposed denois-
ing algorithm and those based on wavelet representations
is that the former uses much less detail coefficients for
signal reconstruction.

In terms of perspectives, we shall mention the poten-
tial extension of the method to images. However, this
cannot be done simply by using a tensor product
average multiscale signal representations: Application to
0.1016/j.sigpro.2012.05.005
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approach, at least because, since the approach is non-
linear, to apply the algorithm first on the columns and
then on the lines is not equivalent to proceed the other
way round. However, since the theoretical results are
valid in multidimensions, the challenge is now to build a
bidimensional singularities detector that enables the
characterisation of SR-cells (the bidimensional equivalent
to SR-intervals) and then to design convergent nonlinear
multiscale representations using this cells detection. In
another direction, we will also investigate the definition
of nonlinear multiscale representations associated to
N41 which should increase the regularity of the recon-
structed signal.

Appendix

If one refers to Theorem 1, we first check the existence
of a second order difference operator Sð2Þ as defined in
(15). In our context, the only potential configurations for
the label of the intervals Ij

k and Ij
kþ1 are the following:

C-C,C-L,L-SR,SR-R,R-C:

If one considers the C-C case, we have the following
writing for the second order differences:

D2v̂
j
2k ¼ v̂

j
2kþ2;1�2v̂

j
2kþ1;1þ v̂

j
2k,1

¼ 3
8 D

2vj�1
k�1�

1
8D

2vj�1
k ,

D2v̂
j
2kþ1 ¼�

1
8 D

2vj�1
k�1þ

3
8D

2vj�1
k ,

while in the C-L case, we have

D2v̂
j
2k ¼ v̂

j
2kþ2;1,0�2v̂

j
2kþ1;1þ v̂

j
2k,1

¼ 3
8D

2vj�1
k�1,

D2v̂
j
2kþ1 ¼�

1
8D

2vj�1
k�1,

and, in the R-C case,

D2v̂
j
2k ¼�

1
8 D

2vj�1
k and D2v̂

j
2kþ1 ¼

3
8D

2vj�1
k :

We, finally, study the L-SR and SR-R cases. For the first
one, we obtain

D2v̂
j
2k ¼

3
4 D

2vj�1
k�1þðb�

1
4 Þv

j�1
k �ðb�

1
4Þv

j�1
kþ1þgðv

j�1
kþ2�vj�1

kþ1Þ,

D2v̂
j
2kþ1 ¼�

1
4 D

2vj�1
k�1þ3ðb�1

4 Þv
j�1
kþ1�3ðb�1

4Þv
j�1
k

þ3gðvj�1
kþ1�vj�1

kþ2Þ:

We notice that, imposing g¼ b� 1
4, we get the following

expression of Dv̂
j
k in terms of the second order differences

at level j�1:

D2v̂
j
2k ¼

3
4 D

2v̂
j�1
k�1þðb�

1
4ÞD

2v̂
j�1
k ,

D2v̂
j
2kþ1 ¼�

1
4 D

2v̂
j�1
k�1�3ðb�1

4ÞD
2v̂

j�1
k : ðA:1Þ

Similarly, for the SR-R case, by imposing the same relation
between g and b, we get that the second order differences
at level j can be written in terms of the second order
differences at level j�1, since we have

D2v̂
j
2k ¼�

1
4D

2v̂
j�1
k þ3bD2v̂

j�1
k�1,
Please cite this article as: B. Mateı̈, S. Meignen, Nonlinear cell-
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D2v̂
j
2kþ1 ¼

3
4D

2v̂
j�1
k�2�bD

2v̂
j�1
k�1: ðA:2Þ

To prove the convergence using Theorem 1, we then need
to ensure that r1ðS

ð2Þ
Þo1 and that S satisfies (14).

Assuming g¼ b�1
4, the condition on r1ðS

ð2Þ
Þ amounts to

3
4 þ9b�

1
4 9o1 and 1

4 þ39b�1
49o1 from ðA:1Þ,

1
4 þ39b9o1 and 3

4þ9b9o1 from ðA:2Þ,

or equivalently 0obo1=4. With such a choice for b, we
obtain r1ðS

ð2Þ
Þo1, therefore the hypotheses of the con-

vergence theorem are verified provided S satisfies (14). In
this regard, we notice that

v̂
j
2k,1;0�v̂

j
2k,1 ¼

1
8 D

2vj�1
k�1, v̂

j
2kþ1;1,0�v̂

j
2kþ1;1 ¼�

1
8D

2vj�1
k�1,

v̂
j
2k,0;1�v̂

j
2k,1 ¼�

1
8 D

2vj�1
k�1, v̂

j
2kþ1;0,1�v̂

j
2kþ1;1 ¼

1
8D

2vj�1
k�1,

v̂
j
2k,sr�v̂

j
2k,1 ¼ bD2vj�1

k�1�
1
8D

2vj�1
k ,

v̂
j
2kþ1,sr�v̂

j
2kþ1;1 ¼�bD

2vj�1
k�1þ

1
8D

2vj�1
k ,

and since v̂
j
k,1 corresponds to the linear prediction Sl, the

nonlinear prediction operator satisfies (14), and the multi-
scale representation is convergent.
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