
100

Application of the Convergence of the Control

Points of B-splines to Wavelet Decomposition

at Rational Scales and Rational Location

Sylvain Meignen∗

LMC-IMAG Laboratory, University of Grenoble, France

Tel:0033-4-76-51-43-95

FAX:0033-4-76-63-12-63

E-mail: sylvain.meignen@imag.fr

Abstract- In this letter, we first recall the relation between discrete B-splines and the control points of

B-splines. We then use some convergence properties of the control points of B-splines to derive

a new algorithm that approximates the wavelet decomposition at rational scales and rational location.

We conclude the paper by some numerical experiments illustrating the behavior of our algorithm and

by a discussion on an efficient implementation of the proposed method.
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I. INTRODUCTION

B-splines are a common tool for signal representation, since they are good approximations of Gaussian functions

[3] and have a compact support. Many studies have been carried out to implement efficiently digital filters associated

with B-spline decomposition through the use of what are called discrete sampled B-splines [4] [5]. In [5], an

algorithm is proposed to compute an approximation of the continuous wavelet transform at rational scales and

integer location using discrete sampled B-splines.

B-splines can also be more efficiently approximated by sampling the spline of order zero and then by making

repeated discrete convolutions [1]. The filter associated with such a construction is often called a discrete B-spline.

A discrete B-spline can be viewed as the vector of the control points of B-splines for which convergence properties

are well known [2]. We use these convergence properties to build an approximation of the wavelet decomposition

at rational scales and rational location following the same kind of approach as that of Wang [5]. We establish the

link between a good approximation and the length of the filters, which we also relate to the computational cost of

the algorithm.

The outline of the paper is as follows. First, we recall the definition of discrete B-splines, their relation with the

control points of B-splines and some convergence properties. Section III is devoted to the comparison of B-splines

and of discrete B-splines while, in section IV, we derive a new approximation for the wavelet decomposition at

rational scales and rational location. In the last part of the paper, we give some numerical applications of our

algorithm and we suggest future development on the subject.

II. CONVERGENCE PROPERTIES OF DISCRETE B-SPLINES

The B-spline of order n > 0 with knots ak = k is defined by:

Nn(x) =

n+1
︷ ︸︸ ︷

N0 ∗N0 ∗ · · · ∗N 0 (1)

where N 0 is the characteristic function of the interval [0, 1]. The discrete B-spline of order n > 0, at scale m, is

defined by [5]:

bnm =

n+1
︷ ︸︸ ︷

b0m ∗ b0m ∗ · · · ∗ b0m (2)

where b0m = 1
m
{1, 1, · · · , 1} is the normalized sampled pulse of width m ≥ 2 with support {0, · · · ,m − 1}. The

link between discrete and B-splines is the following refinement equation:

1

m
Nn(

t

m
) = bnm ∗Nn(t) =

∑

k∈Z

bnm[k]Nn(t − k) (3)

which can be rewritten as:

Nn(t) =
∑

k∈Z

mbnm[k]Nn(mt− k) =
∑

k∈Z

mbnm[k]Nn
k (t)

where (Nn
k )k∈Z are the B-splines with knots ( k

m
)k∈Z . Consequently, (mbnm[k])k∈Z are the control points of Nn

with knots ( k
m

)k∈Z. It was shown by Schaback [2] that the control points converge quadratically to N n in the
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following way:

max
k

|Nn(
k

m
+
n+ 1

2m
) −mbnm[k]| = O(

1

m2
). (4)

Let us now define the piecewise constant function:

Mn
m(t) = mbnm[k] k

m
+ n+1

2m
≤ t < k+1

m
+ n+1

2m
for n odd

Mn
m(t) = mbnm[k] k

m
+ n

2m
≤ t < k+1

m
+ n

2m
for n even

(5)

A Taylor expansion of Nn leads to ‖Mn
m −Nn‖∞ = O( 1

m
), the convergence being faster where the derivative of

Nn is small.

III. DISCRETE B-SPLINE DECOMPOSITION OF A SIGNAL

In this section we investigate how to derive some properties of discrete B-splines from properties of B-splines.

The interest for B-splines lies in the properties of the polynomial spaces:

Sn
h =

{

g(x) =
∑

k∈Z

c[k]
1

h
Nn(

x

h
− k), c ∈ l2(Z), h > 0

}

.

Indeed, they satisfy a stability property through dilation and their union is dense in L2(R) [5]:

Sn
im ⊂ Sn

m ∀i ∈ N
∗ (6)

and
⋃

h>0

Sn
h = L2(R)

Let us now study the discrete case. If we consider integer values for h denoted by m, and if we bear in mind the

convergence property enounced in (4), it is natural to study the properties of the subspaces:

Dn
m =

{

αn
m[l] =

∑

k∈Z

c[k]bnm[l −mk], c ∈ l2(Z), l ∈ Z

}

First, we note that the Fourier series of αn
m is in L2([− 1

2m
, 1

2m
[) (the full demonstration is given in Appendix

A). Secondly, as in the continuous case, the embedding property (6) holds. To prove it, it suffices to rewrite the

refinement equation (3) in two different ways; the first one is:

1

im
Nn

( x

im

)

=
∑

k∈Z

bnim[k]Nn(x− k)

and the second:

1

im
Nn

( x

im

)

=
∑

k∈Z

bni [k]
1

m
Nn(

x

m
− k)

=
∑

k∈Z

bni [k]
∑

l∈Z

bnm[l]Nn(x −mk − l)

=
∑

l∈Z

∑

k∈Z

bni [k]bnm[l −mk]Nn(x− l)

As a result, bnim[l] =
∑

k∈Z

bni [k]bnm[l −mk] which means that Dn
im ⊂ Dn

m .
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The third property is that any signal f ∈ l2(Z) can be decomposed over D0
m. It suffices to prove how to reconstruct

the Dirac sequence at zero (i.e. the sequence δ[k] = 1 if and only if k = 0) to be able to reconstruct any function

of l2(Z). In the case n = 0, for l ∈ {0, · · · ,m− 1}, we have b0m[l−mk] = 1
m
δ[k], where δ is the Dirac sequence

at 0. Consequently, we have δ[k] =
∑m−1

l=0 b0m[l−mk], which concludes the proof. So, for any m ≥ 2, D0
m can be

viewed as different writings of l2(Z), while Dn
m is an approximation at scale n of l2(Z).

IV. DERIVATION OF A DISCRETE WAVELET DECOMPOSITION AT RATIONAL SCALES AND RATIONAL

LOCATION

We use here the analogy between discrete B-splines and B-splines to derive a new algorithm to approximate

wavelet decomposition at rational scales and rational location. We first recall the approach of Wang et al. [5]

which consists in approximating the wavelet decomposition using B-splines. Let consider a signal f and a wavelet

ψ both in L2(R) which are projected on a spline basis of respective order n1 and n2, to obtain the following

approximations:

f(x) ≈
∑

k∈Z

c[k]Nn1(x− k) and ψ(x) ≈
∑

k∈Z

g[k]Nn2(x− k).

In practice, we often consider an approximation for f such that f(l) = c ∗N n1(l), c being computed recursively

using causal and anti-causal filters [4]. Note that if f is in l2 so is c. For filter g one uses a finite difference of

order p to obtain an approximation of the pth derivative of the Gaussian function [5].

We now recall that the wavelet decomposition of f over ψ at scale s is defined by:

Wf(s, x) =

∫

f(t)
1

s
ψ(
t − x

s
)dt

Any real scale s can be approximated by a rational m1

m2
, so that it is worth studying:

Wf(
m1

m2
, t) =

(

ψm1
m2

∗ f
)

(t) ≈
m2

m1

∑

k

∑

l

g[k]c[l]Nn2

(
m2

m1
t− k

)

∗Nn1(t − l). (7)

The term on the right side of equation (7) can be computed exactly at integer location [5] (i.e t = p integer) and

is equal to:

m2

m1

∑

k

∑

l

g[k]c[l]Nn2

(
m2

m1
t− k

)

∗Nn1(t− l)[p] = m2

(
bn1+n2+1 ∗ bn1

m2
∗ bn2

m1
∗ c↑m2

∗ g↑m1

)

↓m2
[p],

where bn1+n2+1[k] = Nn1+n2+1[k]. We now turn to the discrete case. As m1 and m2 can be chosen arbitrarily

large provided their ratio is constant, the following approximation:

Wf(
m1

m2
, t) ≈

m2

m1

∑

k

∑

l

g[k]c[l]Mn2

m1

(
m2

m1
t− k

)

∗Mn1

m2
(t− l).

makes sense for m1 and m2 sufficiently large, Mn
m being defined in (5). Note that this approximation converges

uniformly to the expression on the right side of (7). We now prove that this new approximation of the wavelet

decomposition leads to an efficient implementation of the wavelet decomposition at rational location. Let us rewrite
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formally the convolution product and then discuss the validity of the derived expression:

Mn2

m1

(
m2

m1
t− k

)

∗Mn1

m2
(t− l)(t) =

1

m2

∫

R

Mn2

m1
(
u

m1
− k)Mn1

m2
(t −

u

m2
− l)du

=
1

m2

∑

q∈Z

m1b
n2

m1
[q]

∫ q+1+
n2+ε2

2
+km1

q+
n2+ε2

2
+km1

Mn1

m2
(t −

u

m2
− l)du

=
1

m2

∑

q∈Z

m1b
n2

m1
[q]

∫ −q−
n2+ε2

2
−km1+(t−l)m2

−q−1−
n2+ε2

2
−km1+(t−l)m2

Mn1

m2
(
u

m2
)du

=
∑

q∈Z

m1b
n2

m1
[q]bn1

m2
[−(q + 1) −

n2 + ε2

2
− km1 + (t− l)m2 −

n1 + ε1

2
]

=
∑

q∈Z

m1b
n2

m1
[q − km1 −

n2 + ε2

2
]bn1

m2
[−q − 1 + (t− l)m2 −

n1 + ε1

2
].

where ε1 = 1 (resp. ε1 = 0) if n1 (resp. n2) is odd and zero otherwise. This expression only makes sense if t = i
m2

where i is an integer. Using the previous expression, we have the following approximation for Wf( m1

m2
, i

m2
):

∀i ∈ Z Wf(
m1

m2
,
i

m2
) ≈

∑

q∈Z

m2

∑

k∈Z

g[k]bn2

m1
[q − km1 −

n2 + ε2

2
]
∑

l∈Z

c[l]bn1

m2
[−q − 1 + i − lm2 −

n1 + ε1

2
]

= m2

∑

q∈Z

(

g↑m1
∗ bn2

m1
[q −

n2 + ε2

2
]

)(

c↑m2
∗ bn1

m2
[−q − 1 −

n1 + ε1

2
+ i]

)

= m2g↑m1
∗ bn2

m1
∗ c↑m2

∗ bn1

m2
[i− 1 −

n1 + ε1

2
−
n2 + ε2

2
] = D(

m1

m2
,
i

m2
).

If we refer to the study of section II A, we can associate with g↑m1
∗ bn2

m1
(resp. c↑m2

∗ bn1
m2

) a function of

L2([− 1
2m1

, 1
2m1

[) (resp. L2([− 1
2m2

, 1
2m2

[)). We note that a first difference between the computation of the approx-

imation at integer location [5] and at rational location that we propose is the absence of the factor bn1+n2+1. We

may say that we get more information with less computation. However, while we have an exact computation at

integer location with the Wang et al. method, the results at rational location we obtain are only asymptotic. In other

words, it imposes that m1 and m2 be sufficiently large. The question we have to answer is how large must m1 and

m2 be to lead to a good approximation. We tackle this issue in the following results section.

V. RESULTS

According to the study made by Ichige [1] on the convergence of M n
m to B-splines in L2 for n = 3 or n = 4,

m must be at least equal to 6 to provide a similar L2 approximation as that using the discrete sampled B-splines.

It is therefore wise to use filters of length at least equal to 6 and we are going to see the impact of this parameter

on the quality of the approximation.

Furthermore, to parallelize the approach one should compute c↑m2
∗ bn1

m2
and g↑m1

∗ bn2

m1
separately. As the first

term is related to the denominator of the rational scale, in our simulation we compute it once for m2 = 6 and then

compute the second filter for varying m1. For our simulations, we take n1 = n2 = 3 while g = [1 −2 1] which

means that the wavelet we use is an approximation of the second derivative of the Gaussian function.
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Note that when m1

m2
= s < 1, the length of the initial filter m1 is lower than the desired length (i.e. 6) which

creates little distortions of the results in such cases, so we multiply both m1 and m2 by a factor to get new m1

and m2 both larger than 6.

We now give two illustrations: the first one shows the importance of the renormalization factor when s < 1 in

terms of l2 error (we consider only integer location to compute the error) while the second illustrates the fact that

our decomposition provides approximation of the wavelet decomposition at rational location and rational scales and

that the convergence is indeed uniform.

To illustrate the first point, we consider a signal f for which we compute the proposed decomposition with m1

and m2 equal to 10 times the minimal values for m1 and m2 such that m1

m2
= s. With filters of this length, we

are very close to the asymptotic result we seek therefore we take this measure as a reference measure which we

denote by Dr(s, p), where s is the scale and p is a rational corresponding to location. To study the l2 error with

respect to scales and integer locations (i.e. p integer) we compute:

E(S) =
∑

s≤S

√ ∑

p∈Z

(D(s, p) −Dr(s, p))2

√ ∑

p∈Z

Dr(s, p)2

We display in Figure 1 (B) the evolution of E(S) when m2 = 6 and m1 ∈ N
∗ for s ≤ 5 and for the signal

of Figure 1 (A). We notice that the approximation error is mainly related to scales s < 1 (solid line). With the

proposed modification (dashed lines), i.e. to increase the length of the filters when the scale is smaller than 1, we

get much better results with very little performance loss (the performance loss only involves scales s < 1). We

also note that asymptotic convergence to the B-spline instead of exact computation at integer location provided by

the discrete sampled B-spline is not a problem in practice since we have very fast convergence when m1 and m2

increase. We can now conclude on the relevance of the approach since it provides extra information about the value

of the wavelet decomposition without any new computation. Indeed, with such a method it is no longer necessary

to interpolate the values of the wavelet approximation at integer location to get an approximation of what happens

elsewhere.

In figure 1 (C), we check that the normalized l2 error defined by:

NE(S) =

∑

s≤S

∑

p∈Z

(D(s, p) −Dr(s, p))2

∑

s≤S

∑

p∈Z

Dr(s, p)2

is also low with the filter size we consider. Once again, we notice that there is little impact on the approximation

(solid line) and that multiplying the length of the filters by an appropriate factor (dashed line) still permits to reduce

the error drastically.

We now illustrate the second point which is that our method provides approximation of the wavelet decomposition

at rational location and rational scales and that we have uniform convergence of the approximation. We consider

once again a step edge function and we compute the decomposition for m1

m2
in {3

2 ,
6
4 ,

12
8 ,

24
16}. We focus on the

behavior of the decomposition around the edge; the result is depicted in Figure 2. We notice that we indeed have

June 28, 2004 DRAFT



106

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5
A)

time
    

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

scales

E
(S

)
B)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6
x 10

−3

scales

N
E

(S
)

C)

Fig. 1. A) signal f used for decomposition. B) The solid line represents the value of E(S) for m1 ∈
�
∗ and m2 = 6 while the dashed line

represents the value of E(S) with the modified approach. C) The solid line represents the normalized l2 error (NE(S)) for m1 ∈
�
∗ and

m2 = 6 and the dashed line represents NE(S) computed with the modified approach.

uniform convergence of the approximation at rational location and that the exact computation at integer location

provided by discrete sampled B-splines is replaced by a converging approximation.

VI. CONCLUSION

The scope of this letter was to study the links between discrete B-splines, discrete-sampled B-splines and

B-splines. We have shown that as far as continuous wavelet approximation is concerned, the discrete B-spline

provides an efficient tool to compute an approximation of the wavelet decomposition at rational location with

a lower computational cost than the approximation that uses discrete sampled B-splines. This approximation is

mathematically sound due to uniform convergence of discrete B-splines to B-splines. The interest of the method we

propose is that given a sampled signal we are able to get rapidly a good approximation of its wavelet decomposition

at location that does not correspond to the sampling points. This is particularly interesting when one needs to get

precise information about the behavior of the signal at a given point.

Obviously, this method extends to two dimensions using discrete separable multiresolution analysis of l2(Z2)

and we keep the same kind of convergence we have in the one dimensional case. As far as the two dimension

case is concerned, work is being carried out to show the interest of discrete B-spline decomposition for singularity

analysis.
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Fig. 2. A) studied signal, B) signal decomposition for values of m1

m2
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2
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4
, 12

8
, 24

16
}.
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APPENDIX A

We show here that the Fourier series of αn
m is a function of L2([− 1

2m
, 1

2m
[). Indeed, the Fourier series of αn

m

reads:

α̂n
m(ν) =

∑

l∈Z

αn
m[l] exp(−2iπlν) =

∑

k∈Z

c[k] exp(−2iπmkν)
∑

l∈Z

bnm[l] exp(−2iπlν) = ĉ(mν)b̂nm(ν)

Since c is in l2(Z) we deduce that ĉ is in L2([−1
2 ,

1
2 [). Consequently, ĉ(mν) is in L2([− 1

2m
, 1

2m
[). To show that

b̂nm(ν) is bounded for ν ∈ [− 1
2m
, 1

2m
[, we use the recurrence formula that arises from (2):

b̂nm(ν) =
(

b̂0m(ν)
)n+1

and then compute b̂0m to obtain:

b̂0m(ν) =
exp(−iπ(m − 1)ν)

m

sin(πmν)

sin(πν)
,

from which we deduce that |b̂nm(ν)| = | sin(πmν)
m sin(πν)

|n+1. We show that h(ν) = | sin(πmν)
m sin(πν)

| is smaller than 1 on [0, 1
2m

[

(due to the parity of the function). For ν ∈ [0, 1
2m

[, the function sin(mπν)
m sin(πν)

is positive. The sign of the derivative of the

function over this interval is the sign of m tan(πν)− tan(mπν), whose derivative is mπ(tan2(πν)− tan2(mπν))
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which is negative for ν ∈ [0, 1
2m

[. As a result, the derivative of h is negative. We deduce that the maximum is reached

at 0 and, as h(0) = 1, b̂nm(ν) is bounded on [− 1
2m
, 1

2m
[. Consequently, ĉ(mν)b̂nm(ν) belongs to L2([− 1

2m
, 1

2m
[).
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