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Abstract- In this study, we present a new estimator of transients built from the extrema of a signal

decomposition first introduced by Berkner. We study the performance of the new estimator of transients

both for a variation of amplitude and a variation of frequency of the signal. We show that the time

localization of transients is better estimated with the maxima lines made by the extrema in the time

scale-space than with the wavelet coefficients computed with the CWT. We also verify that this

improvement is not to the detriment of detection performance.
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I. INTRODUCTION

In this paper, we study the time localization of transients generated by either a variation of frequency or a

variation of amplitude using wavelet extrema. We build a nonparametric estimator of transients which we compare

to estimators that use wavelet coefficients. We do this both in terms of estimation and in terms of detection [9][6]

on Gaussian signals, for the sake of simplicity.

The coefficients of wavelet transforms at different scales have been extensively used for change detection [9][6][1].

The robustness of the detector based on wavelets coefficients imposes to consider scales that correctly cover the

frequency bandwidth of the signal [5]: the choice of pertinent scales is often a complicated issue. A second drawback

of these methods is time delocalization of transients when the scale increases. The study of extrema of the signal

decomposition over Gaussian or derivatives of Gaussian functions is a good mean to solve this problem. Indeed,

extrema that arise from the convolution of the signal with Gaussian functions or derivatives of Gaussian functions

are known to form connected curves in the time-scale space [12], called maxima lines, which link any singularity at

a given scale to its origin at the finest scale. However, the practical construction of the maxima lines associated with

these wavelet decompositions require ad-hoc procedures. We, therefore, use an approximation of the continuous

wavelet transform [2] for which the construction of the maxima lines is mathematically defined. A second remaining

problem is the choice of pertinent scales. After proving the completeness of the signal decomposition we use, we

study the reconstruction of signals from extrema to derive automatically the pertinent scales to use. The construction

of the estimator is based on the properties of maxima lines over the selected pertinent scales. Reference parameters

are estimated over intervals without transients and then the quality of the estimator is tested through the computation

of mean square errors and ROC curves.

The sketch of the article is as follows. We first recall convergence properties of discrete B-splines of which the

signal decomposition we use is a particular case (section II). Section III is devoted to the completeness of the

decomposition, while in section IV we define the maxima lines and the characteristic scale that arises from their

signal reconstruction properties. Section V details the construction of the estimator of transients while a comparison

with a wavelet coefficient based method concludes the paper.

II. CONVERGENCE OF DISCRETE B-SPLINES TO GAUSSIAN FUNCTIONS

In this section, we briefly recall the simple convergence properties of discrete B-splines to better understand the

relation between the filters we will use and Gaussian functions. The continuous B-spline of order n > 0 is:

βn(x) =

n+1
︷ ︸︸ ︷

β0 ∗ β0 ∗ · · · ∗ β0(x), (1)

where β0 is the characteristic function of the interval [0, 1]. The discrete B-spline of order n > 0, at scale m, is

defined by [11]:

bn
m =

n+1
︷ ︸︸ ︷

b0
m ∗ b0

m ∗ · · · ∗ b0
m, (2)
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where b0
m = 1

m
{1, 1, · · · , 1} is the normalized sampled pulse of width m ≥ 2. We also define b−1

m = δ0 where

(δl[p])p∈Z
is the sequence that equals 1 if p = l and zero otherwise. The link between discrete and continuous

B-splines is the dilation equation:
1

m
βn
( x

m

)

= bn
m ∗ βn(x). (3)

While B-splines at different scales m involve a basis function with a regularity given by the order of the spline, the

sequence of filters bn
m with fixed m and large n are approximations of a Gaussian function (i.e. C∞). Let X denote

a discrete random variable with uniform distribution over the set {−m−1
2 , · · · , m−1

2 } (resp. {−m
2 + 1, · · · , m

2 }) for

m odd (resp. even). Then bn
m[p] is the probability that the sum of n+1 independent identically distributed variables

Xi is equal to p (since the law of a sum of independent identically distributed variables is obtained by convolution

of their probability distributions). The mean of the variable Xi is 0 (resp. 1
2

) if m is odd (resp. even), while its

standard deviation is
√

m2−1
12 . Applying the central limit theorem we get:

n+1∑

i=1
Xi − εn+1

2

√

(n + 1)(m2 − 1)/12
→

n→+∞
N (0, 1)

in distribution, where ε = 1 if m is even and 0 otherwise. We suppose that this is the case throughout the paper.

This convergence property leads to the approximation for large n:

bn
m[p] ≈

√

6

π(n + 1)(m2 − 1)
exp

(
6(p − εn+1

2 )2

(n + 1)(1 − m2)

)

.

To derive approximations of the derivatives of the Gaussian function, we consider ρ = {1,−1}, ρk =

k
︷ ︸︸ ︷
ρ ∗ · · · ∗ ρ,

and bn
m,k = ρk ∗ bn

m . With these notations, the following theorem holds:

Theorem 1: For large n we have:

bn
m,k[p] ≈

√
6

π(n+1)(m2−1)

[

exp( 6x2

(n+1)(1−m2))
](k)

(p −
ε(n+1)+k

2 )

This result is proved in Appendix A. We recall that n is the order of the B-spline, 1
m

is the sampling rate of the

interval [− 1
2 , 1

2 ] and k is the order of the derivative. To get an approximation of the kth derivative of the Gaussian

one must shift the filter bn
m,k properly ; we define:

αn
m,k[p] = bn

m,k[p + b
ε(n + 1) + k

2
c] (4)

where b.c denotes the integer part, to obtain unshifted approximations of the derivatives of Gaussian functions.

III. RECONSTRUCTION PROPERTY OF THE FILTERS αn
m,k

By analogy with the wavelet decomposition which uses reverse time version of the wavelets, we consider the

correlation of the sequence f [j] with αn
m,k[j] defined in (4):

∀p ∈ Z cn
m,k[p] =

∑

j∈Z

αn
m,k[j]f [j + p]

=
∑

j∈Z

αn
m,k[j − p]f [j] for n ≥ −1
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The family G =
{

αn,p
m,k[j] = αn

m,k[j − p], p ∈ Z, N > n ≥ −1
}

is a frame of l2(Z) if and only if the Fourier series

of αn
m,k for N > n ≥ −1 do not have a common zero in ] − 1

2
, 1

2
] ([10],Corollary 3). As αn

m,k[p] is a shifted

version of bn
m,k[p] (see (4)) both Fourier series have the same modulus which is given by:

|α̂n
m,k(ν)| = 2k| sin(πν)|k

∣
∣
∣
∣

sinc(πmν)

sinc(πν)

∣
∣
∣
∣

n+1

If k > 0 (the case k = 0 is uninteresting) and for N ≥ n ≥ 0 the Fourier series is null at ν ∈ {| l
m
| ≤ 1

2
, l ∈ Z}

and if n = −1 the Fourier series is null at ν = 0. The family G therefore does not satisfy the frame condition if

k > 0. However, if we add to G the complementary sequence αN,p
m,k′ , 0 ≤ k′ < k we have a frame since the Fourier

series of αN,p
m,0 is not null for ν = 0. Although this construction is not optimal in terms of number of basis filters,

it will prove to be relevant for our purpose. From the frame theory, the signal f can then be expanded as [4]:

f [l] =
∑

0≤k′<k

∑

p∈Z

cN
m,k′ [p]α̃N,p

m,k′[l] +

N−1∑

n=−1

∑

p∈Z

cn
m,k[p]α̃n,p

m,k[l] (5)

where .̃ denotes the frame dual to

F N
m,k =

{

αN,p
m,k′, 0 ≤ k′ < k, αn,p

m,k,−1 ≤ n < N, p ∈ Z

}

.

The formula (5) ensures that the reconstruction of f with the coefficients of the decomposition is always possible

but may be complicated. However for m = 2, we show that we have a simple and explicit formula. Indeed, recall

that the sequence cn
2,k satisfies:

if n + k is odd, cn
2,k[p] =

1

2
(cn−1

2,k [p − 1] + cn−1
2,k [p])

cn
2,k[p] = cn

2,k−1[p − 1] − cn
2,k−1[p]

else, cn
2,k[p] =

1

2
(cn−1

2,k [p] + cn−1
2,k [p + 1])

cn
2,k[p] = cn

2,k−1[p]− cn
2,k−1[p + 1] (6)

which leads to:

1

2
cn−1
2,k [p] = cn−1

2,k−1[p]− cn
2,k−1[p] n + k odd

1

2
cn−1
2,k [p] = cn−1

2,k−1[p− 1]− cn
2,k−1[p] otherwise (7)

and finally, for −1 ≤ l ≤ N − 1:

cl
2,k−1[p] = cN

2,k−1[p + b
N − l + 1

2
c]

+
1

2

N−1∑

n=l

cn
2,k[p + b

n − l + 1

2
c] k odd

cl
2,k−1[p] = cN

2,k−1[p + b
N − l + 1

2
c]

+
1

2

N−1∑

n=l

cn
2,k[p + b

n − l + 2

2
c] otherwise. (8)
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(6) is proved in Appendix B. Property (7) is a direct consequence of (6) and leads to (8). Property (8) gives a simple

procedure for reconstructing the signal from the decomposition over F N
2,k. Indeed, if we assume the decomposition

over F N
2,k to be known, we get the coefficients cl

2,k−1[p] for −1 ≤ l ≤ N − 1, the coefficients cN
2,k−1[p] being

already known because αN,p
2,k−1 belongs to F N

2,k. If we apply the procedure k times, we get the coefficients cl
2,0[p],

for −1 ≤ l ≤ N − 1, in particular for l = −1 we get the signal f [p].

IV. DEFINITION OF MAXIMA LINES, SIGNAL RECONSTRUCTION FROM EXTREMA

A. Definition of Maxima Lines

We define the maxima of the sequence cn
m,k (respectively minima) as the strictly positive (respectively negative)

coefficients cn
m,k[p] such that cn

m,k[p− 1] < cn
m,k[p] > cn

m,k[p + 1] (resp. cn
m,k[p− 1] > cn

m,k[p] < cn
m,k[p + 1]). The

specificity of the case m = 2 is that an extremum at rank n arises from a unique extremum of the same nature

at rank n − 1. These extrema define curves in the time-scale space which are called maxima lines. The practical

construction of maxima lines in this case is explained in [2] [3] [8] and works for any signal. On the contrary, for

m > 2, recalling that the sequence cn
m,k is obtained by correlation of cn−1

m,k with a shifted version of b0
m (see (5)),

if cn−1
m,k contains a sequence of the kind 0 · · ·01

m−2
︷ ︸︸ ︷

0 · · ·010 · · ·0 with two maxima, the correlation with b0
m will lead

to a unique maximum for cn
m,k which arises from the two extrema at rank n − 1. Consequently, the maximum at

rank n is associated with two maxima at rank n − 1 which entails different possible constructions for the maxima

lines. For that reason, we will take m = 2 for the construction of maxima lines.

B. Signal Reconstruction from Extrema when k = 1

We study here the reconstruction of the signal f from the extrema of the sequence cn
2,1, when f has zero mean

without loss of generality. In such a case, the origin of the maxima lines (i.e. for n = −1) corresponds to a

maximum of the derivative of the signal (i.e. a change of curvature). The sequence cN
2,0[p] tends to zero when N

tends to infinity (we do not prove it here due to the lack of space; see [8] for details). Since c−1
2,0[p] = f [p], we

derive using (8):

f [p] ≈
1

2

N−1∑

n=−1

cn
2,1[p + b

n + 2

2
c]

We define c̄n
2,1[p] by cn

2,1[p] if there is an extremum in p at rank n and zero otherwise. Let us denote gN by

gN [p] =
1

2

N∑

n=−1

c̄n
2,1[p + b

n + 2

2
c]

and also EN , the reconstruction error from extrema, by

EN =
∑

p∈Z

(f [p] − gN [p])
2

We have carried out simulations to estimate the evolution of EN for signals with different frequency bandwidths.

The signals we used in simulations were generated through the filtering of uniform noise by Butterworth filters with

various frequency bandwidths. We notice on the simulated signals that the reconstruction error EN decreases with

June 29, 2004 DRAFT



106

N for small N , then reaches a minimum ( the corresponding N is called N0) and finally stabilizes. The value N0

associated with the minimal reconstruction error is larger when the frequency bandwidth is low, since in that case

neighboring extrema are, on average, further apart. In Figure 1, we display the typical evolution of the square root

of EN normalized by the variance of f (i.e.
√∑

p∈Z
(f [p])2) for three signals with different frequency bandwidths.
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Fig. 1. Computation of the normalized reconstruction errors for three signals with bandwidths 20-200Hz, 100-350Hz, 300-450 Hz, the sampling

frequency being 1 kHz

The theoretical demonstration of the behavior of EN is not simple; we only give a numerical insight of what is

happening. The error satisfies the induction property:

EN = EN−1

−
1

2

∑

p∈Z

(

f [p] −
1

2

N−2∑

n=−1

c̄n
2,1[p + b

n + 2

2
c]

)

c̄N−1
2,1 [p + b

N + 1

2
c]

+
1

4

∑

p∈Z

c̄N−1
2,1 [p + b

N + 1

2
c]2

The decay of the error is linked to the second term on the right side of the equality. For a small N , when

f [p] − 1
2

∑N−2
n=−1 c̄n

2,1[p + bn+2
2 c] and c̄N−1

2,1 [p + bN+1
2 c] are not null, for most of the time they have the same

sign. This is due to the fact that the first term has the sign of f at p and that a maximum for cN−1
2,1 is more

likely to occur when f is positive (the opposite is true for a minimum). When N increases the shift bN+1
2 c makes

cN−1
2,1 [p+bN+1

2 c] correspond to a minimum when it initially corresponded to a maximum and thus it changes signs,

while f [p] − 1
2

∑N−2
n=−1 c̄n

2,1[p + bn+2
2 c] keeps the same sign (the reasoning is also true in the reverse case). The

effect of this change of sign is an increase of the mean square error for a value N0 of N .

V. CONSTRUCTION OF THE ESTIMATOR OF TRANSIENTS

In this section, we first build a new nonparametric estimator of transients using the maxima lines of the

decomposition (with k = 1 and m = 2). The ranks n we consider, to build the estimator, are lower than N0,
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determined for each signal independently using the reconstruction procedure detailed above. We first explain how

we characterize a signal with its maxima lines, then how to compute the reference parameters on an interval supposed

to be free of transients. In a second time, we introduce the test statistics on the maxima to detect transients and

estimate their localization. Finally, we recall the principle of transient estimation with wavelet coefficients under

the Gaussian hypothesis.

A. Signal Characterization

As each extremum of the sequence cn
2,1 belongs to a single maxima line (see definition in section IV.A) [2] [3]

[8], we can associate with each maxima line L in the time-scale space (where the time is indexed by p and the

scale by n) the variable DL,q , with |L| ≥ q + 2 (where |L| is the length of L) defined by:

DL,q =
∑

(p,n)∈L,n≤q

(
cn
2,1[p]

)2

‖αn
2,1‖

2
2

and ‖αn
2,1‖2 =

√∑

p∈Z
(αn

2,1[p])2. The role of the normalization is to give the same relative importance to each

coefficient (cn
2,1)

2 in the sum (the αn
2,1 are then normalized to 1 in the l2 sense).

The variable DL,q is not sufficient to properly characterize frequencies of the signal. We therefore use another

variable:

FL,q = O(L+(q)) − O(L),

where O(L) is the origin of the maxima line L and L+(q) is the maxima line that follows L at rank q.

B. Principle of the Estimation-Detection

We compute the variable DL,q when q ≤ N0 (see section IV. B for the definition of N0) for a reference part of

f assumed to be free of transients. For any probability Pr, the empirical distribution of DL,q provides thresholds

aq and bq such that P (aq < DL,q < bq) = Pr. For each maxima line L such that |L| ≥ q +2 we have the standard

choice between:
H0(q) : DL,q is in [aq, bq]

H1(q) : DL,q is out of [aq, bq]

The variable FL,q takes integer values and we compute its distribution for each q ≤ N0. Any probability Pr defines

a subset A(q) of N such that A(q) = {x, P (FL,q = x) > 1−Pr}. For each maxima line, we again have the choice

between:
H ′

0(q) : FL,q is in A(q)

H ′
1(q) : FL,q is not in A(q)

To summarize, once we are given a probability Pr, we can compute aq , bq and A(q), −1 ≤ q ≤ N0 which we

use in the estimation. Note that from a detection point of view 1 − Pr is the probability of false alarm.

We now assume that for any probability Pr reference features A(q), aq and bq , −1 ≤ q ≤ N0 have been

computed on [0, T − d] considered as the reference part of the signal where T is the transition time and d defines

the maximum distance from the true transition T .
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We build a nonparametric test to estimate the transition time using the maxima lines. We consider the maxima

lines L such that O(L) is inside [T − d; T + d]. If |L| ≥ q + 2, four cases may occur:

i) L satisfies H0(q) ∪ H ′
0(q)

ii) L satisfies H1(q) ∪ H ′
0(q)

iii) L satisfies H0(q) ∪ H ′
1(q)

iv) L satisfies H1(q) ∪H ′
1(q)

We then scan the interval [T −d, T +d]. The first line L that satisfies hypothesis ii) or iv) at rank q corresponds to a

transient T1(q) = O(L), while the first line L that satisfies iii) or iv) corresponds to a transient T2(q) = O(L). We

thus have two vectors T1 and T2 for which the best ranks q are those that maximize the probability of transition,

i.e. the probability that the line L does not correspond to the known part of the signal defined for t ≤ T − d. If

we denote q1 (resp. q2) the rank associated with T1 (resp. T2), we choose between T1(q1) and T2(q2) taking the

one with the highest probability of transition. If we denote P (T̃ ) the probability of transition of T̃ , the estimated

transition T̂ is:

T̂ = argmax
{

P (T̃ ), T̃ ∈ { T1(argmax
q≤N0

P (T1(q))),

T2(argmax
q≤N0

P (T2(q)))}

}

As the estimated transition time is associated with a maxima line generated by an extremum of the derivative of

the signal, the detected transition always correspond to a variation of curvature of the signal.

C. Continuous Wavelet Decomposition and Estimation of Transients in Gaussian Signals [6]

In order to make a comparison, we recall the principle of transient estimation with wavelet coefficients. Suppose

that a signal f is decomposed onto a family of wavelets of the kind:
{

Ψs,b(t) =
1

s
Ψ(

t − b

s
), 1 ≤ s ≤ S

}

If f is Gaussian, Y [b] =
(
Ys[b] =

(
f(t), 1

s
Ψ( t−b

s
)
))

s≤S
is a Gaussian vector with zero mean components charac-

terized by its covariance matrix
∑

. In such a case, Z[b] = Y [b](
∑

)−1Y [b] is χ2 distributed with S degrees of

freedom [6]. As previously, we seek, for different values of S, the first time in [T − d, T + d] when Z does not

satisfy the χ2 hypothesis for any probability Pr. Consequently, the comparison of our estimator of transients to

that based on wavelet coefficients is easily carried out on Gaussian signals.

VI. RESULTS

The signals we consider are Gaussian white noises filtered by Butterworth filters which are Gaussian signals to

enable simple comparison between the different methods. We study two kinds of transitions: first, a variation of

amplitude of the signal and, second, a variation of frequency. Each signal has a sample rate of 1kHz. The true

transition is in all cases T = 800 ms; we fix d = 10 ms. We consider T − d very large to ensure that the reference
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parameters are correctly estimated. The choice for the value of d is justified by EMG practical applications: we

are to use the estimator to measure EMG (electromyographic) latency responses of muscles under stimulation

whose average value is known. Then, the interval where the transients should be detected needs not be too large.

Furthermore, this practical assumption will improve the estimator performance because choosing a larger interval

may add spurious detections that would alter the measurement of the estimator performance. For the method based

on wavelet coefficients, we use the derivative of the normalized Gaussian Ψ(x) = − x√
2π

exp(−x2

2
) to be coherent

with the choice k = 1 of our decomposition. For this method, scale selection is often made considering that the

family of wavelets ensures a good coverage of the frequency bandwidth of the signal [5]. We will see that this

method leads to a worse estimation of transients than that which we propose.

A. Variation of Amplitude

The variation of amplitude is generated through a multiplication of the signal by β at time T . We consider signals

with frequency bandwidths 20-400 Hz to nearly cover the whole frequency spectrum (the sampling rate is 1kHz).

For these signals, we build ROC curves (detection versus false alarm) for β = 3 and β = 1.5, for our model (ML)

and for the wavelet method for S = 2, S = 4 and S = 10 and the corresponding mean square errors (the curves

are build from 500 Monte Carlo runs). The results are depicted in Figure 2 in which we notice that the transient

estimation (second row of the Figure) is approximately invariant with respect to the probability of false alarm. In

fact, with the ML method, when a transient is detected at rank n we can come back to its initial location (i.e

rank n = −1) following the corresponding maxima line. On the contrary, with the wavelet methods, the wavelet

coefficients at scale s and time t mix the information around t introducing a bias in the estimation which is more

important when S is large. We also note that in the studied cases, the improvement of the estimation is not made

to the detriment of the detection since the ROC curves for the ML method and for the wavelet method are very

similar.

B. Variation of Frequency

We investigate the estimator of transients when the latter arises from a variation of frequency. At time T , we

change the frequency bandwidth of the Butterworth filter. We study two cases: the first one is when the bandwidth

varies from 20-200 Hz to 200-400Hz, while the second is the opposite. We build ROC curves of the detector

associated with the ML method and the wavelet method (for S = 2, S = 4,S = 10) and the mean square errors to

evaluate the performance of the estimators (the curves are derived from 500 Monte Carlo runs). The results are very

similar to that obtained for a variation of frequency, i.e. while the estimator computed from wavelet coefficients are

very sensitive to the probability of false alarm, the performance of the estimator based on maxima lines is invariant

with respect to this parameter (see Figure 3). For the transition from 200-400 Hz to 20-200 Hz, we notice that the

ML method is slightly less performant in terms of detection than those based on wavelet coefficients, the reason is

that d is small compared to the lowest frequency (20 Hz) and therefore few maxima lines have their origin in the

interval [T − d, T + d].
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Fig. 2. (A):ROC curves for β = 3 and a bandwidth 20− 400 Hz for ML method and wavelet methods for S = 2, S = 4 and S = 10. (B):

idem but for β = 1.5. (C) Mean square error for β = 3 and a bandwidth 20− 400 Hz for ML method and wavelet methods for S = 2, S = 4

and S = 10. (D):idem but for β = 1.5

VII. CONCLUSION

The aim of this study was to introduce a new estimator of transients. The study of the maxima lines associated

with the decomposition introduced by Berkner [2] on Gaussian signals suggested specific scales which are useful

for the construction of a new estimator of transients. The latter is not parametric and mixes two characteristics

to take both amplitude and frequency variations into account. It is a better estimator than the estimator based on

wavelet coefficients computed using the CWT without any loss of detection performance. Another advantage of

the method is that the pertinent scale selection is automatic which is not the case for the method that uses wavelet

coefficients. Future work should consist in applying the proposed estimator of transients to the nongaussian and

nonstationary cases. We also have to see the influence of maxima lines of a higher degree (i.e. k > 1) on the

estimation performance. Another direction for future work would also be to investigate the impact of noise on the
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Fig. 3. (A): ROC curves for ML method and wavelet methods (S=2,S=4,S=10) for a variation of frequency bandwidth from 20-200Hz to

200-400 Hz, (B): idem but for a variation of frequency from 200-400 Hz to 20-200 Hz, (C): Mean square error for the estimation of transition

for a variation from 20-200Hz to 200-400 Hz, (D): idem for a variation from 200-400 Hz to 20-200 Hz

estimator performance.

APPENDIX A

PROOF OF THEOREM 1. it is made by induction on k. We distinguish the cases m even and m odd. If m is odd

we can write:

bn
m,1[p] = bn

m[p]− bn
m[p− 1] ≈

√

6

π(n + 1)(m2 − 1)
×

(

exp(
6p2

(n + 1)(1 − m2)
) − exp(

6(p − 1)2

(n + 1)(1 − m2)
)

)

=

√

6

π(n + 1)(m2 − 1)
exp(

6(p − 1
2 )2

(n + 1)(1 − m2)
) ×
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(

exp(
6(p − 1

4
)

(n + 1)(1 − m2)
− exp(

−6(p − 3
4
)

(n + 1)(1 − m2)
)

)

≈

√

6

π(n + 1)(m2 − 1)

12p − 6

(n + 1)(1 − m2)
exp(

6(p − 1
2)2

(n + 1)(1 − m2)
),

using a first order approximation of the exponential in 0,

=

√

6

π(n + 1)(m2 − 1)

[

exp(
6x2

(n + 1)(1 − m2)
)

]′

(p − ε
n + 1

2
−

1

2
).

When m is even, we have:

bn
m,1[p] = bn

m[p]− bn
m[p− 1] ≈

√

6

π(n + 1)(m2 − 1)
×

(

exp(
6(p − (n+1)

2
)2

(n + 1)(1 − m2)
) − exp(

6(p − 1 − (n+1)
2

)2

(n + 1)(1 − m2)
)

)

=

√

6

π(n + 1)(m2 − 1)

12α

π(n + 1)(1 − m2)
exp(

6α2

(n + 1)(1 − m2)
),

for at least an α ∈]p− 1 − (n + 1), p− (n + 1)[,

≈

√

6

π(n + 1)(m2 − 1)

[

exp(
6x2

(n + 1)(1 − m2)
)

]′
(p −

n + 1

2
−

1

2
).

We now assume that at rank k:

bn
m,k[p] ≈

√

6

π(n + 1)(m2 − 1)
×

[

exp(
6x2

(n + 1)(1 − m2)
)

](k)

(p −
ε(n + 1) + k

2
),

with ε = 1 if m is odd and 0 otherwise. We first consider the case m odd. Note that the derivative at rank k of

exp( 6x2

(n+1)(1−m2) ) can be written as P ( x
(n+1)(1−m2) ) exp( 6x2

(n+1)(1−m2) ), whose derivative is:
(

1

(n + 1)(1 − m2)
P ′(

x

(n + 1)(1 − m2)
)

+
12x

(n + 1)(1 − m2)
P (

x

(n + 1)(1 − m2)
)

)

exp(
6x2

(n + 1)(1 − m2)
)

At rank k + 1 we have:

bn
m,k+1[p] = bn

m,k[p] − bn
m,k[p− 1] =

√

6

π(n + 1)(m2 − 1)
×

([

exp(
6x2

(n + 1)(1 − m2)
)

](k)

(p −
k

2
)

−

[

exp(
6x2

(n + 1)(1 − m2)
)

](k)

(p − 1 −
k

2
)

)

=

√

6

π(n + 1)(m2 − 1)
exp(

6(p − k+1
2 )2

(n + 1)(1 − m2)
) ×
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(

P (
p − k

2

(n + 1)(1 − m2)
) exp(

6(p − k
2
− 1

4
)

(n + 1)(1 − m2)
)

−P (
p − 1 − k

2

(n + 1)(1 − m2)
) exp(

−6(p − k
2
− 3

4
)

(n + 1)(1 − m2)
)

)

≈

√

6

π(n + 1)(m2 − 1)
exp(

6(p − k+1
2 )2

(n + 1)(1 − m2)
) ×

(

P (
p − k

2

(n + 1)(1 − m2)
) − P (

p − 1 − k
2

(n + 1)(1 − m2)
)+

6(p − k
2 − 1

2)

(n + 1)(1 − m2)

(

P (
p − k

2

(n + 1)(1 − m2)
) + P (

p − 1 − k
2

(n + 1)(1 − m2)
)

))

,

using a first order approximation of the exponential,

≈

√

6

π(n + 1)(m2 − 1)
exp(

6(p − k+1
2 )2

(n + 1)(1 − m2)
) ×

(

1

(n + 1)(1 − m2)
P ′(

p − 1+k
2

(n + 1)(1 − m2)
)

+
12p − 6(k + 1)

(n + 1)(1 − m2)
P (

p − 1+k
2

(n + 1)(1 − m2)
)

)

≈

√

6

π(n + 1)(m2 − 1)

×

[

exp(−
6x2

(n + 1)(m2 − 1)
)

](k+1)

(p −
k + 1

2
).

We now deal with the case m even, for which we have:

bn
m,k+1[p] = bn

m,k[p]− bn
m,k[p − 1] =

√

6

π(n + 1)(m2 − 1)
×

([

exp(
6x2

(n + 1)(1 − m2)
)

](k)

(p −
k + (n + 1)

2
)

−

[

exp(
6x2

(n + 1)(1 − m2)
)

](k)

(p − 1 −
k + (n + 1)

2
)

)

=

√

6

π(n + 1)(m2 − 1)

12α

(n + 1)(1 − m2)
×

[

exp(
6x2

(n + 1)(1 − m2)
)

](k+1)

(α),

for at least one α ∈]p − 1 −
k + n + 1

2
, p−

k + n + 1

2
[,

≈

√

6

π(n + 1)(m2 − 1)
×

[

exp(−
6x2

(n + 1)(m2 − 1)
)

](k+1)

(p −
k + 1 + n

2
).
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This completes the proof of Theorem 1. �

APPENDIX B

PROOF OF PROPOSITION (6). We start with the case n + k even. Since,

αn
2,k[p] = bn

2,k[p + b
n + 1 + k

2
c] = bn

2,k[p +
n + k

2
]

=
1

2

(

bn−1
2,k [p +

n + k

2
] + bn−1

2,k [p − 1 +
n + k

2
]

)

=
1

2

(

αn−1
2,k [p] + αn−1

2,k [p − 1]
)

,

if we apply (5), we get:

cn−1
2,k =

1

2
(cn−1

2,k [p] + cn−1
2,k [p + 1]).

The demonstration for the case n + k odd is identical. We now prove the second equality of (6) when n + k is

even. Since we have:

αn
2,k[p] = bn

2,k[p + b
n + 1 + k

2
c] = bn

2,k[p +
n + k

2
]

= bn
2,k−1[p +

n + k

2
] − bn

2,k−1[p− 1
n + k

2
]

= αn
2,k−1[p + 1]− αn

2,k−1[p]

by applying (6) we get:

cn
2,k[p] = cn

2,k−1[p − 1] − cn
2,k−1[p].

The demonstration when n + k is odd is identical.
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