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Abstract In this paper, we introduce a particular class of nonlinear and non-separable
multiscale representations which embeds most of these representations. After motivating
the introduction of such a class on one-dimensional examples, we investigate the multi-
dimensional and non-separable case where the scaling factor is given by a non-diagonal
dilation matrixM. We also propose new convergence and stability results inLp and Besov
spaces for that class of nonlinear and non-separable multiscale representations. We end the
paper with an application of the proposed study to the convergence and the stability of some
nonlinear multiscale representations.
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1 Introduction

Multiscale representations such as wavelet-type pyramid transforms for hierarchical data
representation [1] and subdivision methods for computer-aided geometric design [13] have
completely changed the domains of data and geometry processing. Linear multiscale rep-
resentations of functions are now well understood in terms of approximation performance
[8]. While in the univariate case the wavelet-type pyramid transforms provide optimal al-
gorithms [8], in the multivariate case almost all algorithms fail in the treatment of nonlin-
ear constraints that are inherent to the analyzed objects, i.e., singularities/edges in digital
images. This is directly reflected by the poor decayO(N−1/2) of the L2 error of the best
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N-term approximation for cartoon images. Improving this rate through a better representa-
tion of images near edges has motivated the study of ridgelets [6], curvelets [7] and bandlets
[20]. These are bases or frames allowing for anisotropic refinement close to edges. Nonlinear
multiscale representations [9] are another possibility toperform anisotropic refinement by
using a nonlinear prediction operator. In a nutshell, the main difference between ridgelets,
curvelets or bandlets and nonlinear multiscale representations is that the former are based
on a functional point of view while the latter adopts a discrete point of view. To obtain ap-
proximation properties for these edge-adapted bases/frames representations, one uses the
same kind of techniques as those used in wavelet analysis. Onthe contrary, the analysis of
nonlinear multiscale representations requires a different mathematical framework. The de-
velopment of nonlinear prediction operators such as quasi-linear prediction operators [22],
median-interpolating schemes [25], normal multiresolution for curves and surfaces [11],
nonlinear four point schemes [19] or power-P schemes [5] hasenabled to design different
kinds of nonlinear multiscale representations. The applications of such nonlinear multiscale
representations range from geometrical image representations [9][5], non-Gaussian noise
removal [12][25], or surfaces and curves compression [11].

In what follows, we analyze a broad class of nonlinear prediction operators that embeds,
for instance, quasi-linear prediction operators and some nonlinear four point schemes. This
class consists inbounded nonlinearprediction operators (BNPO) that are the sum of a linear
prediction operator and of a bounded perturbation term (in asense made clearer later).

After having introduced some notation, the notion of nonlinear multiscale representation
and the definition of BNPO (section 2 to section 4), we show that the WENO prediction op-
erator, some nonlinear four point schemes and a modified version of the power-P scheme are
particular cases of one-dimensional BNPO (section 5). Examples of non-separable multi-
dimensional BNPO are then given in section 6. The potential interest for such prediction
operators lies in the fact that examples exist in image processing where the use of repre-
sentations built using non-dyadic grids significantly improves the compression performance
[10][21][18]. Section 7 establishes some new convergence results, inLp and Besov spaces,
for nonlinear multiscale representations based on BNPO. The stability of the multiscale rep-
resentations requires to consider a slightly stronger hypothesis on the prediction operator,
i.e., the perturbation term has to be a bounded and Lipschitzfunction. We will call these pre-
diction operators Lipschitz nonlinear prediction operators. Stability theorems are stated in
section 8 still inLp and Besov spaces. The novelty of the proposed approach lies in the fact
that the convergence and stability results are valid for noninterpolatory and non-separable
multiscale representations while the results available sofar for non-separable multiscale
representations only involved interpolatory schemes [24].

A new aspect is then introduced in section 9, through the notion of bounded (or Lips-
chitz) nonlinear prediction operators compatible with a set of finite differences, which we
call (A , I) compatible in the present paper. The idea is to remark that for the multiscale
representations associated with that kind of prediction operators the convergence or the sta-
bility can be proved by studying only a restricted set of finite differences (the directions for
the differences being defined by the setA , while the orders of differentiation by the vec-
tor I ). From a practical point of view, the extension of the convergence and stability results
when only a restricted set of finite differences is involved,allows us to show the conver-
gence of some non-separable bidimensional schemes for which theoretical results did not
exist (section 10).



Analysis of a Class of Nonlinear and Non-Separable Multiscale Representations 3

2 Notation

Before we start, we need to introduce some standard multi-index notation. For someα =
(α1, · · · ,αd) ∈ N

d, we write|α |= ∑d
i=1 αi , and forx∈ R

d we writexα = xα1
1 · · ·xαd

d , mono-

mial of degree|α |. There arerd
N =

(

N+d−1
N

)

monomialsxα with degreeN. We then

introduce∏N the space of polynomials of degreeN generated by

{xα =
d

∏
i=1

xαi
i , |α | ≤ N}.

In what follows, we will write deg(p) the degree of any polynomialp. By (e1, · · · ,ed), we
denote the canonical basis onZd. For any multi-indexα and any sequence(vk)k∈Zd :

∆ α vk := ∆ α1
e1

· · ·∆ αd
ed

vk,

where∆ αi
a vk, for any vectora in Z

d is defined recursively by:

∆ αi
a vk := ∆ αi−1

a vk+a−∆ αi−1
a vk.

For a given multi-indexα , we say that∆ α is a difference of order|α |. For anyN ∈ N, we
define

∆Nvk := {∆ α vk, |α |= N}. (1)

3 Multiscale Representations

We assume that the data(v j
k)k∈Zd are associated to the locationsΓ j := {M− j k,k ∈ Z

d},
j ≥ 0, whereM is a dilation matrix, i.e., ad×d invertible matrix defined onZ satisfying
lim

n→+∞
M−n = 0. We also assume the existence of a prediction operatorS which computes

v̂ j = Svj−1, an approximation ofv j . Then, we define the prediction error asej := v j − v̂ j .
The information contained inv j is completely equivalent to(v j−1,ej). By iterating this
procedure from the initial datavJ, we obtain itsnonlinear multiscale representation

M vJ = (v0,e1, · · · ,eJ). (2)

Conversely, assume that the sequence(v0,(ej) j>0) is given, we are interested in studying
the convergence of the nonlinear iteration,

v j = Svj−1+ej , (3)

to a limit functionv, which is defined as the limit (when it exists) of:

v j(x) = ∑
k∈Zd

v j
kϕ j,k(x),

whereϕ j,k(x) denotesϕ(M jx−k) with ϕ some compactly supported function satisfying the
scaling equation:

ϕ(x) = ∑
n∈Zd

gnϕ(Mx−n) with ∑
n

gn = m := |det(M)|, (4)
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The scaling equation (4) gives rise to the definition of a local and linear prediction operator
Sl as follows:

Sl vk = ∑
l∈Zd

gk−Ml vl . (5)

When the sequence of functions(v j) j≥0 is convergent to some limit function in some
functional space, by abusing a little bit terminology, we say that the multiscale representation
(v0,(ej) j>0) is convergent in that space.

4 Bounded and Lipschitz Nonlinear Prediction Operators

In this paper, we study a particular type of nonlinear prediction operators which is the sum
of Sl and of a perturbation term. For that sake, we will need the notion of polynomial repro-
duction for prediction operator adapted to the non-separable context:

Definition 1 A prediction operatorS reproduces polynomials of degreeN if for uk = p(k)
for any p∈ ∏N, we have

Suk = p(M−1k)+q(k)

whereq is a polynomial such that deg(q) < deg(p). Whenq = 0, we say thatS exactly
reproduces polynomials.

Let us considerQ :=Z
d/MZ

d, which is made ofmequivalence classes calledcosetsassoci-
ated with the matrixM. We define the set of representatives of the cosetsC(M) by MU

⋂

Z
d

whereU = [0,1[d. With this in mind, we first introduce the definitionbounded nonlinear
prediction operators:

Definition 2 Assume thatSl reproduces polynomials of degreeN, then a nonlinear predic-
tion operatorS is bounded of orderN+1, if it can be written under the following form:

SvMk+i = Sl vMk+i +Φi(∆N+1vk+p1, · · · ,∆N+1vk+pq), ∀i ∈ C(M), (6)

where{p1, · · · , pq} is a fixed set and whereΦi is bounded in the following sense:

|Φi(xp1 , · · · ,xpq)| <∼ max
i∈p1,··· ,pq

‖xi‖ (7)

where‖.‖ denotes any norm onRrN+1
d .

Remark 1In the definition above we ask for the perturbation termΦi to be bounded in the
sense of (7). The boundedness property forΦi will be useful to prove the convergence of the
multiscale representations based on prediction operatorssatisfying (8).

To prove the stability of such multiscale representations,we will need that the function
Φi be bounded and Lipschitz, therefore we introduce the following definition ofLipschitz
nonlinearprediction operators:

Definition 3 Assume thatSl reproduces polynomials of degreeN, then a nonlinear predic-
tion operatorS is Lipschitz of orderN+1, if it can be written under the following form:

SvMk+i = Sl vMk+i +Φi(∆N+1vk+p1, · · · ,∆N+1vk+pq), ∀i ∈ C(M), (8)

where{p1, · · · , pq} is a fixed set and whereΦi is a Lipschitz function satisfyingΦi(0) = 0.

Remark 2Note that ifΦi is a Lipschitz function satisfyingΦi(0) = 0, then it entails thatΦi

is bounded
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5 One-Dimensional Lipschitz Nonlinear Prediction Operators

We first recall how to define prediction operators in the point-value or cell-average settings
and then show how the WENO prediction operator [16] can be viewed as a Lipschitz nonlin-
ear prediction operator. Another illustration is given by anonlinear four-point scheme often
called the PPH-scheme in the literature [4].

5.1 Preliminaries

We start by considering the one-dimensional case withM = 2. Given a set of embedded
gridsΓ j =

{

2− jk, k∈ Z
}

, we consider discrete valuesv j
k defined on each vertex of these

grids. These quantities shall represent a certain functionv at level j. Typical examples of
such discretizations are: (i) point-value, i.e.,v j

k = v(2− jk) and (ii) cell-average, wherev j
k

is the average of some functionv over a neighborhood of 2− jk. Assuming a certain type
of discretization, we define a nonlinear prediction operator that in turn leads to a nonlinear
multiscale representation. We call them point-value (resp. cell-average) multiscale represen-
tations.

Let us now recall some useful properties on Lagrange interpolation. Consider the inter-
polation polynomialpN of degreeN of v atx0, · · · ,xN andpN,1 the interpolation polynomial
of v atx1, · · · ,xN+1. Using standard arguments and assuming thexi are equi-spaced, we write
the difference between the two polynomials as:

pN,1(x)− pN(x) = ∆N+1v0
1

N!hN

N

∏
i=1

(x−xi), (9)

whereh= xi+1−xi . The same kind of result can be obtained consideringpN,−1, the inter-
polation polynomial atx−1, · · · ,xN−1.

5.2 Prediction Operators in the Point-Value Setting

Here, we use identity (9) to analyze nonlinear prediction operators in the context of point-
value multiscale representations. These operators compute the approximation ˆv j

k of v j
k =

v(2− jk) using onlyv j−1
k = v(2− j+1k), k ∈ Z. In that framework, sincev j

2k = v j−1
k , only

v̂ j
2k+1 needs to be computed. To do so, we consider the Lagrange polynomial p2N+1 of

degree 2N+1 defined on the 2N+2 closest neighbors of 2− j (2k+1) onΓ j−1, i.e.

p2N+1(2
− j+1(k+n)) = v j−1

k+n = v(2− j+1(k+n)), n=−N, · · · ,N+1.

This polynomial is used to compute ˆv j
2k+1 through the so-calledcenteredprediction as fol-

lows:

v̂ j
2k+1 = p2N+1(2− j(2k+1)). (10)

WhenN = 1, we obtain the four points scheme:

v̂ j
2k+1 =

9
16

(v j−1
k +v j−1

k+1)−
1
16

(v j−1
k−1+v j−1

k+2)
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which is exact for cubic polynomials. The four point scheme was widely studied in literature
(see [14]). Now, consider the polynomialp2N+1,1 whose interpolation set is that ofp2N+1

shifted by 2− j+1 to the right. This leads, for instance, whenN = 1, to the prediction:

v̂ j
2k+1,1 := p3,1(2− j(2k+1)) =

5
16

v j−1
k +

15
16

v j−1
k+1−

5
16

v j−1
k+2+

1
16

v j−1
k+3. (11)

Now, if we compute the difference between the above predictions we obtain:

v̂ j
2k+1,1− v̂ j

2k+1 =
1
16

∆4v j−1
k−1, (12)

which corresponds to (9), withxi = 2− j+1(k+ i −1), i = 0, · · · ,2 andx= 2− j(2k+1).
The same conclusion holds for the polynomialp2N+1,−1, for N = 1, whose interpolation

set is that ofp2N+1 but shifted by 2− j+1 to the left. We can generalize the above formula to
anyN through the following proposition:

Proposition 1 For any N, assume thatv̂ j
k (resp.v̂ j

k,1) is obtained using the polynomial p2N+1

(resp. p2N+1,1), then:

v̂ j
2k+1,1− v̂ j

2k+1 = (−1)N−1∆2N+2v j−1
k−N

1
24N

(

2N−1
N

)

Proof Let us putx0 = 2− j+1(k−N), · · · ,x2N+1 = 2− j+1(k+N+ 1). Then, using (9) the
difference betweenp2N+1 andp2N+1,1 evaluated at 2− j (2k+1), reads as follows:

v̂ j
2k+1,1− v̂ j

2k+1 = −∆2N+2v j−1
k−N

1
(2N+1)!22N+1

N+1

∏
i=−N+1

(2i −1)

= (−1)N−1∆2N+2v j−1
k−N

1
24N

(2N−1)!
N!(N−1)!

Remark 3Note that we can define other polynomialsp2N+1,q for −N ≤ q ≤ N, that are
obtained by shifting the centered interpolation set byq2− j+1, and then predict using one of
these polynomials. In any case, the difference between thisprediction and the centered one
will be a linear function of the differences of order 2N+2, since we can write (assuming
q> 0, but this is still true for anyq) that:

v̂ j
2k+1,q− v̂ j

2k+1 =
q−1

∑
l=1

v̂ j
2k+1,l+1− v̂ j

2k+1,l + v̂ j
2k+1,1− v̂ j

2k+1,

and then apply Proposition 1.

5.3 Prediction Operators in the Cell-Average Setting

We now show how Proposition 1 extends to cell-average multiscale representations. In the
cell-average setting, the datav j

k is the average of some functionv over the intervalI j,k =
[2− jk,2− j (k+1)] as follows:

v j
k = 2 j

∫

I j,k

v(t)dt. (13)
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In that framework, we have the so-calledconsistencyproperty:

v j−1
k =

1
2
(v j

2k+v j
2k+1). (14)

Now, we design a nonlinear prediction operator on this multiscale representation considering
the interpolation polynomialp2N of degree 2N defined as follows:

2 j−1
∫

I j−1,k+n

p2N(t)dt = v j−1
k+n n=−N, · · · ,N.

We then define thecenteredprediction by:

v̂ j
2k = 2 j

∫

I j,2k

p2N,k(t)dt andv̂ j
2k+1 = 2 j

∫

I j,2k+1

p2N,k(t)dt.

For instance, whenN = 1, this leads to:

v̂ j
2k = v j−1

k +
1
8
(v j−1

k−1−v j−1
k+1) andv̂ j

2k+1 = v j−1
k − 1

8
(v j−1

k−1−v j−1
k+1).

Still for N = 1, the prediction operator built using the polynomialp2N,1 that interpolates the
average on intervalsI j−1,k, I j−1,k+1, I j−1,k+2 leads to the following predictions:

v̂ j
2k,1 =

11
8

v j−1
k − 1

2
v j−1

k+1+
1
8

v j−1
k+2 andv̂ j

2k+1,1 =
15
8

v j−1
k +

1
2

v j−1
k+1−

1
8

v j−1
k+2.

Now, if we compute the difference between this shifted prediction and thecenteredone, we
get:

v̂ j
2k+1,1− v̂ j

2k+1 =−1
8

∆3v j−1
k−1 andv̂ j

2k,1− v̂ j
2k =

1
8

∆3v j−1
k−1. (15)

Similarly, we can define a prediction using the set of intervals shifted to the left and obtain
the same kind of result. The equality (15) can then be generalized to anyN:

Proposition 2 Consider the prediction̂v j
k (resp.v̂ j

k,1) obtained using p2N (resp. p2N,1), then
we may write:

v̂ j
2k,1− v̂ j

2k = (−1)N−1∆2N+1v j−1
k−N

1
24N−1

(

2N−1
N

)

v̂ j
2k+1,1− v̂ j

2k+1 = −(v̂ j
2k,1− v̂ j

2k)

The proof is available in Appendix A. As in the point-value setting, we can definep2N,q, for
anyq, by shifting the computation intervals and then predict using this polynomial to obtain
v̂ j

k,q.
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5.4 WENO-Prediction Operator as a Lipschitz Prediction Operator

Given a type a multiscale representation (i.e. either point-value or cell- average), the WENO
prediction operator is based on a convex combination of the potential prediction rules ˆv j

k,q,

that is we write: ˆv j
k,w :=

N
∑

q=−N,q6=0
α j

k,qv̂ j
k,q with α j

k,q ≥ 0 and
N
∑

q=−N,q6=0
α j

k,q = 1 and where the

indexw stands for WENO. The weights depends onv j−1 and on the corresponding ruleq.
As an illustration, let us consider the point-value settingwhenN= 1, for which we have:

v̂ j
2k+1,w− v̂ j

2k+1 =
1
16

(

α j
k,1∆4v j−1

k−1+α j
k,−1∆4v j−1

k−2

)

. (16)

If one definesSl the prediction operator associated to the centered prediction andS the pre-
diction operator associated to the WENO prediction, it is clear that the WENO prediction
can be written in the form (8) whereΦi is a bounded function (using the fact that we con-
sider a convex combination). It follows that the just definedWENO prediction operator is a
bounded nonlinear prediction operator.

Note that in this case the perturbation term is not a Lipschitz function. To obtain a Lip-
schitz perturbation term, we can consider thatα j

1,k is a given functionα(∆4v j−1
k−2,∆

4v j−1
k−1).

Sinceα j
−1,k equals 1−α j

1,k, we determineα such thatα(x,y)(x−y) is a Lipschitz function

which is true whenα is bounded onR2 (which is always the case since we consider a con-
vex combination) and that(x−y)( ∂α

∂x (x,y),
∂α
∂y (x,y)) is bounded onR2. A typical example

of such function is whenα(x,y) = 1
1+( y

x )
β , whereβ is some even integer larger than 2. The

motivation for such a weight function is that it favors the smoothest prediction operator that
is the one based on the least oscillating polynomial: if∆4v j−1

k−1 is small compared to∆4v j−1
k−2

the weightα j
1,k should be close to 1 and to zero in the opposite case. This model corresponds

to a small change in the traditional WENO method and it preserves its main properties as
will be shown in the Applications section.

5.5 PPH-scheme as a Lipschitz Nonlinear Prediction Operator

We now show that the PPH-scheme defined by:
{

v̂ j
2k+1 =

v j−1
k+1+v j−1

k
2 − 1

8H(∆2v j−1
k−1,∆

2v j−1
k )

v̂ j
2k = v j−1

k

(17)

whereH(x,y) := 2
(

xy
x+y

)

χ{xy>0}(x,y), and whereχX is the characteristic function ofX, is

an example of Lipschitz nonlinear prediction operator. Note that sinceH satisfies|H(x,y)−
H(x′,y′)| ≤ 2max{|x−x′|, |y−y′|}, the boundedness in the sense of Definition 2 follows.

Since the linear scheme
v j−1
k+1+v j−1

k
2 reproduces polynomials of degree 1, the PPH-scheme is a

bounded nonlinear prediction operator of order 2. MoreoverH(x,y) is Lipschitz with respect
to (x,y), which implies that this scheme is also a Lipschitz nonlinear prediction operator.

A related example is the power-P scheme [26]. This scheme, isa generalization of the
PPH-scheme replacingH by

Hq(x,y) =

(

x+y
2

(

1−
∣

∣

∣

∣

x−y
x+y

∣

∣

∣

∣

q))

χ{xy>0}(x,y). (18)
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SinceHq(x,y) is bounded with respect to(x,y) as in Definition 2, the power-P scheme
defines a bounded nonlinear prediction operator of order 2.

The main difference between the PPH and the power-P scheme isthatHq(x,y) is not a
Lipschitz function but is only piecewise Lipschitz as remarked in [15]. Nevertheless, a more
careful look shows that the power-P scheme is very close to a Lipschitz nonlinear prediction
operator. Indeed, consider the following definition forx 6= y:

H̃q(x,y) =

(

x+y
2

(

1−
∣

∣

∣

∣

x−y
x+y

∣

∣

∣

∣

q))

× (ρε ∗χ{xy>0})(x,y), (19)

whereρε > 0 is aC∞(R2) compactly supported function with support embedded inB(0,ε),
the ball with center(0,0) and with radiusε , and such that

∫

ρε = 1. It is clear thatH̃q(x,y) =
Hq(x,y) as soon as(x,y) does not belong to the set

Vε = {|x| ≤ ε}
⋃

{|y| ≤ ε}. (20)

Note thatx+y
2

(

1−| x−y
x+y |q

)

is differentiable forx 6= y, and that this differential is bounded

(see Lemma 3.6 of [15] for the computation). ThenH̃q(x,y) is Lipschitz whenx 6= y. By tak-
ing into account the definition set for̃Hq, we deduce that it is Lipschitz onR2\{(x,x), |x| ≤√

2ε}. Finally, sinceε can be chosen arbitrarily small, the two models differ on a small band
depending onε .

6 Multi-Dimensional Lipschitz Nonlinear Prediction Operators on Non-Dyadic Grids

To illustrate the notion of Lipschitz nonlinear predictionoperators in the multivariate case,
we introduce the concept of nonlinear prediction on non-dyadic grids. The motivation to
consider this type of grids are, for instance, better image compression results (see [10] and
[21]). Having defined the gridΓ j =

{

M− jk, k∈ Z
d
}

using a dilation matrixM, one con-

siders discrete quantitiesv j
k defined on each of these grids. A typical example of this is the

bidimensional PPH-scheme, associated to the quincunx dilation matrix, i.e.,

M =

(

1 1
1 −1

)

, (21)

and where the prediction is defined by:

v̂ j
Mk+e1

=
v j−1

k +v j−1
k+Me1

2
− 1

8
H(∆2

Me1
v j−1

k ,∆2
Me1

v j−1
k−Me1

)

v̂ j
Mk = v j−1

k . (22)

Note that the linear part of the prediction operator is obtained by considering an affine inter-
polation polynomial atv j−1

k ,v j−1
k+e1

andv j−1
k+e1+e2

and thus reproduces polynomials of degree
1. Since the perturbation is a Lipschitz function of the differences of order 2, and sinceH is
a bounded function with respect to its argument, this multi-dimensional prediction operator
is a Lipschitz nonlinear prediction operator of order 2. In arecent paper [3], another version
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of the multi-dimensional PPH-scheme was introduced. In theproposed framework, the scale
j is associated to the location 2− j , and the prediction operator is as follows:

v̂ j
2k+e1

=
v j−1

k +v j−1
k+e1

2
− 1

8
H(∆2

e1
v j−1

k ,∆2
e1

v j−1
k−e1

)

v̂ j,2
2k+e2

=
v j−1

k +v j−1
k+e2

2
− 1

8
H(∆2

e2
v j−1

k ,∆2
Me2

v j−1
k−e2

),

v̂ j,2
2k+e1+e2

=
9
16

(v j−1
k +v j−1

k+Me1
)− 1

16
(v j−1

k−Me1
+v j−1

k+2Me1
)

v̂ j
2k = v j−1

k . (23)

It is clear that this scheme is a particular example of Lipschitz and bounded nonlinear pre-
diction operator since we can write:

v̂ j,2
2k+e1+e2

=
v j−1

k +v j−1
k+Me1

2
− 1

16
(∆2

Me1
v j−1

k +∆2
Me1

v j−1
k−Me1

).

and then defineSl as the prediction operator associated with the linear part.

7 Convergence Theorems

In what follows, for two positive quantitiesA andB depending on a set of parameters, the re-
lationA <∼ B implies the existence of a positive constantC, independent of the parameters,
such thatA≤CB. Also A∼ B meansA <∼ B andB <∼ A.

The convergence theorems are obtained by studying the difference operators associated
with bounded nonlinear prediction operators. The existence of such difference operators is
ensured by the following theorem:

Theorem 1 Let S be a bounded nonlinear prediction operator of order N+ 1 then there
exists a multi-dimensional local operator S(N+1) such that:

∆N+1Sv= S(N+1)∆N+1v

Proof SinceS reproduces polynomials of degreeN, the existence ofS(N+1) was already
proved in [23]. What is particular here is the form for the differences of orderN+1:

∆N+1(SvMk+i) = ∆N+1(Sl vMk+i)+∆N+1Φi(∆N+1vk+p1 , · · · ,∆N+1vk+pq)

= (S(N+1)
l )i∆N+1vk+∆N+1Φi(∆N+1vk+p1 , · · · ,∆N+1vk+pq).

From which, we deduce (putting∆N+1v= w):

S(N+1)
i wk = (S(N+1)

l )iwk+∆N+1Φi(wk+p1, · · · ,wk+pq).

Note that the previous theorem shows the existence of the operator for the differences of
order k for all k ≤ N+ 1. To study the convergence of the iterationv j = Svj−1 + ej , we
introduce the definition of the joint spectral radius for difference operators:
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Definition 4 Let us consider abounded nonlinearprediction operatorSof orderN+1. The
joint spectral radius in(ℓp(Zd))rd

k of S(k) (whererd
k = #{α ∈ Z

d, |α | = k} and where #X
stands for the cardinal ofX), for k≤ N+1 is given by

ρp(S
(k)) := inf

j>0
‖(S(k)) j‖1/ j

(ℓp(Zd))
rdk →(ℓp(Zd))

rdk
(24)

= inf{ρ ,∃ j > 0 ‖∆kSjv‖
(ℓp(Zd))

rdk
≤ ρ j‖∆kv‖

(ℓp(Zd))
rdk
,∀v∈ ℓp(Zd)}.

In all the theorems that followv j(x) = ∑
k∈Zd

v j
kϕ j,k(x), whereϕ satisfies (4) withg associated

to the linear prediction operatorSl (for more details see (5)). Before we state a convergence
(also called inverse) theorem for the multiscale respresentation, we need to establish some
extensions to the non-separable case of a lemma proved in [22]:

Lemma 1 Let S be a bounded nonlinear prediction operator of order N+1. Then, for any
k≤ N+1

‖v j+1−v j‖Lp(Rd)
<∼ m− j/p

(

‖∆kv j‖
(ℓp(Zd))

rdk
+‖ej+1‖ℓp(Zd)

)

. (25)

Moreover, ifρp(S(k))< m1/p, then for anyρ such thatρp(S(k))< ρ < m1/p, we have

m− j/p‖∆kv j‖
(ℓp(Zd))

rdk
<∼ δ j‖v0‖ℓp(Zd)+

j

∑
l=0

δ j−l m−l/p‖el‖ℓp(Zd) (26)

whereδ = ρm−1/p.

Proof Using the definition of the functionv j(x) and of the scaling equation (4), we get that
v j+1(x)−v j(x) is given by:

= ∑
k

v j+1
k ϕ j+1,k(x)−∑

k

v j
kϕ j,k(x)

= ∑
i∈C(M)

∑
k

((Svj)Mk+i +ej+1
Mk+i)ϕ j+1,Mk+i(x)−∑

k

v j
k∑

l

gl−Mkϕ j+1,l (x)

= ∑
i∈C(M)

∑
k

((Svj)Mk+i −∑
l

gM(k−l)+iv
j
l )ϕ j+1,Mk+i(x)+∑

k

ej+1
k ϕ j+1,k(x).

SinceS is abounded nonlinearprediction operator of orderN+1, we get:

‖∑
k

((Svj)Mk+i − ∑
l

gM(k−l)+iv
j
l )ϕ j+1,Mk+i(x)‖Lp(Rd)

<∼ m− j/p‖Φi(∆N+1v j
·+p1

, · · · ,∆N+1v j
·+pq

)‖ℓp(Zd)

<∼ m− j/p‖Φ̄i(∆kv j
·+p̄1

, · · · ,∆kv j
·+p̄q̄

)‖ℓp(Zd)

<∼ m− j/p‖∆kv j‖
(ℓp(Zd))

rdk
.

The proof of (25) is thus complete. Note that we have used

‖Φi(∆N+1v j
·+p1

, · · · ,∆N+1v j
·+pq

)‖ℓp(Zd) = ‖Φ̄i(∆kv j
·+p̄1

, · · · ,∆kv j
·+p̄q̄

)‖ℓp(Zd), (27)
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whereΦ̄i is a bounded function in the sense of (7). Indeed, higher order finite differences
can be expressed as linear combinations of lower order finitedifferences. To prove (26), by
using the definition of the joint spectral radius, we note that for anyρp(S(k)) < ρ < m1/p,
for all n and allv we have:

‖(S(k))nv‖
(ℓp(Zd))

rdk
<∼ ρn‖v‖

(ℓp(Zd))
rdk
. (28)

It follows that

‖∆kv j‖
(ℓp(Zd))

rdk
≤ ‖(S(k)) j ∆kv0‖

(ℓp(Zd))
rdk
+

j

∑
l=1

‖(S(k)) j−l
∆kel‖

(ℓp(Zd))
rdk

<∼ ρ j‖∆kv0‖
(ℓp(Zd))

rdk
+

j

∑
l=1

ρ j−l‖∆kel‖
(ℓp(Zd))

rdk
.

Then putting as in [15],δ = ρm−1/p, this finally leads to:

m− j/p‖∆kv j‖
(ℓp(Zd))

rdk
<∼ δ j‖v0‖ℓp(Zd)+

j

∑
l=0

δ j−l m−l/p‖el‖ℓp(Zd).

Now, using the above lemma, we are able to prove the followinginverse theorem:

Theorem 2 Let S be a bounded nonlinear prediction operator of order N+1. Assume that
ρp(S(k))< m1/p, for some k≤ N+1 and that

‖v0‖ℓp(Zd)+ ∑
j>0

m− j/p‖ej‖ℓp(Zd) < ∞.

Then, the limit function v belongs to Lp(Rd) and

‖v‖Lp(Rd) ≤ ‖v0‖ℓp(Zd)+ ∑
j>0

m− j/p‖ej‖ℓp(Zd) (29)

Proof From estimates (25) and (26) one has, in particular

‖v j+1−v j‖Lp(Rd)
<∼ δ j‖v0‖ℓp(Zd)+

j+1

∑
l=1

δ j−l m−l/p‖el‖ℓp(Zd) (30)

Considering thatρp(S(k)) < m1/p and thenρp(S(k)) < ρ < m1/p, and then using (30), we
get:

‖v‖Lp(Rd) ≤ ‖v0‖Lp(Rd)+ ∑
j≥0

‖v j+1−v j‖Lp(Rd)

<∼ ‖v0‖ℓp(Zd)+ ∑
j≥0

δ j‖v0‖ℓp(Zd)+ ∑
j≥0

j+1

∑
l=1

δ j−l m−l/p‖el‖ℓp(Zd)

<∼ ‖v0‖ℓp(Zd)+ ∑
l>0

m−l/p‖el‖ℓp(Zd).

The last equality being obtained remarking that∑s≥0 δ s = 1
1−δ .
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Remark 4Usually, the convergence inLp is associated with the conditionρp(S(1))< m1/p.
With abounded nonlinearprediction operator of orderN+1, the convergence inLp(Rd) is
ensured providedρp(S(k))< m1/p, for somek≤ N+1. This remark is of interest since there
is no relation betweenρp(S(k)) andρp(S(k+1)). Thus, the novelty of the approach is, on the
one hand, that the property on the spectral radius has to be verified only for somek≤ N+1
but not necessarily fork = N+1 and, on the other hand, that the prediction operator does
not necessarily exactly reproduce polynomials (because ofLemma 1).

Similarly, an inverse theorem can be written in Besov spaces:

Theorem 3 Let S be a bounded nonlinear prediction operator of order N+1. Assume that
ρp(S(k))< m1/p−s/d for some s≥ N and some k≤ N+1, and also that(v0,e1,e2, . . .) satis-
fies

‖v0‖ℓp(Zd)+‖(m(s/d−1/p) j‖(ej
k)k∈Zd‖ℓp(Zd)) j>0‖ℓq(Zd) < ∞.

Then, the limit function v belongs to Bs
p,q(R

d) and

‖v‖Bs
p,q(R

d)
<∼ ‖v0‖ℓp(Zd)+‖(m(s/d−1/p) j‖(ej

k)k∈Zd‖ℓp(Zd)) j>0‖ℓq(Zd). (31)

The proof of (31) is similar to that of Theorem 5.4 of [24], so we will not expand on this
here.

8 Stability in Lp and Besov spaces

In applications, the multiscale data may be corrupted by some process. Since our model is
nonlinear the inverse theorems does not ensure the stability. We develop here the stability re-
sults for our new nonlinear formalism. To this end, we consider two data sets(v0,e1,e2, · · ·)
and(ṽ0, ẽ1, ẽ2, · · ·) corresponding to two reconstruction processes:

v j = Svj−1+ej andṽ j = Sṽ j−1+ ẽj .

In that context, we recall the definition ofv as the limit ofv j(x) = ∑
k∈Zd

v j
kϕ j,k(x), with

ϕ j,k(x) = ϕ(M jx−k) (and similarly forṽ).
In this section we assume thatS obeys Definition 3, that isΦi is a bounded Lipschitz

function.

8.1 Stability inLp spaces

First, we study the stability of the multiscale representation in Lp(Rd), which is stated by
the following theorem:

Theorem 4 Let S be a Lipschitz and bounded nonlinear prediction operator of order N+1,
and suppose that there exist aρ < m1/p and an n∈ N such that:

‖(S(k))nv− (S(k))nw‖
(ℓp(Zd))

rdk
≤ ρn‖v−w‖

(ℓp(Zd))
rdk

∀v,w∈ (ℓp(Zd))rd
k ,

for some k≤ N+1. Assume also that vj andṽ j converge to v and̃v in Lp(Rd) respectively.
Then, we have:

‖v− ṽ‖Lp(Rd)
<∼ ‖v0− ṽ0‖Lp(Rd)+ ∑

l>0

m−l/p‖el − ẽl‖ℓp(Zd). (32)



14 Basarab Mateı̈ and Sylvain Meignen

Proof We note that for allv:

‖∆k(vn− ṽn)‖
(ℓp(Zd))

rdk
≤ ‖S(k)∆kvn−1−S(k)∆kṽn−1‖

(ℓp(Zd))
rdk
+‖∆k(en− ẽn)‖

(ℓp(Zd))
rdk

≤ ‖(S(k))n∆kv0− (S(k))n∆kṽ0‖
(ℓp(Zd))

rdk
+

n

∑
l=1

‖(Sk)n−l ∆kel − (Sk)n−l ∆kẽl‖
(ℓp(Zd))

rdk

≤ ρn‖∆kv0−∆kṽ0‖
(ℓp(Zd))

rdk
+

n

∑
l=1

ρn−l‖el − ẽl‖ℓp(Zd)

After j = ns iterations of the above inequality, we get:

‖∆k(v j − ṽ j)‖
(ℓp(Zd))

rdk
≤ ρ j‖∆k(v0−v0)‖

(ℓp(Zd))
rdk
+

j

∑
l=1

ρ j−l‖el − ẽl‖ℓp(Zd).

Then, for anyj we may write:

‖∆k(v j − ṽ j)‖
(ℓp(Zd))

rdk
<∼ ρ j‖∆k(v0−v0)‖

(ℓp(Zd))
rdk
+

j

∑
l=1

ρ j−l‖el − ẽl‖ℓp(Zd).

Finally, by using the same reasoning as in the proof of (26), we get:

m− j/p‖∆k(v j − ṽ j)‖
(ℓp(Zd))

rdk
<∼ δ j‖v0− ṽ0‖ℓp(Zd)+

j

∑
l=1

δ j−l m−l/p‖el − ẽl‖ℓp(Zd)(33)

Now, note that:

‖v −ṽ‖Lp(Rd) ≤ ‖v0− ṽ0‖Lp(Rd)+ ∑
j>0

‖v j − ṽ j −v j−1+ ṽ j−1‖Lp(Rd)

≤ ‖v0− ṽ0‖Lp(Rd)+ ∑
j>0

m− j/p‖Svj−1−Sṽ j−1+ej − ẽj −Sl v j−1+Sl ṽ j−1‖ℓp(Zd)

≤ ‖v0− ṽ0‖ℓp(Zd)+

∑
j>0,i∈C(M)

m− j/p‖Φ̄i(∆kv j−1
.+p̄1

, · · · ,∆kv j−1
.+p̄q̄

)− Φ̄i(∆kṽ j−1
.+p̄1

, · · · ,∆kṽ j−1
.+p̄q̄

)+ej − ẽj‖ℓp(Zd)

At this stage, we use the Lipschitz property ofΦ̄i to get

‖v− ṽ‖Lp(Rd)
<∼ ‖v0− ṽ0‖ℓp(Zd)+ ∑

j>0
m− j/p

(

‖∆k(v j−1− ṽ j−1)‖
(ℓp(Zd))

rdk
+‖ej − ẽj‖ℓp(Zd)

)

<∼ ‖v0− ṽ0‖ℓp(Zd)+ ∑
j>0

m− j/p‖ej − ẽj‖ℓp(Zd),

the last inequality being obtained using (33) and then making the same computation as in
Theorem 2.

The convergence and the stability of the nonlinear multiscale decomposition is thus based
on the study ofS(k) for somek. On the contrary, in [15], the study is carried out inL∞ and
the stability and the convergence are proved through the study of two different spectral radii.
More precisely, the convergence of the multiscale representation is based on the study of the
joint spectral radius ofS(k) while the stability is based on the study of the joint spectral
radius of the differential ofS(k) (notedDS(k)). Such a differential may sometimes be hard
to compute. To remark that the nonlinear prediction operator in Lipschitz and bounded may
simplifies the proofs for convergence and for stability. However, we are aware that the more
complex mathematical framework developed in [15] aims at dealing with a wider class of
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prediction operators (for instance, the median interpolating scheme studied in [15] is not a
Lipschitz and bounded prediction operator).

Furthermore, we should also mention that a stability theorem was given in [3] for the
scheme defined in (23) using the same kind of argument. However, the above theorem is
more general in the sense that Lipschitz nonlinear prediction operators are not necessarily
associated with an interpolatory multiscale representation.

8.2 Stability in Besov spaces

In view of the inverse inequality (31), to show the stability, it seems natural to seek an
inequality of type:

‖v− ṽ‖Bs
p,q(R

d)
<∼ ‖v0− ṽ0‖ℓp(Zd)+‖(m(s/d−1/p) j‖ej

. − ẽj
. ‖ℓp(Zd)) j>0‖ℓq(Zd). (34)

We now state without a proof a stability theorem in Besov space Bs
p,q(R

d):

Theorem 5 Let us assume that S is a Lipschitz nonlinear prediction operator of order N+1
such that there exist an n inN and aρ ≤ m1/p−s/d for some s> N such that:

‖(S(k))nv− (S(k))nw‖
(ℓp(Zd))

rdk
≤ ρn‖v−w‖

(ℓp(Zd))
rdk

∀v,w∈ (ℓp(Zd))rd
k ,

for some k≤ N+1. Also assume that vj andṽ j converge to v and̃v in Bs
p,q(R

d) respectively.
Then, we have:

‖v− ṽ‖Bs
p,q(R

d)
<∼ ‖v0− ṽ0‖ℓp(Zd)+‖(mj(s/d−1/p)‖(ej

k− ẽj
k)k∈Zd‖ℓp(Zd)) j>0‖ℓq(Zd). (35)

The proof is the same as that of Theorem 6.2 of [24], except that we do not require the exact
polynomial reproduction property.

9 (A , I)-Compatible Nonlinear Prediction Operators

Given families of multi-indicesI and of vectorsA , we define:

∆AI =
{

∆ i1
a1
· · ·∆ ip

ap, ak ∈ A , ik ∈ I
}

.

In other words,∆AI is a difference operator computed with respect to the familyof vectors
A and orders given byI . Then, we introduce the definition of bounded or Lipschitz(A , I)-
compatible nonlinear prediction operators:

Definition 5 A nonlinear prediction operatorS is called bounded (resp. Lipschitz)(A , I)-
compatible if there exists a local and linear prediction operatorSl such thatScan be written
under the following form:

SvMk+i = Sl vMk+i +Ψi(∆AI vk+p1 , · · · ,∆AI vk+pq) ∀i ∈ C(M)

where{p1, · · · , pq} is a fixed set,Ψi are bounded functions (resp. Lipschitz functions satis-

fying Ψi(0) = 0) and if the operatorSl is such that there exists an operatorSAI
l satisfying:

∆AI Sl v = SAI
l ∆AI v. (36)
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Remark 5From the definition ofS, it is clear that there exists an operatorSAI . Note also that
assuming equation (36) is true, the hypothesis of polynomial reproduction forSl is no longer
necessary. Indeed, we directly assume that the operatorSAI

l uses the same differences as that
used in the perturbation functionΦi . We, also, remark that bounded (resp. Lipschitz) non-
linear prediction operators of orderN+1 are bounded (resp. Lipschitz)(A , I)-compatible
with I = {i; |i|= N+1} andA = {e1, . . . ,ed}.

Note that we can then extend all the notions described in the previous sections, i.e., multi-
scale representation, joint spectral radius ofSAI , convergence and stability theorems, replac-
ing bounded (resp. Lipschitz) nonlinear prediction operators by bounded (resp. Lipschitz)
(A , I)-compatible nonlinear prediction operators. Indeed, if one computes‖v j+1−v j‖ as in
Lemma 1 whenv j is computed using an(A , I)-compatible prediction operator, it is clear
that the result holds provided that∆kv j is replaced by∆AI v j . Then, to prove the conver-
gence, one just needs to studyρp(SAI ) instead ofρp(S(k)).

The interest of using the notion of(A , I)-compatibility is to provide proofs of con-
vergence where the classical approach fails, as shown in thenext section. The(A , I)-
compatibility also enables to significantly reduce the number of computed differences to
compute the joint spectral radius. From a practical point ofview, given a prediction operator
we first identify its type (i.e. bounded nonlinear or bounded(A , I)-compatible for instance)
and then proceed to the analysis of the corresponding multiscale representation.

10 Applications

10.1 Convergence and Stability of One-Dimensional Multiscale Representation: the PPH
scheme

In one dimension, the notion of(A , I)-compatibility does not make sense. Our point is to
give an illustration of the new convergence and stability theorems (2 and 4 respectively). The
novelty of the proposed approach is two-fold. First, it enables to characterize the stability in
Lp not only inL∞ as in [15] (Theorem 2.3) or in [5] (Proposition 1, for the PPH scheme).
Second, the convergence and the stability of the multiscalerepresentation is based on the
study ofS(k) for somek≤ N+1, while in [15] the convergence inL∞ is related to the study
of ρ∞(S(k)) for somek and the stability is related toρ∞(DS(k)) whereD stands for the Frêchet
differential. This latter joint spectral radius is harder to study thanρ∞(S(k)) and requires that
S(k) is indeed differentiable. However, we must confess that theclass of prediction operators
studied in [15] is wider therefore the proofs for the stability are different.

Now, let us give an illustration of how Theorems 2 and 4 apply to the PPH-scheme (we
will then see how the proof of convergence extends to the slightly modified power-P scheme
introduced in (19)). Since the PPH-scheme is bounded nonlinear of order 2, the convergence
in Lp occurs whenρp(S(k))< 21/p for k= 1 or k= 2.

Here, we study the convergence of the multiscale representation associated to the PPH-
scheme by finding an upper bound forρp(S(2)), whose expression is particularly simple
since:

S(2)w2i =
1
4

H(wi−1,wi)

S(2)w2i+1 =
wi

2
− 1

8
(H(wi−1,wi)+H(wi ,wi+1)) . (37)
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Note that proofs of convergence and stability inL∞ are available in [5]. Based on the simple
expression ofS(2), we are able to prove new convergence results for the multiscale represen-
tation associated to the PPH-scheme inLp for p≥ 1 and also new stability results forp> 1
(see Appendix B for details).

If one considers the modified power-P scheme defined usingH̃q (see (19)) and assumes
that(wi ,wi+1) belongs toR2 \{(x,x), |x| ≤

√
2ε} (see section 5.5), theñHq is Lipschitz on

that set. Now, remarking that|H̃q(x,y)| ≤ max(|x|, |y|) and making the same reasoning as
in the proof of the convergence of the multiscale representation associated with the PPH-
scheme (see Appendix B), we obtain that the modified power-P scheme leads to a convergent
multiscale representation inLp(R) for any p≥ 1.

10.2 Convergence and Stability of One-Dimensional Multiscale Representations: the
WENO Case

We consider here the model defined in section 5.4. In this case, one can show the following
lemma:

Lemma 2 One has

sup
u,w∈ℓ∞(Zd)

‖S(1)(u)S(1)(w)‖ℓ∞(Zd) < 1

and thereforeρ∞(S(1)) < 1.

The proof is identical to that of Lemma 4 of [9], therefore we do not expand on it here. The
multiscale representation based on the proposed WENO modelis therefore convergent in
L∞.

To study the stability of the WENO scheme, we modify it a little into

v̂ j
2k+1,w− v̂ j

2k+1 =
ω
16

(

α j
k,1∆4v j−1

k−1+α j
k,−1∆4v j−1

k−2

)

. (38)

We can then prove the stability of the multiscale representation using the first order
difference. Indeed, we have:

S(1)∆v2k−S(1)∆u2k = S(1)l ∆v2k−S(1)l ∆u2k+
ω
16

(

(∆4vk−2−∆4uk−2)+
(

α(∆4vk−2,∆4vk−1)(∆4vk−1−∆4vk−2)−α(∆4uk−2,∆4uk−1)(∆4uk−1−∆4uk−2)
))

Then we use the fact thatρ∞(S
(1)
l ) ≤ 5

8 [9] and thatα(x,y)(x− y) is a Lipschitz function
whenα = 1

1+( y
x )

β , the Lipschitz constant being smaller than 1+2β (to obtain this result it

suffices to compute the partial derivative ofα with respect tox andy). Writing the fourth
order differences in terms of first order differences, we finally get:

‖S(1)∆v2k−S(1)∆u2k‖ℓ∞(Zd) ≤ (
5
8
+

ω
2
+ω(1+2β ))‖∆vk−∆uk‖ℓ∞(Zd).

From this, we deduce that the multiscale representation is stable in L∞, as soon asω <
3
4

1
3+4β . How to use such new stable WENO representation is beyond thescope of the present

article.
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10.3 Convergence and Stability of Bidimensional Multiscale Representations Based on
PPH-scheme

We study the convergence and the stability of bidimensionalPPH multiscale representations
where the prediction operator is given by:

v̂ j
Mk+e1

=
v j−1

k +v j−1
k+Me1

2
− ω

8
H(∆2

Me1
v j−1

k ,∆2
Me1

v j−1
k−Me1

)

v̂ j
Mk = v j−1

k . (39)

for some 0< ω < 1. To considerω < 1 instead ofω = 1 as in (22) will appear clearer a
bit later. In Appendix C, we show, using the fact that the nonlinear prediction operator is
Lipschitz(A , I)-compatible (withA andI being defined there), the following new results:
the associated multiscale representation is convergent inL∞ as soon asω < 1, convergent in
Lp for any p≥ 1 andω = 1, while the multiscale representation is proved to be stable for
ω < 1/2.

The prediction operator defined in (23) is also a typical example of (A , I)-compatible
bounded nonlinearprediction operator. In that case, by constructionA = (e1,e2,Me1) and
alsoI = {(2,0,0),(0,2,0),(0,0,2)}. As a proof of stability inL∞ was already given in [3],
we do not expand on it here.

11 Conclusion

In this paper, we have introduced a new formalism for nonlinear and non-separable mul-
tiscale representations. The introduced formalism includes some classical nonlinear multi-
scale representations such as WENO and those based on PPH or power-P schemes. In our
context, the nonlinear prediction operators are perturbations of some linear prediction op-
erator. These perturbations are modeled by bounded or Lipschitz functions depending on
finite differences whose order depends on the degree of the polynomials reproduced by the
linear prediction operator plus one. We called these particular kind of prediction operators
bounded or Lipschitz nonlinear prediction operators. After having illustrated the proposed
formalism on one and multi-dimensional cases, we stated theconvergence theorems inLp

and Besov spaces for multiscale representations based on bounded nonlinear prediction op-
erator. We then stated the stability theorems in these spaces for multiscale representations
based on Lipschitz and bounded nonlinear prediction operators. We also introduced the
notion of bounded (resp. Lipschitz)(A , I)-compatible prediction operators which behaves
like bounded (resp. Lipschitz) nonlinear ones in terms of the convergence and the stability
of the associated multiscale representation. We saw in applications that to use the(A , I)-
compatibility of the prediction operators enabled to give some new proofs of convergence
and stability inLp of the corresponding nonlinear multiscale representation. In terms of per-
spectives, we are currently investigating how to apply the model of Lipschitz and bounded
nonlinear prediction operator to design new convergent andstable multiscale representations
with application to image compression.

Appendix A

To consider the interpolation of the average onI j−1,k+n, n=−N, · · · ,N using the polynomial
p2N is equivalent to consider the primitiveP2N of p2N such thatP̄2N = 2 j−1P2N interpolates
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y0 = 0,y1 = v j−1
k−N,y2 = y1+v j−1

k−N+1, · · · ,y2N+1 = y2N +v j−1
k+N respectively atx0 = 2− j+1(k−

N),x1 = 2− j+1(k−N+1),x2 = 2− j+1(k−N+2), · · · ,x2N+1 = 2− j+1(k+N+1). Similarly,
the interpolation of the average computed on the intervalsI j−1,k+n, n=−N+1, · · · ,N+1 us-
ing polynomialp2N,1 is equivalent to consider its primitiveP2N,1 such thatP̄2N,1 = 2 j−1P2N,1

interpolates ˜y1 = 0, ỹ2 = v j−1
k−N+1, ỹ3 = ỹ2 + v j−1

k−N+2, · · · , ỹ2N+2 = ỹ2N+1 + v j−1
k+N+1 respec-

tively at x1,x2, · · · ,x2N+2 = 2− j+1(k+N+2). Using the Newton form for each polynomial
P̄2N and P̄2N,1 and remarking that the divided differences are such that:[ỹ1, ỹ2, · · · , ỹk] =
[y1,y2, · · · ,yk] for all k≤ 2N+2, we write:

P̄2N,1(x)− P̄2N(x) = −v j−1
k−N +[y0, · · · ,y2N+2](x2N+2−x0)

2N+1

∏
i=1

(x−xi)

= −v j−1
k−N +∆2N+1v j−1

k−N
1

(2N+1)!(2− j+1)2N+1

2N+1

∏
i=1

(x−xi).

In that framework, we also have:

v j−1
k = P̄2N(2− j+1(k+1))− P̄2N(2− j+1k) = P̄2N,1(2− j+1(k+1))− P̄2N,1(2− j+1k).

Thecenteredprediction following (13) is:

v̂ j
2k = 2

(

P̄2N(2
− j+1(k+1/2))− P̄2N(2

− j+1k)
)

v̂ j
2k+1 = 2

(

P̄2N(2
− j+1(k+1))− P̄2N(2

− j+1(k+1/2)
)

.

Considering the leading coefficient of the polynomialP2N, one can check that the corre-
sponding prediction operator reproduces polynomials of degree 2N+ 1. The definition of
v̂ j

2k,1 andv̂ j
2k+1,1 are identical to that of ˆv j

2k andv̂ j
2k+1 replacingP2N by P2N,1. Then, comput-

ing the difference betweenP2N,1 andP2N and applying it atx= 2− j k, we get:

v̂ j
2k,1− v̂ j

2k = ∆2N+1v j−1
k−N(−1)N−1 1

24N−1

(

2N−1
N

)

Appendix B

In this section, we study the convergence and the stability in Lp(Rd) of the multiscale rep-
resentation associated with the one-dimensional PPH-scheme. To start with, we may write,
assuming thatp≥ 1:

|S(2)w2i |p ≤ 1
4p max(|wi−1|, |wi|)p

|S(2)w2i+1|p ≤
(

1
2
|wi |+

1
8

max(|wi−1|, |wi|)+
1
8

max(|wi|, |wi+1|)
)p

≤
(

1
2
|wi |+

1
4
(
1
2

max(|wi−1|, |wi|)+
1
2

max(|wi|, |wi+1|))
)p

≤ 1
2
|wi |p+

1
4

1
2p max(|wi−1|, |wi|)p+

1
4

1
2p max(|wi|, |wi+1|)p.

(40)
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The last inequality being obtained because we have a convex combination. Now, to obtain
an upper bound forρp(S(2)), we note:

‖S(2)w‖p
ℓp(Zd)

≤ ∑
i∈Z

1
4p max(|wi−1|, |wi|)p+

1
2
|wi|p+

1
4

1
2p max(|wi−1|, |wi |)p+

1
4

1
2p max(|wi|, |wi+1|)p.

The largest coefficient in front of|wi |p in the above sum is obtained when|wi | is larger
than|wi−1| and|wi+1|. In such a case, one can check that the coefficient in front of|wi |p is
2
4p +

1
2 +

1
2p , which means that‖S(2)‖ℓp(Zd)→ℓp(Zd) ≤ ( 1

2 +
1
2p +

2
4p )

1
p . This in turn implies

that the multiscale representation is convergent inLp provided that12 +
1
2p +

2
4p < 2, which

is true for anyp≥ 1.
As far as the stability of the scheme inLp is concerned we may write (assumingp≥ 1),

|S(2)w2i −S(2)v2i |p ≤ 1
2p max(|wi−1−vi−1|, |wi −vi |)p

|S(2)w2i+1−S(2)v2i+1|p ≤ 1
2
|wi −vi |p+

1
2

max(|wi−1−vi−1|, |wi+1−vi+1|)p,

the last inequality being a consequence of Lemma 2 of [5]. Now, as in the study of the
convergence, we write:

‖S(2)w−S(2)v‖p
ℓp(Zd)

≤ ∑
i∈Z

1
2p max(|wi−1−vi−1|, |wi −vi |)p+

1
2
|wi −vi |p+

1
2

max(|wi−1−vi−1|, |wi+1−vi+1|)p.

The largest coefficient in front of|wi − vi |p in the above sum is obtained when|wi − vi | is
larger than|wi+r −vi+r | r = −2,−1,2. In such a case, one can check that the coefficient in
front of |wi −vi |p in the right term of the above inequality is3

2 +
1
2p , so that we may deduce:

‖S(2)w−S(2)v‖ℓp(Zd) ≤ (
3
2
+

1
2p )

1/p‖w−v‖ℓp(Zd)

which proves that the scheme is stable wheneverp> 1 (i.e. 3
2 +

1
2p < 2, sincem= 2 in that

case), using Theorem 8.1.

Appendix C

We already noticed that the nonlinear prediction operator defined in (39) is bounded. We
now remark that this prediction operator is bounded(A , I)-compatible withA = {e1,Me1}
andI = {(0,2),(2,0)}, whereM is the quincunx matrix. Therefore, to prove the convergence
of the multiscale representation, we study the joint spectral radius ofSAI . To this end, we
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compute the differences of order 2 in the directions{e1,Me1}, which are given by:

∆2
e1

v̂ j
Mk =

ω
4

H(∆2
Me1

v j−1
k ,∆2

Me1
v j−1

k−Me1
)

∆2
e1

v̂ j
Mk+e1

=
1
2

∆2
Me1

v j−1
k

− ω
8

H(∆2
Me1

v j−1
k ,∆2

Me1
v j−1

k−Me1
)

− ω
8

H(∆2
Me1

v j−1
k+Me1

,∆2
Me1

v j−1
k )

∆2
Me1

v̂ j
Mk = ∆2

e1
v j−1

k

∆2
Me1

v̂ j
Mk+e1

=
1
2
(∆2

e1
v j−1

k +∆2
e1

v j−1
k+Me1

)+
ω
4

H(∆2
Me1

v j−1
k+e1

,∆2
Me1

v j−1
k+e1−Me1

)

− ω
8

H(∆2
Me1

v j−1
k ,∆2

Me1
v j−1

k−Me1
)

− ω
8

H(∆2
Me1

v j−1
k+2e1

,∆2
Me1

v j−1
k+2e1−Me1

). (41)

We now study more in detail∆2
e1

v j
Mk+e1

, the following cases can appear:

1. ∆2
Me1

v j−1
k ∆2

Me1
v j−1

k−Me1
> 0 and∆2

Me1
v j−1

k+Me1
∆2

Me1
v j−1

k > 0 we have

|∆2
e1

v̂ j
Mk+e1

| ≤

max(
1
2
|∆2

Me1
v j−1

k |, ω
8
|H(∆2

Me1
v j−1

k ,∆2
Me1

v j−1
k−Me1

)+H(∆2
Me1

v j−1
k+Me1

,∆2
Me1

v j−1
k )|)

2. ∆2
Me1

v j−1
k ∆2

Me1
v j−1

k−Me1
≤ 0 and∆2

Me1
v j−1

k+Me1
∆2

Me1
v j−1

k ≤ 0 we have

|∆2
e1

v̂ j
Mk+e1

| = 1
2

∆2
Me1

v j−1
k

3. ∆2
Me1

v j−1
k ∆2

Me1
v j−1

k−Me1
≤ 0 and∆2

Me1
v j−1

k+Me1
∆2

Me1
v j−1

k > 0 we have

|∆2
e1

v̂ j
Mk+e1

| ≤ max(
1
2
|∆2

Me1
v j−1

k |, ω
8
|H(∆2

Me1
v j−1

k+Me1
,∆2

Me1
v j−1

k )|)

A similar equation is obtained assuming
∆2

Me1
v j−1

k ∆2
Me1

v j−1
k−Me1

> 0 and∆2
Me1

v j−1
k+Me1

∆2
Me1

v j−1
k ≤ 0.

Now, remarking as previously that|H(x,y)| ≤ max(|x|, |y|), we immediately obtain that

‖∆2
e1

v̂ j‖∞ ≤ 1
2
‖∆2

Me1
v j−1‖∞

‖∆2
Me1

v̂ j‖∞ ≤ ‖∆2
e1

v j−1‖∞ +
ω
2
‖∆2

Me1
v j−1‖∞.

From these inequalities we immediately deduce thatρ∞(SAI ) ≤
√

1+ω
2 < 1, which proves

that the bidimensional PPH defined by (39) is convergent inL∞.
For theLp convergence, we do not need the restriction onω and we consider the model

defined by (22), therefore we study:

‖∆AI v̂ j‖p
(ℓp(Zd))2

= ‖SAI ∆AI v j−1‖p
(ℓp(Zd))2

= ∑
k∈Z2

|∆2
Me1

v̂ j
Mk+e1

|p+ |∆2
Me1

v̂ j
Mk|p+ |∆2

e1
v̂ j

Mk|p+ |∆2
e1

v̂ j
Mk+e1

|p.
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As in the one-dimensional study, and assumingp≥ 1, we have the upper bound (using the
property of convex functions):

|∆2
Me1

v̂ j
Mk+e1

|p ≤ 1
4

1
2p |∆

2
e1

v j−1
k |p+ 1

4
1
2p |∆

2
e1

v j−1
k+Me1

|p

+
1
4

max(|∆2
Me1

v j−1
k+e1

|, |∆2
Me1

v j−1
k+e1−Me1

|)p

+
1
8

max(|∆2
Me1

v j−1
k |, |∆2

Me1
vk−Me1| j−1)p

+
1
8

max(|∆2
Me1

v j−1
k+2e1

|, |∆2
Me1

vk+2e1−Me1| j−1)p

|∆2
Me1

v̂ j
Mk|p ≤ |∆2

e1
v j−1

k |p

|∆2
e1

v̂ j
Mk|p ≤ 1

4p max(|∆2
Me1

v j−1
k |, |∆2

Me1
v j−1

k−Me1
|)p

|∆2
e1

v̂ j
Mk+e1

|p ≤ 1
2
|∆2

Me1
v j−1

k |p

+
1
2p

1
4

max(|∆2
Me1

v j−1
k |, |∆2

Me1
v j−1

k−Me1
|)p

+
1
2p

1
4

max(|∆2
Me1

v j−1
k+Me1

|, |∆2
Me1

v j−1
k |)p.

Now, as in the one-dimensional case, we consider the largestpossible coefficients in front
of each differences, to obtain:

‖SAI ∆AI v j−1‖p
(ℓp(Zd))2

≤ ∑
k∈Z2

(1+
1

2×2p )|∆
2
e1

v j−1
k |p+(1+

2
4p +

1
2p )|∆

2
Me1

v j−1
k |p

≤ max(1+
1

2×2p ,1+
1
2p +

2
4p )‖∆AI v j−1‖p

(ℓp(Zd))2

Recalling thatm= 2, we get theLp convergence and stability as soon as max(1+ 1
2×2p ,1+

1
2p +

2
4p )< 2, which is always true forp> 1.

To finish with, let us study the stability of the PPH-scheme defined by (39) inLp. We
may indeed write:

|∆2
e1
(v̂ j

Mk− ˆ̃v j
Mk)|p ≤

(ω
2

)p
max(|∆2

Me1
(v j−1

k − ṽ j−1
k )|, |∆2

Me1
(v j−1

k−Me1
− ṽ j−1

k−Me1
)|)p

|∆2
e1
(v̂ j

Mk+e1
− ˆ̃v j

Mk+e1
)|p ≤ 1

2
|∆2

Me1
(v j−1

k − ṽ j−1
k )|p

+
ω p

4

(

max(|∆2
Me1

(v j−1
k − ṽ j−1

k )|, |∆2
Me1

(v j−1
k−Me1

− ṽ j−1
k−Me1

|)p

+ max(|∆2
Me1

(v j−1
k+Me1

− ṽ j−1
k+Me1

)|, |∆2
Me1

(v j−1
k − ṽ j−1

k )|)p
)

|∆2
Me1

(v̂ j
Mk− ˆ̃v j

Mk)|p ≤ |∆2
e1
(v j−1

k − ṽ j−1
k )|p

|∆2
Me1

(v j
Mk+e1

− ˆ̃v j
Mk+e1

)|p ≤ 1
4(2p)

(|∆2
e1
(v j−1

k − ṽ j−1
k )|p+ |∆2

e1
(v j−1

k+Me1
− ṽ j−1

k+Me1
)|p)+ (2ω)p

8
×

(

2max(|∆2
Me1

(v j−1
k+e1

− ṽ j−1
k+e1

)|, |∆2
Me1

(v j−1
k+e1−Me1

− ṽ j−1
k+e1−Me1

)|)p

+ max(|∆2
Me1

(v j−1
k − ṽ j−1

k )|, |∆2
Me1

(v j−1
k−Me1

− ṽ j−1
k−Me1

)|)p

+ max(|∆2
Me1

(v j−1
k+2e1

− ṽ j−1
k+2e1

)|, |∆2
Me1

(v j−1
k+2e1−Me1

− ṽ j−1
k+2e1−Me1

)|)p
)
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From this we deduce that:

‖∆AI (v̂ j−− ˆ̃v j)‖p
(ℓp(Zd))2

≤ ∑
k∈Z2

(1+
1

2×2p )|∆
2
e1

v j−1
k −∆2

e1
ṽ j−1

k |p+
(

ω p+(2ω)p+2
(ω

2

)p)

|∆2
Me1

v j−1
k −∆2

Me1
ṽ j−1

k |p

≤ max

(

1+
1

2(2p)
,ω p(1+2p+2

1
2p )

)

‖∆AI (v j−1− ṽ j−1)‖p
(ℓp(Zd))2

Since max
(

1+ 1
2(2p) ,ω

p(1+2p+2 1
2p )

)

< 2 for all p≥ 1 as soon asω < 1/2, we deduce

that the scheme defined by (39) leads in that case to a stable multiscale representation.
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