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Abstract- The modeling of sample distributions with generalized Gaussian density (GGD) has

received a lot of interest. Most papers justify the existence of GGD parameters through the

asymptotic behavior of some mathematical expressions (i.e. the sample is supposed to be

large). In this paper we show that the computation of GGD parameters on small samples is not

the same as on larger ones. In a maximum likelihood framework, we exhibit a necessary and

sufficient condition for the existence of the parameters. We derive an algorithm to compute

them and then compare it to some existing methods on random images of different sizes.
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I. INTRODUCTION

The modeling of probability density distributions of coefficients produced by the discrete cosine

transform [4] [8], by wavelet transform subbands [9] [3] [13] [15] or by steerable pyramid transform

algorithms [12] may be efficiently achieved by adaptively adjusting the parameters of a generalized

Gaussian density (GGD) function. Applications of the modeling of subband coefficients with GGD range

from texture analysis [15] [3] [13] and image denoising [10] to video coding [11]. The estimation of

GGD parameters may be carried out either by use of the moment method [3] [13], entropy matching

[2] or in a maximum likelihood (ML) framework [15]. In all these approaches, the existence and the

uniqueness of the parameters are based on asymptotic behavior, that is the sample is supposed to be

sufficiently large. However, in signal and image processing, we often deal with small samples for which

the existence of the parameters is unknown. In this paper, after recalling the two main approaches to

compute GGD parameters in section II (moment method and ML framework), we give a necessary and

sufficient condition for the existence of the parameters in a ML framework (section III). Section IV is

devoted to the derivation of a new algorithm to compute the parameters in a ML framework. In section V,

we compare our method with the moment method (MM) used in [9] [3] [13] and to the ML framework

proposed in [15]. The comparison is done on random images of different sizes for which the theoretical

GGD parameters are known.

II. GGD PARAMETERS ESTIMATION

We present, in the following, the two main approaches used in image processing for GGD parameters

estimation. We assume that a sample XL = (x1, x2, · · · , xL) is such that each xi is a realization of the

variable x whose density is given by:

Pα,β(x) =
β

2αΓ( 1
β )

e−( |x|

α
)β

(1)

The problem we address is the estimation of (α, β) given the sample XL.

A. GGD Parameters Estimation with the Moment Method

A first estimator of GGD parameters can be computed with the first two moments m1 =
∫

|x|Pα,β(x)dx

and m2 =
∫

|x|2Pα,β(x)dx through α = m1
Γ( 1

β
)

Γ( 2

β
)

and β = F−1
(

m2
1

m2

)

, where F (x) =
Γ2( 2

x
)

Γ( 3

x
)Γ( 1

x
)

and

Γ(t) =
∫ +∞
0 e−xxt−1dx. One often uses m̂1 = 1

L

∑

i
|xi| and m̂2 = 1

L

∑

i
|xi|

2 as estimators of m1 and

m2 respectively leading to α̂MM = m̂1
Γ( 1

β̂
)

Γ( 2

β̂
)

and β̂MM = F−1( m̂2
1

m̂2
) where the index MM stands for the

moment method. This approach imposes that m̂2
1

m̂2
be smaller than 3

4 . Indeed, with the so-called ”Euler
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infinite product” [1], log Γ(z) = −γz− log(z)+
∞
∑

k=1

[

z
k − log(1 + z

k )
]

, where γ is the Euler constant, we

can write logF ( 1
x) = log(3

4)−
∞
∑

k=1

log
(1+2 x

k
)2

(1+3 x

k
)(1+ x

k
) = log(3

4)−G(x). Since lim
x→0

G(x) = 0 and G(x) > 0,

F (x) is strictly inferior to 3
4 and lim

x→+∞
F (x) = 3

4 . The question we ask is: can m̂2
1

m̂2
be superior to 3

4 for

some L ? We will see that (α̂MM , β̂MM) may not exist for small L.

B. GGD Parameters Estimator in a ML Framework

An alternative approach is to consider the log-likelihood (LL) function under independence hypothesis:

L(XL, α, β) =

L
∑

i=1

log (Pα,β(xi)) (2)

and to solve the associated Euler-Lagrange (EL) equations (the derivatives of L with respect to α and β

equal 0) to find the estimators [15]. Given β̂, this defines a unique estimator α̂ =

(

β̂
L

∑

i
|xi|

β̂

) 1

β̂

(using

the derivative with respect to α) while β̂ satisfies:

g(β̂) = 1 +
Ψ( 1

β̂
)

β̂
−

L
∑

i=1
|xi|

β̂ log |xi|

L
∑

i=1
|xi|β̂

+

log

(

β̂
L

L
∑

i=1
|xi|

β̂

)

β̂
= 0 (3)

where [7]:

Ψ(x) =
d log(Γ(x))

dx
= −γ −

1

x
+

+∞
∑

k=1

(

1

k
−

1

k + x

)

. (4)

This equation is shown to have a unique root in probability (when L tends to infinity) [14] which

corresponds to the maximum of the LL function. Therefore for large L, solving the EL equations is the

same as finding the maximum of the LL function, at least in probability. However, when L is finite,

we show that g, defined in (3), has either no root or at least two roots. In other words, solving the EL

equations is no longer equivalent to finding the maximum of the LL function. Indeed, the mathematical

study of g leads to the following theorem:

Theorem 1: for any sample (x1, · · · , xL), g satisfies lim
β→0

g(β) = 1
2 and lim

β→+∞
g(β) = 0+. Therefore,

g has no root or at least two roots.

The proof is given in Appendix A. This brings up the important issue: is it possible to find a ML

estimator? We answer this question in the following way: we find a necessary and sufficient condition

for the existence of a ML estimator.
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III. ON THE EXISTENCE OF A ML ESTIMATOR

A. A Preliminary Result

Note that we can write:

βg(β) =

(

β + Ψ(
1

β
) + log(β)

)

−











L
∑

i=1
|xi|

β log |xi|
β

L
∑

i=1
|xi|β

− log(
1

L

L
∑

i=1

|xi|
β)











= µ(β) − λ(β). (5)

Theorem 2: µ is strictly increasing and maps ]0, +∞[ to ]0, +∞[ while λ is strictly increasing and

maps ]0, +∞[ to ]0, log( L
#I )[, where I is the set of indices such that |xi| = max

j=1,...,L
|xj |, for i ∈ I and

#I is the cardinal of I .

The proof is given in Appendix B.

B. Necessary and Sufficient Condition for the Existence of a ML Estimator

The LL function (2) with fixed β has a unique maximum at α̂ML(β) =

(

β
L

L
∑

i=1
|xi|

β

)

1

β

. Therefore,

we study

h(β) = L (XL, α̂ML(β), β) + L log(2) = Lu(β), (6)

where the link between u and g is u′(β) = g(β)
β , to prove:

Theorem 3: a ML estimator exists if and only if there exists β such that u(β) = − log(M) where M

is the maximum of the absolute value of the xi.

The proof is given in Appendix C.

C. Practical Determination of the Existence of a ML Estimator

The result given in Theorem 3 needs to be reinterpreted to be exploited: we show that it is equivalent

to the convergence of a specific sequence. Let us consider f1(β) = (1 − 1
β ) log(β) − log

(

Γ( 1
β )
)

− 1
β

and f2(β) = 1
β log

(

1
L

L
∑

i=1
|xi|

β

)

− log(M) where f1(β) − f2(β) = u(β) + log(M). The condition

given in Theorem 3 amounts to solving f1(β) = f2(β) which is equivalent to β = f−1
1 (f2(β)) since

f ′
1(β) = 1

β2 µ(β) > 0 (cf Theorem 2). We can now reformulate Theorem 3.

Theorem 4: The existence of β such that u(β) = − log(M) is equivalent to the convergence of

β0 = f−1
1

(

1

L

L
∑

i=1

log |xi| − log(M)

)

βn+1 = f−1
1 (f2(βn)) . (7)

July 20, 2005 DRAFT



5

PROOF: We first prove that βn exists and is increasing. First, note that f1 maps ]0, +∞[ to ] − ∞, 0[,

using the limits computed in Appendix C. One then shows that f ′
2(β) = 1

β2 λ(β) > 0 (cf Theorem 2) and,

using Appendix C, we see that f2 maps ]0, +∞[ to ] 1
L

L
∑

i=1
log |xi| − log(M), 0[. From this, we deduce

that βn, n ≥ 0, exists and β1 = f−1
1 (f2(β0)) > f−1

1 ( 1
L

L
∑

i=1
log |xi| − log(M)) = β0. Then, by induction

and since f−1
1 of2 is strictly increasing, βn+1 > βn for all n ≥ 0. If βn converges the limit l satisfies

l = f−1
1 of2(l) ⇔ f1(l) = f2(l) that is u(l) = − log(M), i.e. the LL function has a global maximum.

Conversely, if there exists β such that u(β) = − log(M), i.e. f1(β) = f2(β), one shows by induction

that β > βn for all n ≥ 0, which leads to the convergence of βn (βn is increasing and smaller than β)

�.

D. Lower and Upper Bounds for ML estimators

We determine lower and upper bounds for a ML estimator β̂ML when it exists. First, note that when

βn, defined in (7), converges, its limit is the smallest β, denoted βmin, satisfying u(β) = − log(M).

Now, we determine an upper bound for β̂ML. As β̂ML is a root of the EL equation (3), µ(β̂ML) =

λ(β̂ML) < log( L
#I ) (cf Theorem 2) and, as µ is strictly increasing, β̂ML < µ−1(log( L

#I )) = β′
0. β′

0 is

such that g(β′
0) > 0 because otherwise, since lim

β→+∞
g(β) = 0+, there is no root to (3) in [β′

0; +∞[.

We also note that g(β) > 0 on [β′
0; +∞[, giving us that u(β) + log(M) increases to 0 on [β′

0, +∞[. In

particular, u(β′
0) < − log(M) which can be written f1(β

′
0) < f2(β

′
0). If we assume that there exists β

such that u(β) = − log(M), we can write β′
0 > β ⇒ f1(β

′
0) > f1(β) = f2(β) ⇒ f1(β

′
0) ∈ f2(]0, +∞[).

We can then define β′
1 = f−1

2 of1(β
′
0) < β′

0 and, by induction, β′
n+1 = f−1

2 of1(β
′
n) which is convergent

(decreasing and positive). One remarks that β′
n > βmax, where βmax is the greatest value of β such

that u(β) = − log(M) and that β′
n converges to βmax. βn and β′

n enable to define a union of intervals

[0, βmin[
⋃

]βmax, +∞[, on which u(β) < − log(M), therefore the maximum of u is inside [βmin, βmax]

(note that δ and ∆ used in the proof of Theorem 3 correspond to βmin and βmax respectively).

IV. ALGORITHMS FOR THE EXISTENCE AND THE COMPUTATION OF β̂ML

A. Existence of β̂ML, Computation of βmin and βmax

When βn is convergent, its limit βmin is the smallest value such that f1(β) = f2(β). On the contrary,

the sequence is divergent when βn > β′
0 for some n (see section III. D for the definition of β′

0) as

β̂ML < β′
0 when it exists. The algorithm for the existence of β̂ML and then for the computation of βmin
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is the following:

n = 0; %we initialize with β0

while (f2(βn + ε) > f1(βn + ε) and βn < β′
0)

βn+1 = f−1
1 of2(βn); n = n + 1

end

if (βn > β′
0)

βn is divergent , β̂ML does not exist

else

βn is convergent , βmin = βn

end

The algorithm to compute βmax is similar except that when β̂ML exists, β′
n+1 = f−1

2 of1(β
′
n) is known

to be convergent (see section III.D).

B. Computation of β̂ML

Once the existence of β̂ML has been proved, assuming the uniqueness of the ML estimator (which we

do not discuss here), one can compute:

β̂ML = argmax
β∈[βmin,βmax ]

u(β). (8)

The estimation of β̂ML with formula (8) is computationally expensive for two main reasons: first,

we numerically notice that βmax is increasing with L which makes the algorithm time-consuming if

we require a fixed precision on β̂ML and, second, the computation of βmax is itself time-consuming.

We develop an algorithm to compute β̂ML that avoids the computation of βmax. The study of the

distribution function associated with the probability density function Pα,β (see (1)), with fixed α, shows

a fast convergence to the uniform distribution function on [−α, α]. The interval for β on which the law

differs significantly from the uniform distribution is [0, 4]. In equation (8), no hypothesis is made on the

localization of the global maximum of u. We numerically notice (see below for the details on simulations)

that, for the relevant range for β, the smallest value β1 such that g(β) = 0 is such that u(β1) is the global

maximum of u. Note that we already know it is a local maximum since lim
β→0

g(β) = 1
2 implies g′(β1) < 0

and consequently u′′(β1) = 1
β1

g′(β1)−
g(β1)
β2

1

< 0. For the simulations, we proceed this way: given α and

β, we build the corresponding distribution function, then we generate a N × N bidimensional sample

with parameters (α, β) by applying the inverse of the distribution function to a N × N bidimensional

uniform noise. We compute β1 by Newton iterations on g (with precision εβ1
to stop the iterations) and
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starting from βmin. We also compute β2 = argmax
β∈[βmin,βmax]

u(β) where we sample [βmin, βmax] at sampling

frequency εβ2
. This implies that if |β1 − β2| < εβ1

+ εβ2
then β1 and β2 should be considered equal. We

numerically found that, for β ∈ {0.5, 1, 2, 3, 4}, for α ∈ {1, 10, 100}, for N ∈ {8, 16, 32}, and for 200

samples for each (α, β, N), when β̂ML exists, β1 and β2 are equal (we took εβ1
= 10−3, εβ2

= 10−2,

and we found |β1 − β2| < 6.10−3 in every case). This leads to the simple algorithm to compute β̂ML:

β = βmin

while (g(β + εβ) > 0)

β = β −
g(β)
g′(β) ;

end

β̂ML = β.

The method we developed for the existence and the computation of β̂ML is called ML2 in the following.

V. RESULTS

A. On the Existence of a ML Estimator and Sample Size

We now compare ML2 to the method based on ML estimation proposed in [15] (ML1) which assumes

the existence of the ML estimator. We focus on the estimation of β̂ML since, when this parameter exists,

α̂ML is uniquely defined. ML1 is based on Newton iterations on g starting from β̂MM = F−1( m̂2
1

m̂2
) (see

section II.A for details) and computes β̂ML1
which is not necessarily equal to β̂ML since it is based on the

study of g, not u (see [15] for details). Second, this algorithm fails to provide a solution in the following

cases: β̂MM does not exist, g(β) > 0 for all β and β̂MM exists but g′ changes signs in its neighborhood

(the Newton iterations do not converge). We display, in Table I, the percentage of occurrences where

each algorithm (MM , ML1 and ML2) fails to provide a solution. For each (α, β, N), the percentage is

computed over 200 N×N samples built in the same way as in section IV (we choose a dyadic N because

images of dyadic sizes are very often used in image processing). Let us first say that for N ≥ 16 and

β ≤ 2, any of the three method provides a solution. The results deteriorate for ML1 on small samples

and for large β since ML1 first requires that MM provides a solution which explains why the results

are worse for ML1 than for MM and second since even when MM provides a solution, g may not

have a root or the Newton iterations may not converge. For N = 8, We report instances where the three

methods do not provide a solution. The main difference between MM and ML2 on the one hand and

ML1 on the other is that ML1 computes the solution without knowing its existence. For N = 8 and

β ≥ 2 and also for N = 16 and large β, the use of ML1 should be prohibited for that reason.
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A last point we investigate is the relation between β̂ML1
and β̂ML when they exist. For each (α, β, N),

we compute the maximum of D = |β̂ML1
− β̂ML| (over 200 samples in each case). As we use the same

precision ε for the computation of β̂ML and β̂ML1
, they are considered equal if D < 2ε. The results are

as follows: if N = 8 and β ≤ 1 or if N = 16 and β ≤ 3, ML1 and ML2 both provide a solution and

these solutions are equal. When these conditions are not fulfilled, one had rather check the existence of

the solution before computing it.

β = 0.5 β = 1 β = 2 β = 3 β = 4

α = 1 MM 0 0 0 6.5 13.5

N = 8 ML1 0 0 0.5 8.5 20.5

ML2 0 0 0.5 4 11.5

MM 0 0 0 0 1

N = 16 ML1 0 0 0 0 2.5

ML2 0 0 0 0 0

α = 10 MM 0 0 0 7.5 17.5

N = 8 ML1 0 0 0.5 10.5 24.5

ML2 0 0 0.5 6.5 7

MM 0 0 0 0 0.5

N = 16 ML1 0 0 0 0 2

ML2 0 0 0 0 0

α = 100 MM 0 0 0.5 5.5 17.5

N = 8 ML1 0 0 1.5 10.5 18.50

ML2 0 0 1.5 3.5 13.5

MM 0 0 0 0 1

N = 16 ML1 0 0 0 0 4

ML2 0 0 0 0 0

TABLE I

COMPUTATION OF THE PERCENTAGE OF OCCURRENCES WHERE EACH ALGORITHM FAILS TO PROVIDE A SOLUTION

B. Results on the Computational Cost

We now study the computational cost of the algorithms: for ML1, we calculate the average number

of Newton iterations to compute β̂ML1
(see IML1

in Table II), while, for ML2, we compute the average

number of iterations to calculate βmin (see I1
ML2

in Table II), the average number of iterations to prove

the divergence of βn (see I2
ML2

in Table II) and, finally, the average number of Newton iterations to
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compute β̂ML (see I3
ML2

in Table II). The computation involves 200 samples for each (α, β, N), with

fixed N , which corresponds to a total of 2400 samples (NB: the results are rounded to the nearest integer).

We note that the existence of β̂ML is proved with very few iterations but when it does not exist, finding

n such that βn > β′
0 may be expensive since if N = 8, β′

0 = 112 (i.e. µ−1(2 log(8)), see the algorithm

in section IV). However, for N ≥ 16, the probability that β̂ML does not exist is very low (cf Table I)

which implies that the algorithm to prove the divergence of βn is very seldom applied. When β̂ML and

β̂ML1
exist, the computational cost of ML1 and ML2 is of the same order.

N = 8 N = 16

I1

ML1
2 2

I1

ML2
3 1

I2

ML2
49 ×

I3

ML2
4 4

TABLE II

FIRST ROW: AVERAGE NUMBER OF NEWTON ITERATIONS TO COMPUTE β̂ML1
,SECOND ROW: AVERAGE NUMBER OF

ITERATIONS TO COMPUTE βmin,THIRD ROW: AVERAGE NUMBER OF ITERATIONS TO PROVE THE DIVERGENCE OF βn (×

MEANS THE SEQUENCE βn ALWAYS CONVERGES), FOURTH ROW: AVERAGE NUMBER OF ITERATIONS TO COMPUTE β̂ML

C. On the Modeling of the Distribution of Subband Coefficients and Sample Size

The modeling of the distribution of subband coefficients with GGD models have been extensively used

[3] [13] [15] [9] [12]. The problem of the size of the sample is particularly crucial for orthogonal wavelet

transform subbands since the number of subband coefficients is divided by 2 in each direction from one

scale to another (see [6] for details on orthogonal wavelet transforms). In [15], it is found that wavelet

transform subbands associated with the decomposition of natural images may lead to 2 ≤ β ≤ 3, which is

a typical range for β where the computation must not be carried out on 8×8 samples. Our study enables

to say that from the point of view of the existence of the ML parameter β̂ML, its computation should

not be carried out on samples of dyadic size smaller than 16 × 16. Note that, in texture classification

problems, such a subband size was already brought about from the point of view of the robustness both

of GGD parameters [15] and of the energy of subband coefficients [5].
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VI. CONCLUSION

The goal of this paper was to study the validity of the generalized Gaussian density (GGD) model

under small sample situations. We proposed a necessary and sufficient condition for the existence of

GGD parameters in a ML framework. We then tested our criterion on random images of different sizes

to put forward that GGD models may fail to characterize small sample distributions (8× 8 pixels image

and β ≥ 2). We showed that proving the existence of the ML estimator avoids algorithmic problem at a

reasonable computational cost. We also developed a new method for the estimation of GGD parameters

in a ML framework when they exist. We compared our results to those given by the algorithm proposed

in [15]: we reported the instances where both algorithms behave similarly and when our method should

be preferred. One important theoretical point that remains to be investigated is under which conditions

when the ML estimator exists it is unique.
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APPENDIX A

PROOF OF THEOREM 1: Let us first remark that g(β) has the same roots as βg(β) (β > 0) which can

be written βg(β) = µ(β)− λ(β) as in (5). We then study separately µ and λ. We use, in the following,

Landau notations: o(z) means negligible compared to z while O(z) means of the same order as z.

Study of the function µ

In the neighborhood of 0: we use the asymptotic development of Ψ [1] ( z → +∞ ), Ψ(z) = log(z) −

1
2z + O( 1

z2 ), to deduce that when β tends to 0 µ(β) = 1
2β + O(β2). So, µ(β)∼

0

1
2β and lim

β→0+
µ(β) = 0.

In the neighborhood of +∞: in the neighborhood of 0, we have, using (4), Ψ(z) = − 1
z−γ+

∞
∑

k=1

z
k2

(

1 − z
k + o(z)

)

= −1
z − γ + z π2

6 + o(z). So, in the neighborhood of +∞, µ(β) = −γ + log(β) + o(1) ∼
+∞

log(β) from

which we deduce lim
β→+∞

µ(β) = +∞.

Study of the function λ

In the neighborhood of 0: for all i, we have lim
β→0+

|xi|
β = 1 and lim

β→0+
λ(β) = 0. Indeed, a Taylor

expansion at zero leads to |xi|
β = eβ log |xi| = 1 + β log |xi| + o(β). Thus, λ(β) =

β
L�

i=1

log |xi|(1+o(1))

L+o(1) −

log

(

1
L(L + β

L
∑

i=1
log |xi| + o(β))

)

= o(β) which implies lim
β→0+

λ(β) = 0.
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In the neighborhood of +∞: Let M = max |xi| and let I be the set of indices such that |xi| = M for

i ∈ I . Let us note #I the cardinal of I . Then, we can write

λ(β) =

#Iβ log(M) +
∑

i/∈I

(

|xi|
M

)β
β log |xi|

#I +
∑

i/∈I

(

|xi|
M

)β
− log

(

Mβ

L
(#I +

∑

i/∈I

(

|xi|

M

)β

)

)

= log

(

L

#I

)

+ o(1) →
β→∞

log

(

L

#I

)

.

From this study, we conclude that as g(β) = 1
β (µ(β)−λ(β)) , lim

β→0+
g(β) = 1

2 and as, in the neighborhood

of +∞, g(β) = 1
β

(

log(β)− log( L
#I ) + o(1)

)

=
log(β)

β + O
(

1
β

)

, lim
β→+∞

g(β) = 0 and g(β) > 0.

Consequently, g has either no root or at least two roots.

APPENDIX B

PROOF OF THEOREM 2:

Study of the variations of the function µ: let us consider ρ(β) = µ( 1
β ) whose derivative is equal to

ρ′(β) = µ′( 1
β )×

(

− 1
β2

)

. Then ρ′(z) = − 1
z2 +Ψ′(z)− 1

z with Ψ′(z) =
+∞
∑

k=0

1
(k+z)2

[7]. As
∫ k+1
k

dt
(t+z)2

=

1
(k+z)2 + 2

∫ k+1
k

t−k−1
(t+z)3 dt (integration by parts), we can write

Ψ′(z) =
+∞
∑

k=0

∫ k+1

k

dt

(t + z)2
− 2

+∞
∑

k=0

∫ k+1

k

t − k − 1

(t + z)3
dt =

1

z
− 2

+∞
∑

k=0

∫ k+1

k

t − k − 1

(t + z)3
dt.

This leads to

ρ′(z) = −
1

z2
− 2

+∞
∑

k=0

∫ k+1

k

t − k − 1

(t + z)3
dt.

Since 1
z2 =

∫ +∞
0

2
(t+z)3 dt = 2

+∞
∑

k=0

∫ k+1
k

dt
(t+z)3 ,

ρ′(z) = −2

+∞
∑

k=0

(
∫ k+1

k

dt

(t + z)3
+

∫ k+1

k

t − k − 1

(t + z)3
dt

)

= −2

+∞
∑

k=0

∫ k+1

k

t − k

(t + z)3
dt.

As t−k
(t+z)3 > 0 for t ∈]k, k + 1], we deduce that ρ′(z) < 0. This leads to µ′(β) > 0 for all β > 0. Thus,

µ is strictly increasing on ]0, +∞[, and maps ]0, +∞[ to ]0, +∞[ as µ(β)∼
0

1
2β and µ(β) ∼

+∞
log(β) (cf.

Appendix A).

Study of the variations of the function λ: the derivative of λ is

λ′(β) =

L
∑

i=1

(

|xi|
β log |xi| log(|xi|

β)
)

(

L
∑

i=1
|xi|

β

)

−

(

L
∑

i=1
|xi|

β log |xi|

)(

L
∑

i=1
|xi|

β log |xi|
β

)

(

L
∑

i=1
|xi|β

)2
.
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Using the Cauchy-Schwarz inequality,
(

L
∑

i=1

|xi|
β log |xi|

)2

=

(

L
∑

i=1

|xi|
β

2 (|xi|
β

2 log |xi|)

)2

≤

(

L
∑

i=1

|xi|
β

)(

L
∑

i=1

|xi|
β(log |xi|)

2

)

,

with equality if all the xi are equal, we get λ′(β) > 0. One can reasonably assume that the xi are

not all equal (we can show that when the xi are equal the ML estimator does not exist), therefore we

conclude that λ(β) is strictly increasing on ]0, +∞[. Finally, since λ(β)∼
0

o(β) and λ(β) ∼
+∞

log( L
#I )

(cf. Appendix A), λ maps ]0, +∞[ on ]0, log( L
#I )[.

APPENDIX C

PROOF OF THEOREM 3: We study the limits and the variations of u in the neighborhood of 0 and of

+∞ to conclude that there exists an interval on which the ML estimator necessarily is.

Study of the function u

In the neighborhood of 0: let us write |xi|
β = eβ log |xi| = 1 + β log |xi|+ o(β).This implies that

1

β
log(

1

L

L
∑

i=1

|xi|
β) =

1

β
log

(

1 +
β

L

L
∑

i=1

log |xi| + o(β)

)

→
β→0+

1

L

L
∑

i=1

log |xi|.

Furthermore, the asymptotic development of log(Γ(z)) gives us [1] (z → +∞), log(Γ(z)) − z log(z) +

z + 1
2 log z = 1

2 log(2π)+O(1
z). Consequently, we have log

(

Γ( 1
β )
)

= − 1
β log(β)− 1

β + 1
2 log(β)+O(1),

when β → 0+, which leads to

u(β) =
1

2
log(β) + O(1)−

1

β
log

(

1

L

L
∑

i=1

|xi|
β

)

→
β→0+

−∞.

In the neighborhood of +∞: let M and I have the same meaning as in Theorem 3 and 2 respectively.

As previously, we can write
L
∑

i=1
|xi|

β = Mβ

(

#I +
∑

i/∈I

(

|xi|
M

)β
)

, leading to

1

β
log

(

1

L

L
∑

i=1

|xi|
β

)

= −
1

β
log(L) + logM +

1

β
log

(

#I +
∑

i/∈I

(

|xi|

M

)β
)

→
β→∞

log(M).

Let us then recall the ”Euler infinite product” [1], log (Γ(z)) = −γz − log(z) +
+∞
∑

k=1

(

z
k − log(1 + z

k )
)

,

in which the series
+∞
∑

k=1

(

z
k − log

(

1 + z
k

))

converges normally which entails the continuity of the sum

in z = 0 and leads to lim
z→0

+∞
∑

k=1

(

z
k − log(1 + z

k )
)

= 0. We then get lim
z→0

log(Γ(z)) + log(z) = 0 which is

equivalent to lim
β→+∞

log
(

Γ( 1
β )
)

− log(β) = 0 and finally leads to

lim
β→+∞

u(β) = − log(M)
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Variations of u close to 0 and +∞: let us recall that u′(β) = 1
β g(β). Using the study of g made in

Appendix A, we have that u both increases in the neighborhood of 0 and in the neighborhood of +∞.

It follows that u has a global maximum if and only there exists a β > 0 such that u(β) = − log(M).

Indeed, assume that there exists β such that u(β) = − log(M), then as u increases from −∞ in the

neighborhood of 0 and decreases from − log(M) in the neighborhood of +∞ (cf the beginning of the

proof), there exist δ and ∆ such that u(β) < − log(M) on ]0, δ[
⋃

]∆, +∞[. On [δ, ∆], the function u

is continuous and reaches its maximum, i.e. u has a global maximum. Conversely, assume that u has a

global maximum, since lim
β→+∞

u(β) = − log(M), this global maximum is superior or equal to − log(M),

i.e. there exists β such that u(β) = − log(M).
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