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Chapter 1

Continuous time Fourier transform

1.1 Fourier transform in L1(R)

1.1.1 Density theorems

Definition 1 Let f be a continuons function on a open set Ω of RN . The support of the function
f which we denote by Supp(f) is the complement set in Ω of the largest open set on which f is null.

Supp (f) = {x ∈ Ω | f(x) = 0}

Definition 2 C0(Ω) stands for the vector space of the functions continuous on Ω and compactly
supported, i.e. :

C0(Ω) = {f ∈ C(Ω) | ∃Kcompact set ,K ⊂ Ωs.t. x ∈ Ω\K f(x) = 0}

Theorem 1 Density theorem

Let Ω ⊂ RN be an open set. C0(Ω) is dense in Lp(Ω) for p ∈ {1, 2} i.e. :

∀ p ∈ {1, 2}, ∀ ε > 0, ∀ f ∈ Lp(Ω), ∃g ∈ C0(Ω) ‖f − g‖p ≤ ε

Remark: This theorem remains true for functions in Ck0 (Ω), k ≤ ∞.

1.1.2 Definition of the Fourier transform in L1(R)

Definition 3 (Fourier Transform) Lett f ∈ L1(R), we define the Fourier transform f̂ of f as:

∀ν ∈ R, f̂(ν)
def
=

∫ +∞

−∞
f(x)e−2iπνxdx

ν is called the frequency (Hz) The application: F : f 7→ f̂ is called Fourier transform.

1.1.3 Riemann-Lebesgue Theorem

5



6 CHAPTER 1. CONTINUOUS TIME FOURIER TRANSFORM

Theorem 2 (Riemann-Lebesgue)

1. F : f 7→ f̂ is a linear application, continuous from L1(R) onto L∞(R).

2. if f ∈ L1(R), then f̂ is continuous on R and lim
ν→±∞

f̂(ν) = 0.

Proof

1. • F is linear (linearity of
∫

).

• To show the continuity of F it suffices to prove the result in 0:

∀f ∈ L1(R), ‖F(f)‖L∞(R) ≤ C‖f‖L1(R)

∀ν,
∣∣∣f̂(ν)

∣∣∣ =

∣∣∣∣∫ +∞

−∞
f(x)e−2iπνx

∣∣∣∣ ≤ ∫ +∞

−∞
|f(x)| dx = ‖f‖L1(R)

so f̂ ∈ L∞(R) et ‖f̂‖L∞(R) ≤ ‖f‖L1(R).

2. Let g ∈ C1
0 (R), then

ĝ(ν) =

∫
R
g(x)e−2iπνxdx =

[
g(x)

e−2iπνx

−2iπν

]+∞

−∞
−
∫
R
g′(x)

e−2iπνx

−2iπν
dx

|ĝ(ν)| ≤ 1

2π |ν|

∫
R

∣∣g′(x)
∣∣ dx −−−−→

ν→±∞
0 since

∥∥g′∥∥
L1(R)

< +∞.

But C1
0 (R) is dense in L1(R),so : ∀f ∈ L1(R), ∀ε > 0, ∃g ∈ C1

0R, ‖f − g‖L1(R) < ε.
Then, as

|f̂(ν)| ≤ ‖f − g‖L1(R) + |ĝ(ν)|,

we get lim
ν→±∞

f̂(ν) = 0.

1.1.4 Example

Π = 1l]− 1
2

; 1
2

[, Π̂(ν) =
∫ 1

2

− 1
2

e−2iπνxdx = sin(πν)
πν : cardinal sine function.
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1.1.5 Other Properties

Proposition 1 (delay)

f ∈ L1(R), τ ∈ R
∀x ∈ R, g(x) = f(x− τ) for g ∈ L1(R), then ∀ν ∈ R, F (g)(ν) = ĝ(ν) = e−2iπντ f̂(ν)

Proposition 2

f ∈ L1(R), a > 0.
∀x ∈ R, g(x) = f(ax) with g ∈ L1(R). ∀ν ∈ R, F(g(ν)) = 1

af(νa ).

Theorem 3

1. if x→ xkf(x) is in L1(R) for k ∈ {0, · · · , n} then f̂ is n times differentiable, and one
has:

f̂ (k)(ν) = ĝk(ν) ∀ν ∈ R

where gk(x) = (−2iπx)kf(x)

2. If f ∈ L1(R)
⋂
Cn(R) and if f (k) ∈ L1(R) then for all k ∈ {1, · · · , n} one has:

f̂ (k)(ν) = (2iπν)kf̂(ν) ∀ν ∈ R

3. If f ∈ L1(R) and if supp(f) is bounded, then f̂ ∈ C∞.

Proof

1. For all k ≤ n, ∂
kf(x)e−2iπνx

∂kν
is continuous for all ν and almost all x. Furthermore, |∂

kf(x)e−2iπνx

∂kν
| =

|(−2iπx)kf(x)| belongs to L1(R) and f̂ belongs to Ck and then one applies the theorem on
the differentiation of an integral dependent on a parameter.

2. Let us compute f̂ ′. By integrating by parts, we get that:

f̂ ′(ν) = [f(x)e−2iπνx]∞−∞ +

∫
R
f(x)(2iπν)e−2iπνxdx.

Here we need to remark that if f is integrable and belongs to C1, and is such that f ′ is also
integrable then

f(x) = f(a) +

∫ x

a
f ′(t)dt.

As f ′ is integrable, the integral has a limit when x tends to ±∞, so f(x) has a limit when
x tends to infinity. Moreover, this limit is necessarily null since f is integrable. We thus get
f̂ ′(ν) = (2iπν)f̂(ν). Reasoning by induction, we get the expected result.
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Compute the following Fourier transform

• Let −∞ < a < b < +∞ et f = χ[a,b].

• We denote u(t) the Heavydide function (equal to 1 if t > 0 et 0 otherwise). sgn(t) is the sign
function. Let α be a complex number with positive real part. Compute the following Fourier
transforms:

i)f(t) = e−αtu(t) ii)f(t) = eαtu(−t)
iii)f(t) = e−α|t| iv)f(t) = tk

k! e
−αtu(t)

v)f(t) = tk

k! e
αtu(−t) vi)f(t) = sign(t)e−α|t|

• Compute F(f) with f : x 7→ e−πx
2

Proposition 3

Let f, g ∈ L1(R), then fĝ et f̂g both belong to L1(R) and one has:∫
R
fĝ =

∫
R
f̂g

1.1.6 Inversion of the Fourier transform in L1(R)

Definition 4 For any function f belonging to L1(R) let us write:

F(f)(ν) =

∫
R
f(x)e2iπνxdx.

One then have the following inversion theorem:

Theorem 4

1. Let f ∈ L1(R). Let us assume f is continuous at x ∈ R and that f̂ ∈ L1(R). Then,

F f̂(x) = f(x)

2. Let f ∈ L1(R) and f̂ ∈ L1(R) then

F f̂(x) = f(x) for almost all x

Proof 1) Let us first prove the first point. For n ∈ N∗, let us define gn(x) = e−
2π
n
|x|, for which we

get ĝn(ν) = 1
π

n
1+n2ν2

. Since gn is in L1(R), we can write:∫
R
f̂(ν)gn(ν)e2iπxνdν =

∫
R
f(ν)ĝn(ν − x)dν
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The term on the left hand side tends to F f̂(x) using the dominated convergence theorem. Let us
show that the term on the right hand side tends to f(x). As

∫
R ĝn(ν)dν = 1, one may write∫

R
f(ν)ĝn(ν − x)dν − f(x) =

∫
R

(f(ν + x)− f(x))ĝn(ν)dν.

Let ε > 0, there exists η = η(ε, x) such that |y − x| ≤ η ⇒ |f(y) − f(x)| ≤ ε (f continuous at x).
One can then write:∫

R
(f(x+ ν)− f(x))ĝn(ν)dν =

∫
|ν|≤η

(f(x+ ν)− f(x))ĝn(ν) +

∫
|ν|≥η

(f(x+ ν)− f(x))ĝn(ν).

For all n ∈ N∗, one has:∫
|ν|≤η

|f(x+ ν)− f(x)|ĝn(ν)dν ≤ ε
∫
R
ĝn(ν)dν = ε.

Furthermore,

|
∫
|ν|≥η

f(x)ĝn(ν)|dν ≤ |f(x)|(1− 2

π
atan(ηn)),

which tends to 0 when n tends to infinity. Furthermore, as ĝn is even and decreasing over R+

|
∫
|ν|≥η

f(x+ ν)ĝn(ν)| ≤ ĝn(η)‖f‖1,

this expression tends to 0 when n tends to infinity. This proves the theorem.
2) Let us now show point 2. We multiply the function to be integrated by ĥε(ν) = e−πε

2ν2 :

Iε =

∫
R

(

∫
R
f(u)e−πε

2ν2e2iπν(x−u)du)dν.

Then, we have (u, ν) → φ(u, ν) = f(u)e−πε
2ν2e2iπν(x−u) ∈ L1(R2). By applying Fubini theorem,

we get two different expressions of Iε:

i) By integrating with respect to u, one gets Iε =
∫
R f̂(ν)e−πε

2ν2e2iπνxdν.

But since |f̂(ν)e−πε
2ν2e2iπνx| ≤ |f̂(ν)| which belongs to L1(R), and since lim

ε→0
e−πε

2ν2 = 1, by

applying the dominated convergence theorem, we get that lim
ε→0

Iε =
∫
R f̂(ν)e2iπνxdx.

ii) Integrating with respect to v:

Iε =

∫
R
f(u)

(∫
R
e−πε

2ν2e2iν(x−u)dν

)
du =

∫
R
f(u)

1

ε
e−π(x−u

ε
)2du,

using the properties of the Fourier transforms of Gaussian functions and the dilation formula.
Furthermore, we know that the function hε(x) = 1

ε e
−π(x

ε
)2 has its integral equal to 1. One

then deduce that: ∫
R
|Iε(x)− f(x)| =

∫
R

∫
R
|(f(x− u)− f(x))hε(u)|du

=

∫
R

∫
R
|f(x− εu)− f(x)|hε(u)du

≤
∫
R
‖f(x− εu)− f(x)‖1h(u)du.

In L1(R), one has the following property:
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Proposition 4

Let f ∈ L1(R), h ∈ R, and define τhf(x) = f(x−h). Then τhh ∈ L1(R) et lim
h→0
‖τhf−f‖1 =

0.

Proof The theorem uses the density of C0(R) in L1(R). Indeed, let gn be a sequence in
C0(R) tending to f in L1(R), i.e.:

∀ε > 0 ∃N ∀n ≥ N ‖f − gn‖1 ≤ ε
One may then write:∫
R
|f(x+ η)− f(x)| ≤

∫
R
|f(x+ η)− gn(x+ η)|+

∫
R
|gn(x+ η)− gn(x)|+

∫
R
|gn(x)− f(x)|

Let N be such that |f−gN | ≤ ε
3 and choose η such that ‖gN (x+η)−gN (x)‖1 ≤ ε

3 (dominated
convergence theorem), hence the result.

Since ‖f(x−εu)−f(x)‖1|h(u)| ≤ 2‖f‖1|h(u)| which belongs to L1(R), applying the dominated
convergence theorem, we deduce that: lim

ε→0
‖Iε − f‖1 = 0.

So Iε tends to f in L1(R) so there exists a sub-sequence Iφ(ε) converging to f almost every-
where, hence the result.

1.1.7 Convolution product in L1(R)

Theorem 5 (and definition)

f ∈ L1(R), g ∈ L1(R). Let us define : ∀x ∈ R, (f ? g)(x) =
∫
R f(y)g(x− y)dy.

Then (f ?g) is defined almost everywhere, integrable and ‖f ? g‖L1(R) ≤ ‖f‖L1(R) ‖g‖L1(R).

Proof Using Fubini theorem:

∫
R

(∫
R
|f(y)g(x− y)| dy

)
dx =

∫
R
|f(y)|

(∫
R
|g(x− y)| dx

)
dy (1.1)

and by changing variables u = x− y, we obtain:

(1.1) =

∫
R
|f(y)|

(∫
R
|g(u)| du

)
dy = ‖f‖L1(R) ‖g‖L1(R) < +∞,

since
∫
R |g(u)| du = ‖g‖L1(R). So x 7→

∫
R |f(y)g(x− y)| dy is integrable and thus finite almost

everywhere. Consequently (f ? g) is defined almost everywhere, integrable and:∫
R
|(f ? g)(x)| dx ≤ ‖f‖L1(R) ‖g‖L1(R)
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Proposition 5

Let f, g, h ∈ L1(R).

• f ? g = g ? f

• (f ? g) ? h = f ? (g ? h)

• (f + g) ? h = f ? h+ g ? h

1.1.8 Illustration: moving average

At each point x ∈ R, one replaces f(x) by its average f̄(x) over an interval of length τ :

f̄(x) =
1

τ

∫ x+ τ
2

x− τ
2

f(t)dt =
1

τ

∫
R
χ[x− τ

2
;x+ τ

2
](t)f(t)dt =

∫
R
h(x− t)f(t)dt

where h : u 7→ 1
τ 1l[− τ

2
; τ
2

].

In pratice

• choice of a more regular window.

• choice for τ depends on the scale of the phenomena one wants to highlight.

1.1.9 Convolution and Fourier transform

Theorem 6 (Convolution and Fourier transform)

i) Let f ∈ L1(R), h ∈ L1(R). Then ∀ν ∈ R, F(f ? h)(ν) = f̂(ν)ĥ(ν).

ii) Let f ∈ L1(R), h ∈ L1(R) such that f̂ and ĥ are also in L1(R), then for almost all
ν, one has: f̂ ? ĥ = F(fh).

Example 1 F(f̄)(ν) = ĥ(ν)f̂(ν) = sin(πντ)
πντ f̂(ν). ĥ is called transfer function. One can then adapt

1
τ to the frequencies of interest in signal f .

Proof i) Applying Tonelli’s theorem:
∫
R
(∫

R |f(y)g(x− y)| dy
) ∣∣e−2iπνx

∣∣ dx = ‖f‖L1(R) ‖g‖L1(R) <
+∞
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since
∣∣e−2iπνx

∣∣ = 1. Then, from Fubini’s theorem:

F(f ? g)(ν) =

∫
R

(∫
R
f(y)g(x− y)dy

)
e−2iπνxdx

=

∫
R

(∫
R
f(y)g(x− y)dy

)
e−2iπν(x−y+y)dx

=

∫
R
f(y)e−2iπνy

(∫
R
g(x− y)e−2iπν(x−y)dx

)
dy

=

∫
R
f(y)e−2iπνy

(∫
R
g(u)e−2iπνudu

)
dy = f̂(ν)ĝ(ν)

ii) Since f̂ and ĝ are both in L1(R), we get, remarking that F has the same properties as F :

F(f̂ ? ĝ) = F(f̂)F(ĝ)

= fg almost everywhere

Finally, since f = F(f̂), f is bounded one can compute the Fourier transform of fg to obtain:
f̂ ? ĝ = F(fg).

1.2 Fourier transform on L2(R)

One of the main drawback with considering the Fourier transform in L1(R), is its non invertibility
in general. In what follows, we are going to see how to define the Fourier transform on L2(R) as a
bijective application from L2(R) onto L2(R).

1.2.1 The space L2(R)

Let f, g ∈ L2(R), we recall that L2(R) is equipped with the inner product 〈f, g〉 =
∫
R f(x)g(x)dx

and that the norm on L2(R) is defined by:‖f‖2 =
√
〈f, f〉. L2(R) is an Hilbert space for which one

has the Cauchy-Schwarz theorem:

Theorem 7 (Cauchy-Schwarz)

Let f and g belong to L2(R), we then have the following property:

|
∫
R
f(t)ḡ(t)| ≤

√∫
R
|f |2(t)dt

√∫
R
|g|2(t)dt

1.2.2 Convolution in L2(R)

Convolution in L2(R) is defined for f and g in L2(R) by F (x) =
∫
R f(x− y)g(y)dy, satisfying :
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Theorem 8

i) F ∈ C0(R)
⋂
L∞(R)

ii) F is continuous

Proof i) direct application of Cauchy-Schwarz theorem
ii) We have

|F (x+ η)− F (x)| = |
∫
R

(f(x+ η − y)− f(x− y)) g(y)|dy

≤
∫
R
|f(x+ η − y)− f(x− y)|2dy ‖g‖2.

The term depending on η tends to 0 with η (to prove it we use the density of C0(R) in L2(R)). So,
f is continuous at x.

Example : the correlation in L2(R) is defined by:

G(x) =

∫
R
f(x+ t)f̄(t)dt = f̌ ? f̄(−x),

which is continuous.

1.2.3 Property of the Fourier Transform in L1(R)
⋂
L2(R)

Theorem 9 (Plancherel-Parseval)

Let f and h belonging to L2(R)
⋂
L1(R), then one has:∫

R
f(t)h(t)dt =

∫
R
f̂(ν)ĥ(ν)dν

If f = h, one has the following property :
∫
R |f |

2 =
∫
R |f̂ |

2

Proof We first prove that the Fourier transform of a function in L1(R)
⋂
L2(R) is in L2(R) showing

that ‖f‖22 = ‖f̂‖22.

Let us first consider gα(x) = e−αx
2
, whose Fourier transform is ĝα(x) =

√
π
αe
−π

2x2

α . Applying the
monotone convergence theorem, one gets:∫

R
gα(x)|f̂(x)|2 →

α→0

∫
R
|f̂ |2 ≤ +∞

since gα(x)|f̂(x)|2 is positive, belongs to L1(R) and is increasing when α decreases.
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Moreover, as the function (x, u, y) → f(y)f(u)ei2πx(u−y)gα(x) is in L1(R3) (applying Tonnelli’s
theorem). ∫

R
gα(x)|f̂(x)|2 =

∫
R
f(y)

∫
R
f(u)

∫
R
e−i2πx(y−u)gα(x)dxdydu

=

∫
R
f(y)

∫
R
f(u)ĝα(y − u)dydu =

∫
R

∫
R
f(y + u)f(u)du ĝα(y)dy

=

∫
R
G(y)ĝα(y)dy =

∫
R
G(

√
α

π
y)e−πy

2
dy

→
α→0

G(0) = ‖f‖22,

the limit being obtained applying the dominated convergence theorem, this means that the Fourier
transform of a function in L1(R)

⋂
L2(R) is in L2(R).

We are now going to show Plancherel formula. Let f and h be in L1(R)
⋂
L2(R). f̂ ĥ belongs to

L1(R) as a product of functions in L2(R). Moreover, defining ȟ(t) = h̄(−t), one has F(f ∗ ȟ) = f̂ ĥ
which belongs to L1(R). So, from the inversion theorem of the Fourier transform, and as f ∗ ȟ is

continuous being, the convolution of functions in L2(R), one has f ∗ ȟ(x) = F(f̂ ĥ)(x), for all x.
Considering its value at x = 0, one gets Plancherel inequality.

1.2.4 Fourier transform in L2(R)

Proposition 6

L1(R)
⋂
L2(R) is dense in L2(R).

Proof Let us define fN (x) = χ[−N,N ](x)f(x) which belongs to L1(R)
⋂
L2(R), one checks that fN

tends to f in L2(R).

Let fN be a sequence of functions in L1(R)
⋂
L2(R) converging to f in L2(R). We have seen that

f̂N belongs to L2(R), furthermore f̂N is a Cauchy sequence in L2(R) since

‖f̂N − f̂P ‖22 =

∫
N≥x≥P

|f̂N − f̂P |2 → 0 when P tends to infinity.

We then define f̂∞ the limit in L2(R) of f̂N .
It remains to show that this limit is independent of the choice of sequence fN tending to f . It
is easing to see that this arises from Parseval equality. Indeed, let fN and f̃N in L1(R)

⋂
L2(R)

tending to f in L2(R), then:

‖fN − f̃N‖2 = ‖f̂N − ̂̃fN‖2 → 0,

meaning the Fourier transforms have the same limit in L2(R).
We then have the following definition:

Definition 5 The Fourier transform of a function f ∈ L2(R) is defined as the limit in L2(R) of
the Fourier transform of any fN ∈ L1(R)

⋂
L2(R) tending to f in L2(R).

In the sequel, we will note F(f) the Fourier transform of f when the latter is in L2(R).
Remark: for the sake of simplicity, one takes fN = χ[−N,N ]f .
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1.2.5 Property of the Fourier transform in L2(R)

Theorem 10

The Fourier transform (resp F) can be extended into an isometry from L2(R) onto L2(R).
Let us denote F et F , these extensions, one then gets:

• ∀f ∈ L2(R) FF(f) = FF(f) = f almost everywhere.

• ∀f, g ∈ L2(R)
∫
R f(x)g(x)dx =

∫
RF(f)F(g)dξ

• ∀f ∈ L2(R) ‖f‖2 = ‖F(f)‖2

Proof The proof stems from the density theorem of functions of L1(R)
⋂
L2(R) in L2(R) (the

equalities being true in L1(R)
⋂
L2(R), they are also true in L2(R)).

1.3 Exercises

Exercise 1 Properties of the Fourier transform F
Show the following properties:

1. F (f + λg) = f̂ + λĝ, ∀f, g ∈ L1(R), ∀λ ∈ R.

2. F [f(ax)](ν) = 1
|a| f̂(νa ), ∀f ∈ L1(R), ∀a ∈ R∗.

3. F [f(x− τ)](ν) = e−2iπντ f̂(ν), ∀f ∈ L1(R), ∀τ ∈ R.

4. F [f ′](ν) = 2iπνf̂(ν), ∀f ∈ L1(R)
⋂
C1(R), such that f ′ ∈ L1(R).

5. Compute F [xf(x)](ν) as a function of f̂(ν) (hypotheses on f?).

Exercise 2 Computation of simple Fourier transforms

1. Compute Fourier transform of f(x) = e−|x|, that of g(x) = U(x)f(x), U Heavyside function.

2. Compute Fourier transform of ρn(x) = nΠ(nx) (Π indicator function of [−1/2, 1/2]).

3. Plot ρn and ρ̂n. What happens when n→ +∞?

4. Modulation :Compute F [cos(2πν0x)f(x)]. Example : f(x) = χ[−a,a](x).

Exercise 3 Computation of the Fourier transform of f(x) = e−πx
2
.

1. Check that f ∈ L1(R)

2. Show that f is solution to the following differential equation

y′ + 2πxy = 0 (1.2)

3. Compute Fourier transform of (1.2) and deduce differential equation satified by f̂ .

4. Deduce the computation of f̂ .

Exercise 4 Door function
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1. Compute Π̂. Check that limν→∞ Π̂(ν) = 0.
2. Deduce the value of the integral: ∫ +∞

−∞

sinπν

πν
e2iπνxdx

3. Deduce that (difficult question): ∫ +∞

−∞

sin t

t
dt = π

4. Compute
∫ +∞
−∞ Π2(x)dx

5. Deduce that : ∫ +∞

−∞

(
sin t

t

)2

dt = π

Exercise 5 Hat function
Let Λ be the piecewise affine function, equal to 0 on ]−∞,−1] and [1,+∞[, with value 1 at x = 0.

1. Give the expression of Λ(x).
2. Show that Λ′(x) = Π(x+ 1/2)−Π(x− 1/2).
3. Compute the Fourier transform of Λ′. Deduce that of Λ.

Exercise 6 On the relation between Fourier transform and Fourier coefficients
f0 a function of L1(R), null outside the interval [0, T ]. f T-periodic extension of f :

f(x) =
∑
n∈Z

f0(x+ nT )

1. Since f periodic function integrable on [0, T ], show that Fourier coefficients of f , cn(f) satisfy:

cn(f) =
1

T
f̂0(

n

T
)

where f̂0 is the Fourier transform of function f0.

Exercise 7 Let us define

f(x) =

∫ ∞
0

1√
t
e−

x2

2t
− t

2dt

1. Show that f ∈ L1(R+).
2. Compute f̂ . Deduce that f(x) =

√
2πe−|x|.

Exercise 7 Let f(x) = sinx
|x| and fλ(x) = e−λ|x| sinx|x| (λ > 0).

1. Show that f and fλ belong to L2(R), and that if λ tends to 0, fλ converges to f in L2(R).
2. Compute of a fixed ξ, ∂

∂λ f̂λ(ξ). Deduce f̂λ(ξ) and then f̂(ξ).

Exercise 8 Let a and b two real numbers such that a, b > 0 et a 6= b.
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1. Compute the Fourier transform of e−a|x|.
2. Deduce the values of the following convolution products: 1

a2+x2
∗ 1
b2+x2

and e−a|x| ∗ e−b|x|.

Exercise 9 Heat equation de la chaleur
Let us consider the following partial derivatives equation:{

∂2f
∂x2

= ∂f
∂t

f(x, 0) = ϕ(x)
(1.3)

where ϕ belongs to C∞c (R). Let us define:

F (ν, t) =

∫ +∞

−∞
f(x, t) e−2iπνxdx

1. Let us assume f ∈ L1(R). Check that F satisfies:

∂F

∂t
+ 4π2ν2F = 0

2. Deduce F , and then f .
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Chapter 2

Fourier Transform of Discrete
sequences

The Fourier transform of Discrete sequences makes use of the theory of distributions of which we
give a brief introduction.

2.1 Motivations for the introduction of distributions

The theory of distributions has been introduced to extend the notions of functions and that of
derivation. It is the basis to the unification of discrete and continuous phenomena, and are widely
used in mechanical physics, electronic, and probabilities.

To model impulses, the physician P. Dirac had the idea, around 1920 to use a pseudo-fonction,
already introduced by par O. Heaviside, now known as the Dirac distribution and assumed to
satisfy:

δa(x) =

{
+∞ if x = a

0 otherwise

and, for any continuous function φ∫ +∞

−∞
δa(x)ϕ(x)dx = ϕ(a).

δa is definitely not a function but one had to wait until the years 1945-1950, and the work by L.
Schwartz, for a proper mathematical definition of this object. This is the main motivation to the
introduction of distribution theory.

2.1.1 The space of test functions

The distributions are going to be defined as applications on a function space which is called the
space of test functions.

Definition 1 One defines D(Ω) (also denoted C∞0 (Ω)) the set of smooth functions (admitting
derivatives of any orders) defined on Ω, with values in C, and compactly supported in Ω.

D(Ω) is a vector space.

19
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Remark 1 Let ϕ ∈ D(Ω). Supp (ϕ) is a compact set and Supp (ϕ) ⊂ Ω. If ϕ̃(x) =

{
0 si x ∈ R \ Supp (ϕ)
ϕ(x) si x ∈ Supp (ϕ)

then ϕ̃ ∈ D(R).

Example 1 ϕ(x) =

{
exp −1

1−‖x‖2 si ‖x‖ < 1

0 si ‖x‖ ≥ 1

ϕ ∈ D(R), Supp (ϕ) = B(0, 1)

Definition 2 Convergence in D(Ω) Let ϕn and ϕ ∈ D(Ω). ϕn converges to ϕ in D(Ω) if:

• ∃K a compact set , K ⊂ Ω such that ∀ n, Supp (ϕn) ⊂ K

• ∀ α ∈ NN , ∂αϕn −→ ∂αϕ uniformly.

Theorem 1

D(Ω) is dense in Lp(Ω), 1 ≤ p < +∞.

2.1.2 Definitions of the distribution space

Definition 3 A distribution T on Ω is a linear form continuous on D(Ω), i.e.

(i) ∀ ϕ1, ϕ2 ∈ D(Ω), ∀ λ ∈ C, T (ϕ1 + λϕ2) = T (ϕ1) + λT (ϕ2)

(ii) If ϕn −→ ϕ in D(Ω), then T (ϕn) −→ T (ϕ) in C

One notes 〈T, ϕ〉 or T (ϕ).

Remark 2 Point ii) is equivalent to showing: for any compact set K ⊂ Ω, there exists Ck > 0
and k ∈ N such that for all ϕ ∈ D(Ω) with Supp (ϕ) ⊂ K, one has 〈T, ϕ〉 ≤ Ck‖ϕ‖Ck(K), with

‖ϕ‖Ck(K) = max
α≤k
‖ϕ(α)‖∞,K .

One denotes D′(Ω) the set of distributions on Ω, which is a vector space.
Examples

1. L1
loc(Ω): set of mesurable functions on Ω, integrable on any compact set of Ω (for instance,
1√
|x|
∈ L1

loc(R)).

Let f ∈ L1
loc(Ω). For ϕ ∈ D(Ω) one puts: 〈Tf , ϕ〉 =

∫
Ω f(x)ϕ(x) dx

Tf ∈ D′(Ω) :

• Tf is well defined since

|f(x)ϕ(x)| ≤ ‖ϕ‖∞ 1lSupp(ϕ)(x)|f(x)| ∈ L1(Ω)

• Tf is linear (linearity of the integral).

• Tf is continuous on D(Ω) :

Let ϕn ∈ D(Ω) be such that ϕn → 0 dans D(Ω).

|〈Tf , ϕn〉| =
∣∣∣∣∫

Ω
f(x)ϕn(x)dx

∣∣∣∣ ≤ ∫ |f(x)| |ϕn(x)| dx ≤ ‖ϕn‖∞
∫
K
|f(x)| dx
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2. Let a ∈ R. For all ϕ ∈ D(R) one puts: 〈δa, ϕ〉 = ϕ(a)

δa ∈ D′(R) :

• Linearity :

〈δa, ϕ1 + λϕ2〉 = (ϕ1 + λϕ2)(a) = ϕ1(a) + λϕ2(a) = 〈δa, ϕ1〉+ λ〈δa, ϕ2〉
• Continuity :

If ϕn −→ 0 in D(R) : |〈δa, ϕn〉| = |ϕn(a)| ≤ ‖ϕn‖∞ −→ 0

When a = 0, we put δ = δ0.

Proposition 1

The application from L1
loc(Ω) on D′(Ω) which maps f to Tf is linear and injective.

Proof

• ∀ f1, f2 ∈ L1
loc(Ω), ∀ λ ∈ C, Tf1+λf2 = Tf1 + λTf2

Indeed, let ϕ ∈ D(Ω),

〈Tf1+λf2 , ϕ〉 =

∫
Ω

(f1 + λf2)ϕ =

∫
Ω
f1ϕ+ λ

∫
Ω
f2ϕ = 〈Tf1 , ϕ〉+ λ〈Tf2 , ϕ〉

• If ∀ϕ ∈ D(Ω), 〈Tf , ϕ〉 =

∫
Ω
f(x)ϕ(x)dx = 0, alors f = 0. Indeed, since D(Ω) is dense in L2(Ω),

letting ϕn a sequence coverging to f in L2, then
∫

Ω f(x)ϕn(x) = 0 tends to
∫
R |f(x)|2 = 0 and

so f is null almost everywhere.

Remark 3 The application defined by proposition 1 is not surjective, but enables to identify L1
loc(Ω)

to a subspace D′(Ω) called regular distributions.

2.1.3 Convergence in the distribution space

Definition 4 A sequence of distribution Tn ∈ D′(Ω) converges to the distribution T ∈ D′(Ω) if for
all ϕ ∈ D(Ω), 〈Tn, ϕ〉 −→ 〈T, ϕ〉.∑
n≥0

Tn is said to converge and sums to T if the sequence Sp =

p∑
n=0

Tn converges to T .

Examples 2

1. Let fn(x) = cos(nx), fn ∈ L1
loc(R). Tfn ∈ D′(R).

lim
n→+∞

Tfn = 0 (because ∀ ϕ ∈ D(R), 〈Tfn , ϕ〉 =
∫

cos(nx)ϕ(x)dx −−−→
n→∞

0).

2. Let n ∈ N, δn −→ 0 in D′(R).

Let ϕ ∈ D(R), 〈δn, ϕ〉 = ϕ(n) = 0 for a large enough n (since ϕ is compactly).
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Theorem 2

Let Tn ∈ D′(Ω), n ∈ N.
If for all ϕ ∈ D(Ω), 〈Tn, ϕ〉 has a limit in C, then Tn has a limit in D′(Ω).

Proof

• ϕ ∈ D(Ω) implies limn→+∞〈Tn, ϕ〉 exists.

ϕ1, ϕ2 ∈ D(Ω) et λ ∈ C.

lim
n→+∞

〈Tn, ϕ1 + λϕ2〉 = lim
n→+∞

〈Tn, ϕ1〉 + λ〈Tn, ϕ2〉 = lim
n→+∞

〈Tn, ϕ1〉 + λ lim
n→+∞

〈Tn, ϕ2〉, hence

the linearity.

• The continuity of limTn is a consequence of Banach-Steinhaus theorem (admitted)

Example 3 ∀ n, Tn =
n∑
p=0

δp ∈ D′(R). Indeed, let ϕ ∈ D(R), Exercise no ∈ NSupp (ϕ) ⊂

[−n0, n0]. 〈Tn, ϕ〉 =

n0∑
p=0

ϕ(p) −−−→
n→∞

n0∑
p=0

ϕ(p), so there exists T ∈ D(R) such that Tn −→ T dans

D′(R) : T =
∑
p≥0

δp.

2.1.4 Derivation in the distribution space

Let f ∈ C1(Ω) (so ∈ L1
loc(Ω)). For ϕ ∈ D(Ω) :∫

Ω
f ′(x)ϕ(x)dx = −

∫
Ω
f(x)ϕ′(x)dx⇔ 〈Tf ′ , ϕ〉 = −〈Tf , ϕ′〉

Extending this to more general distributions, we get:

Definition 5 Let T ∈ D′(Ω), one defines T ′ as : 〈T ′, ϕ〉 def= −〈T, ϕ′〉

Proposition 2

T is indefinitely differentiable, and one has: ∀ ϕ ∈ D(Ω), 〈T (α), ϕ〉 = (−1)α〈T, ϕ(α)〉

Proof (du 1.)

• Let ϕ and ψ ∈ D(Ω), λ ∈ C.

〈T ′, ϕ+ λψ〉 = −〈T, (ϕ+ λψ)′〉 = −〈T, ϕ′ + λψ′〉
= −〈T, ϕ′〉 − λ〈T, ψ′〉 = 〈T ′, ϕ〉+ λ〈T ′, ψ〉

• Let ϕn −→ 0 in D(Ω), then ϕ′n −→ 0 in D(Ω). One has: 〈T ′, ϕn〉 = −〈T, ϕ′n〉 −→ 0
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Proposition 3

The derivation is a continuous operation on D′(Ω).

If Tn, T ∈ D′(Ω) and Tn −→ T in D′(Ω), then ∀ α ∈ N, T (α)
n −→ T (α) in D′(Ω).

Proof

Let ϕ ∈ D(Ω), 〈T (α)
n , ϕ〉 = (−1)α〈Tn, ϕ(α)〉 −→ (−1)α〈T, ϕα〉 = 〈Tα, ϕ〉

Example 4 If f ∈ C1(Ω) : (Tf )′ = Tf ′, the derivative is still a regular distribution.

Examples 5 Let us define TY , with Y the Heaviside function defined by: Y (x) =

{
1 si x > 0
0 si x < 0

Y ∈ L1
loc(R), so Y is a distribution TY ∈ D′(R). Then, let ϕ ∈ D′(R), we get

〈T ′Y , ϕ〉 = −〈TY , ϕ′〉 = −
∫ +∞

0
ϕ′(x)dx = ϕ(0) = 〈δ0, ϕ〉, meaning that T ′Y = δ0.

2.2 Fourier Transform of Distributions

The Fourier transform of distributions is going to be defined on a subset of D′(R), called tempered
distributions. These are defined as continuous linear forms on the Schwartz space which we first
introduce.

2.3 The Schwartz class

Definition 6 S(R), called the Schwartz class is the set of functions φ : R→ C such that:

• φ ∈ C∞(R)

• ∀α ∈ N, n ∈ N,∃C such that |φ(α)(x)| ≤ C
(1+‖x‖)n (fast decay)

In other words, the functions in S(R) are C∞(R) functions having all their derivatives with fast
decay.
Example : φ(x) = e−x

2

Theorem 3

S(R) has the following properties:

1. ∀φ ∈ S(R), ∀P ∈ C[X] Pφ ∈ S(R)

2. ∀φ ∈ S(R), φ′ ∈ S(R)

3. 1 ≤ p ≤ ∞ S(R) ⊂ Lp(R)
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Theorem 4

F (i.e. the Fourier transform, F(φ) = φ̂) is a linear bijection from S(R) onto itself with
inverse F .

Proof Let f ∈ S(R), since for all k, xkf(x) is in L1(R), f̂ belongs to C∞(R). Let n ∈ N and
p ∈ N, one has:

ξnf̂ (p)(ξ) = ξnF((−2iπx)pf(x)) by differentiation of an integral depending on a parameter

=
1

(2iπ)n
F(((−2iπx)pf(x))(n)) using properties of the Fourier transform of derivatives.

Using the stability properties of S(R) by multiplication with a polynom and by derivation, we
get that the function of which we compute the Fourier transform is in S(R), so that its Fourier
transform is bounded, which proves that f̂ belongs to S(R).

Furthermore, as f and f̂ are in L1(R) and, as f is continuous, one gets f(x) = F(f̂)(x).

The topology of S(R) is not defined by a norm but by a numerable family of norms:

∀φ ∈ S(R), Np(φ) = max
0≤α,β≤p

sup
x∈R
|xαφ(β)((x)|, p ∈ N

One says that a sequence φn converges to φ in S(R) if:

Np(φn − φ)→ 0 for all p ≥ 0, when n→∞.

One can alternatively define the convergence in S(R) as follows:

∀α, β ∈ N xαφ(β)
n (x)→ xαφ(β)(x) uniformly on R

2.4 The space of tempered distributions S ′(R)

We need to define the Fourier transform in a more general framework than that of the functions
so that the Fourier transform of sampled signals makes sense. The set of tempered distributions
S ′(R) is defined by: {

T : S(R) → C linear, continuous
ϕ 7→ 〈T, ϕ〉

}
Here, the continuity has to be understood in the following sense:

∃m,Cm tel que ∀φ ∈ S(R), |〈T, φ〉| ≤ CmNm(φ)

or, using sequences:

φn → φ in S(R)⇒ 〈T, φn〉 → 〈T, φ〉 in C.
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Remark 4 D(R) ⊂ S(R) and if T is continuous for the topology on S(R), it is also continuous for
the topology on D(R), so S ′(R) ⊂ D′(R). Furthermore, one can show that D(R) is dense in S(R)
for the topology of S(R). A consequence is that to prove the continuity in S ′(R), one can restrain
to functions in D(R), i.e.:

∃m,Cm tel que ∀φ ∈ D(R), |〈T, φ〉| ≤ CmNm(φ)

or, using sequences: φn ∈ D(R), φn → φ in S(R)⇒ 〈T, φn〉 → 〈T, φ〉 in C

Examples 6

• f ∈ L1(R), L2(R) ou L∞(R)⇒ Tf ∈ S ′(R)

• Dirac δa ∈ S ′(R)

• Dirac comb
∑

n∈Z δn ∈ S ′(R)

• E ′(R) ⊂ S ′(R)

• Functions of slow increase are in S ′(R). A function is of slow increase if:

∃c > 0 ∃N ∈ N, ∀x ∈ R |f(x)| ≤ c(1 + |x|)N

• If the sequence (yn)n∈Z is of slow increase (i.e. ∃m ∈ N, c ∈ R such that |yn| ≤ C(1 +
|n|)m, n ∈ Z), the distribution

T =
∑
n∈Z

ynδna

is tempered.

2.5 Fourier Transform in S ′(R)
Definition 7 Let T ∈ S ′(R), one defines its Fourier transform as follows

T̂ :

(
ϕ 7→ 〈T̂ , ϕ〉 = 〈T, ϕ̂〉

S(R) → C

)
One has: T̂ ∈ S ′(R)

Remark 5 • ϕ ∈ S(R)⇒ ϕ̂ ∈ S(R)

• So T̂ is well defined, linear by linearity of T , continuous using the continuity of T (for that
we use the fact that S(R) is stable through Fourier transform).

Proposition 4

Tn ∈ S ′(R) converges to T in S ′(R), if ∀ϕ ∈ S(R), 〈Tn, ϕ〉 → 〈T, ϕ〉.

Proposition 5

The Fourier transform is a continuous application from S ′(R) onto itself.
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Proof Let Tn tending to T in S ′(R) then for all ϕ in S(R), one has:

〈T̂n, ϕ〉 = 〈Tn, ϕ̂〉 → 〈T, ϕ̂〉 = 〈T̂ , ϕ〉

Theorem 5

F : T 7→ T̂
S ′(R) → S ′(R)

is invertible, and its inverse is:

F̄ : T 7→ F̄(T )
S ′(R) → S ′(R)

with 〈F̄(T ), ϕ〉 = 〈T, F̄(ϕ)〉

Proof Let T ∈ S ′(R), ∀ϕ ∈ S(R), 〈F̄F(T ), ϕ〉 = 〈F(T ), F̄(ϕ)〉 = 〈T,FF̄(ϕ)〉 = 〈T, ϕ〉, because
FF̄ = Id in S(R).

Examples 7

(i) Let f ∈ L1(R) or L2(R), then Tf ∈ S ′(R).

〈T̂f , ϕ〉 = 〈Tf , ϕ̂〉 =

∫
R
f(y)ϕ̂(y)dy =

∫
R
f̂(y)ϕ(y)dy = 〈Tf̂ , ϕ〉

so T̂f = Tf̂ .

Conclusion: if the Fourier transform exists in the functional sense, and is denoted by f̂ , its
Fourier transform in the sense of distributions will be Tf̂ .

(ii) ∀ϕ ∈ S(R), 〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =
∫ +∞
−∞ ϕ(x)e−2iπ0xdx =

∫ +∞
−∞ ϕ(x)dx = 〈T1, ϕ〉, so

δ̂ = T1.

(iii) ∀ϕ ∈ S(R), 〈δ̂a, ϕ〉 = 〈δa, ϕ̂〉 = ϕ̂(a) =
∫ +∞
−∞ ϕ(x)e−2iπaxdx = 〈e−2iπax, ϕ〉, so δ̂a =

Te−2iπax.

(iv) ∀ϕ ∈ S(R), 〈T̂e2iπk0x , ϕ〉 = 〈Te2iπk0x , ϕ̂〉 =
∫ +∞
−∞ e2iπk0yϕ̂(y)dy = ϕ(k0) = 〈δk0 , ϕ〉, so

T̂e2iπk0x = δk0 (in particular : T̂1 = δ0).

(v) Let T be a strictly positive real and (yn)n∈Z a sequence of slow increase, then

F(
∑
n∈Z

ynδnT ) =
∑
n∈Z

yne
−2iπnTx,

which is a consequence of the continuity of the Fourier transform on S ′(R):∑̂
n∈Z

ynδnT =
∑
n∈Z

ynδ̂nT =
∑
n∈Z

yne
−2iπnTx.
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This last example is very important in signal processing, in which community one defines
(often without proof of existence) the so-called discrete time Fourier transform (DTFT), as
follows

Definition 8 The discrete-time Fourier transform (DTFT) of a sequence (xn) is defined by:

X(e2iπω) =
∑
n∈Z

xne
−2iπnω (2.1)

which exists in S ′(R) as soon as (xn) is of low increase.

In particular, when (xn) is in l1(Z), one has normal convergence, and X is continuous. When (xn)
is in l2(Z), X(e2iπω) can be viewed as a Fourier series of a 1-periodic function and the convergence
takes place in L2([−1/2, 1/2[), so that we can write:

xn =

∫ 1/2

−1/2
X(e2iπω)e2iπnωdω, n ∈ Z (2.2)

Another consequence is the Parseval equality when (xn) is in l2(Z):∫ 1/2

−1/2
|X(e2iπω)|2dω =

∑
n∈Z
|xn|2.

2.5.1 Distributions with compact support

Definition 9 Let T ∈ D′(Ω) and ω ⊂ Ω an open set. T is null on ω if for any ϕ ∈ D(ω), 〈T, ϕ〉 = 0.

Example 8 Let a ∈ R, δa is null on R \ {a}. If ω ⊂ R is an open set and if a /∈ ω, then δa is null
on ω.

Definition 10 Let T ∈ D′(Ω), the support of T , denoted Supp (T ), is the complement set (in Ω)
of the largest open set ω on which T is null.

One can show that ω exists.

Examples 9

• Supp (δa) = {a}

• For all a ∈ R and all α ∈ N, one has Supp (∂αδa) = {a}

• If f ∈ C0(Ω) and Supp (f) is a compact set, then Tf ∈ E ′(Ω).

Proposition 6

Let T ∈ E ′(R), then T̂ belongs to C∞(R) and is with slow increase.
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2.5.2 Convolution E ′(R) ∗ D′(R)

Let u ∈ C0(R) and v ∈ L1
loc(R) then for all ϕ ∈ D(R), since (x, y) 7→ u(y)v(x− y)ϕ(x) ∈ L1(R×R),

using Fubini theorem one may write:∫
R
u ∗ v(x)ϕ(x)dx =

∫
R

(∫
R
u(y)v(x− y)dy

)
ϕ(x)dx =

∫
R
u(y)

(∫
R
v(x)ϕ(x+ y)dx

)
dy

=

∫
R
v(x)

(∫
R
u(y)ϕ(x+ y)dy

)
dx.

which can be rewrite using distributions notations as:

〈Tu∗v, ϕ〉 = 〈Tu, 〈Tv, ϕ(.+ y)〉〉 = 〈Tv, 〈Tu, ϕ(.+ y)〉〉.

One can then generalize this remark through the following definition.

Definition 11 Let S ∈ E ′(R) and T ∈ D′(R).

• There exists a distribution, called convolution of S with T which we write S ∗T and such that
for all ϕ ∈ D(R), one has:

〈S ∗ T, ϕ〉 = 〈St, 〈Tx, ϕ(x+ t)〉〉 = 〈Tu, 〈Sx, ϕ(x+ u)〉〉

• The application (S, T )→ S ∗ T from E ′(R)×D′(R) onto D′(R) is continuous with respect to
each variable.

• If T ∈ S ′(R) then S ∗ T ∈ S ′(R).

Examples: Let T ∈ D′(R), δa ∗ T = T ∗ δa = τaT .
δ(k) ∗ T = T ∗ δ(k) = T (k)

Proposition 7

Let S ∈ E ′(R) and T ∈ S ′(R), one has

Ŝ ∗ T = ŜT̂

We here make the link with applications in signal processing. Let us consider the convolution of
the discrete sequences (hn) and (xn) by:

yn =
∑
k∈Z

xn−khk (2.3)

Il the support of (hk) is finite, one can associate to this sequence the following compactly supported
distribution h =

∑
k∈Z

hkδk and if (xn) is of slow increase, it is associated with the tempered distri-

bution x =
∑
k∈Z

xkδk. Applying the definition of the convolution of two distributions, one obtains

the following tempered distribution y =
∑
k∈Z

ynδn, of which we can take the Fourier transform.

Usual framework in signal processing: If (hn) is compactly supported, and if (xn) belongs to l1(Z)
or l2(Z), then (yn) belongs to the same space and one has:
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Proposition 8

Y (e2iπω) = X(e2iπω)H(e2iπω),

where Y,X and H are the DTFT s of sequences y, x and hrespectively.

2.6 Exercises

Exercise 1 Are the following applications T , defined for ϕ ∈ D(R), distributions?
1. 〈T, ϕ〉 =

∫ 1
0 ϕ(x)dx

2. 〈T, ϕ〉 =
∫ 1

0 |ϕ(x)|dx

3. 〈T, ϕ〉 =
+∞∑
n=0

ϕ(n)

4. 〈T, ϕ〉 =
+∞∑
n=1

ϕ(1/n)

Exercise 2 Let ϕ ∈ D(R).
1. Show that there exist a constant C(ϕ) such that:

∀n ∈ Z,
∣∣∣∣∫ +∞

−∞
einxϕ(x)dx

∣∣∣∣ ≤ C(ϕ)

1 + n2

2. Let (an)n∈Z be a bounded sequence. Show that the series with general term:

an

∫ +∞

−∞
einxϕ(x)dx

converges, and that the application which maps ϕ to the sum of this series is a distribution.
3. Show that when the sequence n2an is bounded, the distribution is indeed a function.

Exercise 3 Let us consider the regular distributions einx.
1. Show that for all n 6= 0 :

∀ϕ ∈ D(]− π, π[),
∣∣〈einx, ϕ〉∣∣ ≤ C(ϕ)

n2

where C(ϕ) is a constant which does not depend on ϕ.
2. Let us define:

uN (x) =
N∑

n=−N
einx

Show that the sequence of distributions TN associated with functions uN converges in the distribu-
tional sense on ]− π, π[. Let T be its limit.

3. Show that:



30 CHAPTER 2. FOURIER TRANSFORM OF DISCRETE SEQUENCES

uN (x) =
sin(N + 1

2)x

sin(x2 )

4. Show that if ϕ ∈ D(] − π, π[) is such that ϕ(0) = 0, then ϕ(x)
sin(x

2
) belongs to C∞c (] − π, π[) (we

recall that sinx
x is a smoot function).

5. Show that if ϕ ∈ D(]− π, π[) is such that ϕ(0) = 0, then 〈T, ϕ〉 = 0.
6. Deduce that there exists a constant C such that:

T =
+∞∑

n=−∞
einx = Cδ.

We will admit that C = 2π.

Exercise 4 After having shown the following distributions are tempered distributions, compute
the Fourier transform of the following distributions:

1. 1
2. xn

3. δ(n)

4. e2iπν0x

Exercise 5 Compute, using the definition of the Fourier transforms of distributions the following
integral: ∫

R
e−πx

2
cos(2πx)dx

Exercise 6 Show that if f belongs to L1(R) or L2(R) that T̂f = Tf̂ .

Exercise 7 Fourier transform of vp(1/x)
1. Show that vp(1/x) is a tempered distribution
2. We recall that xvp(1/x) = 1, deduce the Fourier transform of vp(1/x)

Exercise 8 Fourier transform of the Heavyside function
Remarking that U(x) = 1

2(sign(x) + 1), compute its Fourier transform.



Chapter 3

Linear Time-Frequency Analysis

Here we focus on linear time-frequency techniques, that is we are going to define linear transforms
that map a function to its time-frequency representation. The focus is put on the short-time Fourier
transform both in the continuous and discrete setting. In the latter case, the emphasis will be put
on the reaction with the Fourier transform of distributions.

3.1 Linear Time-Frequency analysis: the continuous time frame-
work

Time-Frequency analysis is related to the definition of Short-Time Fourier Transform (STFT), the
definition of which we now recall in different contexts.

3.1.1 Continuous Time Short Time Fourier Transform

Definition 1 The STFT of a given signal f ∈ L1(R)
⋂
L2(R) and g a real window also in L2(R)

is given by:

V g
f (t, ω) =

∫
R
f(u)g(u− t)e−i2πω(u−t)du. (3.1)

Remark 1 The existence of the STFT is a direct consequence of Cauchy-Schwartz theorem.

This transform is invertible under some assumptions:

Proposition 1

Assume
∫
R g = 1, and that f̂ is in L1(R), the following reconstruction formula holds :

f(t) =

∫ ∫
R2

V g
f (u, ω)ei2πω(t−u)dudω.

31
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Proof Because of the hypothesis made on g, one has: f(t) =
∫
R f(t)g(t− u)du Now, the Fourier

transform of f reads:

f̂(ω) =

∫
R

∫
R
f(t)g(t− u)e−2iπω(t−u)dte−2iπωudu

=

∫
R
V g
f (u, ω)e−2iπωudu.

So, since f̂ is in L1(R), it is invertible and we can write: f(t) =
∫
R2 V

g
f (t, ω)e2iπω(t−u)dudω.

Proposition 2

Assume ‖g‖2 = 1, the following reconstruction formula holds (in L2(R)) :

f(t) =

∫ ∫
R2

V g
f (u, ω)g(t− u)ei2πω(t−u)dudω.

Proof The proof uses the fact that {g(t − u)ei2πω(t−u)}u is a frame of L2(R), but it will not be
detailed here.

Proposition 3

If one assumes that f is analytic (namely f̂(ω) = 0 if ω < 0), g is continuous, iand both f
and g are in L1(R)

⋂
L2(R), one may also write:

f(t) =
1

g(0)

∫ ∞
0

V g
f (t, ω)dω.

Proof ∫ ∞
0

V g
f (t, ω)dω =

∫ ∞
0

∫
R
f(u)g(u− t)e−i2πω(u−t) =

∫ ∞
0

∫
R
f̂(ω)ĝ(ω − ν)∗ei2πωtdωdν

=

∫ ∞
0

f̂(ω)ei2πωtdω

∫
R
ĝ(ν − ω)dν = f(t)g(0),

so one has the following reconstruction formula: f(t) = 1
g(0)

∫∞
0 V g

f (t, ω)dω.

3.1.2 Discrete-Time Short-Time Fourier Transform

Since this part of the course is more signal processing oriented, we replace the notation xn for a
sequence by x[n]. For a sequence (f [n])n∈Z in l1(Z), and a discrete real window g also in l1(Z), the
STFT is defined for each ω by:

V g
f,d(m,ω) =

∑
n∈Z

f [n]g[n−m]e−i2πω(n−m). (3.2)
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The STFT can be viewed as the Fourier transform of
∑

n∈Z f [n]g[n −m]δn times the phase shift
term e2iπmω. For STFT, we have the following reconstruction formula:

Proposition 4

Assume g(0) 6= 0, then:

f [m] =
1

g(0)

∫ 1

0
V g
f,d(m,ω)dω.

Proof Since V g
f,d(m,ω) is 1-periodic with respect to ω, using Fourier series theory we get:

f [n]g[n−m] =

∫ 1

0
V g
f,d(m,ω)ei2πω(n−m)dω,

and then considering n = m and g(0) 6= 0, we obtain:

f [m] =
1

g(0)

∫ 1

0
V g
f,d(m,ω)dω. (3.3)

Proposition 5

Note that with the hypothesis put on g, (V g
f,d(m,ω))m∈Z is also in l1(Z), and further

assuming ‖g‖2 = 1, we get :

f [n] =

∫ 1

0

∑
m∈Z

V g
f,d(m,ω)g[n−m]e2iπω(n−m)dω.

Proof Indeed, we have:∫ 1

0

∑
m∈Z

V g
f,d(m,ω)g[n−m]e2iπω(n−m)dω =

∑
m,k∈Z

f [k]g[k −m]g[n−m]

∫ 1

0
ei2πω(n−k)dω

=
∑
m∈Z

f [n]g[n−m]2 = f [n]
∑
m∈Z

g[m]2 = f [n]

Proposition 6

Alternatively, if one considers a filter g ∈ l1(Z) such that
∑
m
g[m] = 1, the reconstruction

of f is as follows:

f [n] =

∫ 1

0

∑
m∈Z

V g
f,d(m,ω)ei2πω(n−m)dω.
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Proof The proof is similar to the previous one and is thus left as an exercice.

3.1.3 Short-Time Fourier Transform for finite length signal and filter

Now we assume the signal is of length L and that the filter g is supported on {−M, · · · ,M} such
that:

2log2b2M+1c+1 = N ≤ L, (3.4)

then we have the following reconstruction formula:

Proposition 7

Assume g[0] 6= 0, then we may write:

f [m] =
1

g[0]N

N−1∑
k=0

V g
f,d(m,

k

N
). (3.5)

Proof Indeed,

V g
f,d(m,

k

N
) =

∑
n∈Z

f [n]g[n−m]e−i2π
k(n−m)

N =
M∑

n=−M
f [m+ n]g[n]e−i2π

kn
N ,

=

2M∑
n=0

f [m+ n−M ]g[n−M ]e−i2π
k(n−M)

N .

Since g is null on {M + 1, · · · , N − 1−M}, the STFT can be rewritten as:

V g
f,d(m,

k

N
)e−i2π

kM
N =

N−1∑
n=0

f [m+ n−M ]g[n−M ]e−i2π
kn
N .

Using the properties of the discrete Fourier transform, one obtains, for any n ∈ {0, · · · , N − 1}:

f [m+ n−M ]g[n−M ] =
1

N

N−1∑
k=0

V g
f,d(m,

k

N
)ei2π

k(n−M)
N . (3.6)

Finally, taking n = M and assuming g[0] 6= 0 :

f [m] =
1

g[0]N

N−1∑
k=0

V g
f,d(m,

k

N
).

Remark 2 To reconstruct f [m], one only needs the knowledge of
(
V g
f,d(m,

k
N )
)
k
, while

(
V g
f,d(m,

k
N )
)
k

is non zero for m ∈ {−M, · · · , L− 1 +M}, but the transform outside the support of f is not used
in the reconstruction.
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Proposition 8

Now, if g is with unit energy, one has:

f [n] =

m=n+M∑
m=n−M

1

N

N−1∑
k=0

V g
f,d(m,

k

N
)g[n−m]ei2π

k(n−m)
N .

Proof Indeed, we may write:

m=n+M∑
m=n−M

1

N

N−1∑
k=0

V g
f,d(m,

k

N
)g[n−m]e2iπ

k(n−m)
N =

m=n+M∑
m=n−M

p=m+M∑
p=0

f [p]g[p−m]g[n−m]
1

N

N−1∑
k=0

ei2π
k(n−p)
N

=
m=n+M∑
m=n−M

f [n]g[n−m]2 = f [n]
m=M∑
m=−M

g[m]2 = f [n].

This time, one needs the knowledge of
(
V g
f,d(m,

k
N )
)
k

for m ∈ {−M, · · · , L − 1 + M}, while one

would like to be able to reconstruct f using only
(
V g
f,d(m,

k
N )
)
k

for m ∈ {0, · · · , L− 1}.
To circumvent this difficulty, one can assume f is L-periodic instead of finite: the STFT is no longer
in l1(Z) but is also L-periodic (in the sum defining the STFT p varies from m−M to m+M). In
this case, we may write:

Proposition 9

Assuming g is with unit energy, one has the following reconstruction formula assuming f
is L-periodic:

f [n] =

n+M∑
m=n−M

N−1∑
k=0

V g
f,d(m mod L,

k

N
)g[n−m]

ei2π
k(n−m)

N

N
.

Note that the hypothesis that f is periodic could be avoided easily as well as on the unit energy
for the filter. Indeed,

Proposition 10

assuming f is null outside its boundary, we have:

f [n] =

m=n+M∑
m=max(n−M,0)

1
N

N−1∑
k=0

V g
f,d(m,

k
N )g[n−m]e2iπ

k(n−m)
N

m=n+M∑
m=max(n−M,0)

g[m]2
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Proof We may actually write

m=n+M∑
m=max(n−M,0)

1

N

N−1∑
k=0

V g
f,d(m,

k

N
)g[n−m]e2iπ

k(n−m)
N

=

m=n+M∑
m=max(n−M,0)

p=m+M∑
p=0

f [p]g[p−m]g[n−m]
1

N

N−1∑
k=0

ei2π
k(n−p)
N

=

m=n+M∑
m=max(n−M,0)

f [n]g[n−m]2 = f [n]

m=n+M∑
m=max(n−M,0)

g[m]2 = f [n].

Similarly to what was done previously in the continuous time case, if we further assume that f is

L-periodic, and that
M∑

m=−M
g(m) = 1, one has the following reconstruction formula:

f [p] =

p+M∑
m=p−M

1

N

N−1∑
k=0

V g
f,d(m mod L,

k

N
)ei2π

k(p−m)
N .

Again, not assuming any periodicity hypothesis we also have.

f [p] =

p+M∑
m=max(p−M,0)

1
N

N−1∑
k=0

V g
f,d(m mod L, kN )ei2π

k(p−m)
N

p+M∑
m=max(p−M,0)

g[p]

.

To conclude on this part we have shown different reconstruction procedures for associated with the
STFT and considering different hypothesis on the filter. We are going to use these developments
in the study of reassignment technique in the following chapter.

3.2 Applications in Matllab

One has to answer the following questions. The Matlab function mentioned in the following section
are listed at the end of the chapter.

3.2.1 Lab session

1. In the files tfrstft.m and itfrstft.m we have implemented the STFT and its inverse respectively
using some of the formulae introduced above. Explain to which cases correspond ”cas” equal 1, 2
or 3 in theses procedures.

2. Write a program that decomposes the following signal and then reconstruct it with each of the
above mentioned STFT, once the STFT is computed plot its modulus using the command imagesc,
use a number of frequency bins equal to 512.

N = 4096;

t = (0:N-1)/N;
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a = 2;

s1 = a.*exp(2*pi*1i*(1000*t+60*cos(3*pi*t)));

s2 = a.*exp(2*pi*1i*(400*t+30*cos(3*pi*t)));

s = s1+s2;

s = s(:);

Check that the reconstruction is correct, in each of the studied case.
3. We add some Gaussian complex white noise to the original signal, using the sigmerge.m

procedure, given an input SNR, through the following formula:

noise = randn(N,1)+1i*randn(N,1);

[Snoise] = sigmerge(s,noise,SNR);

Show that, if noise is a white noise with variance σ2:

V ar

(
<{V g

noise,d(m,
k

N
)}
)

= V ar

(
={V g

noise,d(m,
k

N
)}
)

= σ2‖g‖22,m

with ‖g‖22,m =
n=m+M∑

n=max(m−M,0)

g[n]2, if f is assumed to be zero outside its boundaries and

V ar

(
<{V g

noise,d(m,
k

N
)}
)

= V ar

(
={V g

noise,d(m,
k

N
)}
)

= σ2‖g‖22

in the case f periodic.
4. Assuming the real and the imaginary parts of V g

noise,d(m,
k
N ) are independent, show that

|V gnoise,d(m, k
N

)|2

σ2‖g‖22,m
is χ2 distributed with two degrees of freedom (when f is assumed to be null outside its

boundaries, otherwise if one considers a periodic hypothesis then
|V gnoise,d(m, k

N
)|2

σ2‖g‖22
has to be considered

instead). Then, threshold the STFT using the following procedure (called hard-thresholding):

V
g
Snoise(m,

k

N
) =

{
V g
Snoise(m,

k
N ), if |V g

Snoise(m,
k
N )| ≥ 3σ‖g‖2

0 otherwise.
(3.7)

Explain why the choice of threshold is a good one. Propose a reconstruction sr for signal s from
the denoised STFT. Assuming σ is known, Write a program to plot the output SNR with respect
to the input SNR. The output SNR is computed as follows:

SNRoutput = 20 log10

(
‖s‖2

‖s− sr‖2

)
.

Give a illustration of the denoised STFT and of the denoised signal (real and imaginary parts).
5. Based on the hypothesis the signal part is sparse in the representation of the STFT, the

absolute median deviation is a good choice to estimate γ = σ‖g‖2, i.e.

Y 2 = real(V g
Snoise(m, k/N));

γ̂ = median(abs(Y 2(:)))/0.6745;

Having, computed this estimate, use it in the thresholding algorithm. Show that it makes little
difference in terms of output SNR, i.e. knowing the true variance of the noise or only an estimation.
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3.2.2 Files used in Lab session

Tools functions

function sig=sigmerge(x1,x2,ratio);

%SIGMERGE Add two signals with given energy ratio in dB.

% SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given

% energy ratio expressed in deciBels is satisfied.

%

% X1, X2 : input signals.

% RATIO : Energy ratio in deciBels (default : 0 dB).

% X : output signal.

% X= X1+H*X2, such that 10*log(Energy(X1)/Energy(H*X2))=RATIO

if (nargin<2)

error(’At least two parameters are required’);

elseif nargin==2,

ratio=0;

end;

[x1row,x1col] = size(x1);

[x2row,x2col] = size(x2);

if (x1col~=1)|(x2col~=1),

error(’X1 and X2 must have only one column’);

elseif (x1row~=x2row),

error(’X1 and X2 must have the same number of rows’);

elseif (length(ratio)~=1),

error(’RATIO must be a scalar’);

elseif (ratio==inf),

sig = x1;

else

Ex1=mean(abs(x1).^2);

Ex2=mean(abs(x2).^2);

h=sqrt(Ex1/(Ex2*10^(ratio/10)));

sig=x1+h*x2;

end;

function res = snr(s,n)

%SNR computes the SNR. s : signal and n: noise

rms = @(x) sqrt(mean(abs(x).^2));

res = 20 * log10(rms(s)/rms(n));

end
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function y = amgauss(N,t0,T);

%AMGAUSS Generate gaussian amplitude modulation.

% Y=AMGAUSS(N,T0,T) generates a gaussian amplitude modulation

% centered on a time T0, and with a spread proportional to T.

% This modulation is scaled such that Y(T0)=1

% and Y(T0+T/2) and Y(T0-T/2) are approximately equal to 0.5 .

%

% N : number of points.

% T0 : time center (default : N/2).

% T : time spreading (default : 2*sqrt(N)).

% Y : signal.

if (nargin == 0),

error ( ’The number of parameters must be at least 1.’ );

elseif (nargin == 1),

t0=N/2; T=2*sqrt(N);

elseif (nargin ==2),

T=2*sqrt(N);

end;

if (N<=0),

error(’N must be greater or equal to 1.’);

else

tmt0=(1:N)’-t0;

y = exp(-(tmt0/T).^2 * pi);

end;

function h=tftb_window(N,name,param,param2);

%tftb_window Window generation.

% H=tftb_window(N,NAME,PARAM,PARAM2)

% yields a window of length N with a given shape.

%

% N : length of the window

% NAME : name of the window shape (default : Hamming)

% PARAM : optional parameter

% PARAM2 : second optional parameters

%

% Possible names are :

% ’Hamming’, ’Hanning’, ’Nuttall’, ’Papoulis’, ’Harris’,

% ’Rect’, ’Triang’, ’Bartlett’, ’BartHann’, ’Blackman’

% ’Gauss’, ’Parzen’, ’Kaiser’, ’Dolph’, ’Hanna’.

% ’Nutbess’, ’spline’, ’Flattop’

%

% For the gaussian window, an optionnal parameter K
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% sets the value at both extremities. The default value is 0.005

%

% For the Kaiser-Bessel window, an optionnal parameter

% sets the scale. The default value is 3*pi.

%

% For the Spline windows, h=tftb_window(N,’spline’,nfreq,p)

% yields a spline weighting function of order p and frequency

% bandwidth proportional to nfreq.

if (nargin==0), error ( ’at least 1 parameter is required’ ); end;

if (N<=0), error(’N should be strictly positive.’); end;

if (nargin==1), name= ’Hamming’; end ;

name=upper(name);

if strcmp(name,’RECTANG’) | strcmp(name,’RECT’),

h=ones(N,1);

elseif strcmp(name,’HAMMING’),

h=0.54 - 0.46*cos(2.0*pi*(1:N)’/(N+1));

elseif strcmp(name,’HANNING’) | strcmp(name,’HANN’),

h=0.50 - 0.50*cos(2.0*pi*(1:N)’/(N+1));

elseif strcmp(name,’KAISER’),

if (nargin==3), beta=param; else beta=3.0*pi; end;

ind=(-(N-1)/2:(N-1)/2)’ *2/N; beta=3.0*pi;

h=besselj(0,j*beta*sqrt(1.0-ind.^2))/real(besselj(0,j*beta));

elseif strcmp(name,’NUTTALL’),

ind=(-(N-1)/2:(N-1)/2)’ *2.0*pi/N;

h=+0.3635819 ...

+0.4891775*cos( ind) ...

+0.1363995*cos(2.0*ind) ...

+0.0106411*cos(3.0*ind) ;

elseif strcmp(name,’BLACKMAN’),

ind=(-(N-1)/2:(N-1)/2)’ *2.0*pi/N;

h= +0.42 + 0.50*cos(ind) + 0.08*cos(2.0*ind) ;

elseif strcmp(name,’HARRIS’),

ind=(1:N)’ *2.0*pi/(N+1);

h=+0.35875 ...

-0.48829 *cos( ind) ...

+0.14128 *cos(2.0*ind) ...

-0.01168 *cos(3.0*ind);

elseif strcmp(name,’BARTLETT’) | strcmp(name,’TRIANG’),

h=2.0*min((1:N),(N:-1:1))’/(N+1);

elseif strcmp(name,’BARTHANN’),

h= 0.38 * (1.0-cos(2.0*pi*(1:N)/(N+1))’) ...

+ 0.48 * min((1:N),(N:-1:1))’/(N+1);

elseif strcmp(name,’PAPOULIS’),

ind=(1:N)’*pi/(N+1); h=sin(ind);

elseif strcmp(name,’GAUSS’),

if (nargin==3), K=param; else K=0.005; end;
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h= exp(log(K) * linspace(-1,1,N)’.^2 );

elseif strcmp(name,’PARZEN’),

ind=abs(-(N-1)/2:(N-1)/2)’*2/N; temp=2*(1.0-ind).^3;

h= min(temp-(1-2.0*ind).^3,temp);

elseif strcmp(name,’HANNA’),

if (nargin==3), L=param; else L=1; end;

ind=(0:N-1)’;h=sin((2*ind+1)*pi/(2*N)).^(2*L);

elseif strcmp(name,’DOLPH’) | strcmp(name,’DOLF’),

if (rem(N,2)==0), oddN=1; N=2*N+1; else oddN=0; end;

if (nargin==3), A=10^(param/20); else A=1e-3; end;

K=N-1; Z0=cosh(acosh(1.0/A)/K); x0=acos(1/Z0)/pi; x=(0:K)/N;

indices1=find((x<x0)|(x>1-x0));

indices2=find((x>=x0)&(x<=1-x0));

h(indices1)= cosh(K*acosh(Z0*cos(pi*x(indices1))));

h(indices2)= cos(K*acos(Z0*cos(pi*x(indices2))));

h=fftshift(real(ifft(A*real(h))));h=h’/h(K/2+1);

if oddN, h=h(2:2:K); end;

elseif strcmp(name,’NUTBESS’),

if (nargin==3), beta=param; nu=0.5;

elseif (nargin==4), beta=param; nu=param2;

else beta=3*pi; nu=0.5;

end;

ind=(-(N-1)/2:(N-1)/2)’ *2/N;

h=sqrt(1-ind.^2).^nu .* ...

real(besselj(nu,j*beta*sqrt(1.0-ind.^2)))/real(besselj(nu,j*beta));

elseif strcmp(name,’SPLINE’),

if (nargin < 3),

error(’Three or four parameters required for spline windows’);

elseif (nargin==3),

nfreq=param; p=pi*N*nfreq/10.0;

else nfreq=param; p=param2;

end;

ind=(-(N-1)/2:(N-1)/2)’;

h=sinc((0.5*nfreq/p)*ind) .^ p;

elseif strcmp(name,’FLATTOP’),

ind=(-(N-1)/2:(N-1)/2)’ *2.0*pi/(N-1);

h=+0.2810639 ...

+0.5208972*cos( ind) ...

+0.1980399*cos(2.0*ind) ;

else error(’unknown window name’);

end;

Time-frequency functions

function [tfr] = tfrstft(x,N,cas,g,Lg)

%x : signal
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%N : number of frequency bins

%cas : if 1, ...

% if 2, ...

% if 3, ...

%g : the filter h used

%Lg : the filter is of length 2Lh+1

%tfr : short time Fourier transform

[xrow,xcol] = size(x);

t = 1:xrow; %the time instant, we consider the time instant shitfed by a factor shift.

tfr= zeros (N,length(t)) ;

if (cas == 1)

%case without periodizing

trans = zeros(1,length(t));

for icol=1:length(t),

tau = -min([Lg,t(icol)-1]):min([Lg,xrow-t(icol)]);

tfr(1:length(tau),icol) = x(t(icol)+tau,1).*g(Lg+1+tau);

trans(icol) = tau(1);

end

tfr=fft(tfr,N);

A = exp(-2/N*pi*1i*(0:N-1)’*trans);

tfr = tfr.*A;

end

if (cas == 2)||(cas == 3)

%cases with periodization

tau = -Lg:Lg;

for icol = 1:length(t),

if (t(icol) > Lg) && (t(icol) <= xrow-Lg)

tfr(1:length(tau),icol) = x(t(icol)+tau,1).*g(Lg+1+tau);

else

tfr(1:length(tau),icol) = x(1+rem((t(icol)-1)+tau+xrow,xrow),1).*g(Lg+1+tau);

end

end

tfr = fft(tfr,N);

trans = Lg*ones(1,length(t));

A = exp(2/N*pi*1i*(0:N-1)’*trans);

tfr = tfr.*A;

end

end

function [x] = itfrstft(tfr,cas,g)
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%tfr : STFT of signal x

%cas : if 1, ...

% if 2, ...

% if 3, ...

%h : filter

%x : restored signal

[N,xrow] = size(tfr);

if (cas == 1)

%case without periodizing

x = zeros(xrow,1);

Lg = (length(g)-1)/2;

for icol=1:xrow,

x(icol) = 1/g(Lg+1)*mean(tfr(:,icol));

end

end

if (cas == 2)

%cases with periodization

Lg = (length(g)-1)/2;

x = zeros(xrow,1);

for i = 1:xrow

ind = i-Lg:i+Lg;

if (i > Lg)&&(i <= xrow - Lg)

x(i) = mean(tfr(:,ind).*exp(2*1i*pi*(0:N-1)’*(i-ind)/N)*...

g(Lg+1+i-ind))/norm(g(Lg+1+i-ind))^2;

else

x(i) = mean((tfr(:,1+rem((ind-1)+xrow,xrow)).*exp(2*1i*pi*(0:N-1)’*(i-ind)/N))...

*g(Lg+1+i-ind))/norm(g(Lg+1+i-ind))^2;

end

end

end

if (cas == 3)

%case with periodization

Lg = (length(g)-1)/2;

x = zeros(xrow,1);

for i = 1:xrow

ind = i-Lg:i+Lg;

if (i > Lg)&&(i <= xrow-Lg)

x(i) = mean((tfr(:,ind).*exp(2*1i*pi*(0:N-1)’*(i-ind)/N))*...

ones(length(Lg+1+i-ind),1))/sum(g(Lg+1+i-ind));

else

x(i) = mean((tfr(:,1+rem((ind-1)+xrow,xrow)).*exp(2*1i*pi*(0:N-1)’*(i-ind)/N))*...
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ones(length(Lg+1+i-ind),1))/sum(g(Lg+1+i-ind));

end

end

end

end

function test_three_cases_uncomplete(cas,window)

%cas : 1...,

% 2...,

% 3...,

%window : choice for window g here either Gaussian or Hamming

N = 4096;

t = (0:N-1)/N;

a = 2;

s1 = a.*exp(2*pi*1i*(1000*t+60*cos(3*pi*t)));

s2 = a.*exp(2*pi*1i*(400*t+30*cos(3*pi*t)));

s = s1+s2;

s = s(:);

Nfft = 512; %number of frequency bins

%we build the filter g

if strcmp(window,’hamming’)

glength=floor(161);

glength=glength+1-rem(glength,2);%the length of the filter has to be odd

g = tftb_window(glength,window);

else

prec = 10^(-3);

sigma_w = 0.15;

L = Nfft*sigma_w;

Lg = floor(L*sqrt(-log(prec)/pi))+1;

g = amgauss(2*Lg+1,Lg+1,L); %explain what is being done here

end

[grow,gcol]=size(g);

Lg=(grow-1)/2;

%compute STFT

%plot its modulus

%invert it

end
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function test_three_cases_noise_uncomplete(cas,window)

%cas : 1...,

% 2...,

% 3...,

%window : choice for window g here either Gaussian or Hamming

N = 4096;

t = (0:N-1)/N;

a = 2;

s1 = a.*exp(2*pi*1i*(1000*t+60*cos(3*pi*t)));

s2 = a.*exp(2*pi*1i*(400*t+30*cos(3*pi*t)));

s = s1+s2;

s = s(:);

Nfft = 512; %number of frequency bins

%we build the filter g

if strcmp(window,’hamming’)

glength=floor(161);

glength=glength+1-rem(glength,2);%the length of the filter has to be odd

g = tftb_window(glength,window);

else

prec = 10^(-3);

sigma_w = 0.15;

L = Nfft*sigma_w;

Lg = floor(L*sqrt(-log(prec)/pi))+1;

g = amgauss(2*Lg+1,Lg+1,L); %explain what is being done here

end

[grow,gcol]=size(g);

Lg=(grow-1)/2;

%add noise to s

%compute STFT

%plot its modulus

%denoise STFT

%plot its modulus

%invert it

end
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Chapter 4

Reassignment Techniques and
Synchrosqueezing

4.1 Introduction

Over the last 30 years, numerous methods have been proposed to extend Fourier analysis to non-
stationary signals, resulting in a body of work that is referred to (at-large) as “time-frequency”
(TF) methods [1, 2, 3]. Broadly speaking, generalizing Fourier analysis to take into account possi-
ble variations in the frequency content of a signal can be understood in two complementary ways.
The first attempts to make time-dependent the Fourier transform, while the second focuses on the
associated spectral density. The main difference is that the first approach is linear, with a complex-
valued frequency description that involves magnitude and phase contributions, whereas the second
is quadratic and leads to real-valued transforms in most cases.

Linear TF methods include short-time Fourier transforms (STFTs) and wavelet transforms (WTs),
while most quadratic methods can be seen as variations of the celebrated Wigner-Ville distribution
(WVD), with squared STFTs (spectrograms) and WTs (scalograms) as special cases. Perhaps the
key point is that none of these approaches allow for the definition of one and only one transform.
This follows in some sense from the uncertainty relation that links time and frequency, with the
consequence that the result of any transform depends not only on intrinsic characteristics of the
analyzed signal, but also on the specific properties of the chosen transform; i.e. the transform should
be viewed as a measurement device. In the case of linear methods, this entanglement between the
measured quantity and the measuring device takes on a special importance when, e.g., the signal
under study is almost as elementary (in terms of Heisenberg-Gabor uncertainty) as the window or
wavelet used for its analysis: in such a situation, one could think of the signal analyzing the window
as much as the window analyzing the signal! Something similar occurs for AM-FM signals: while
the idealized picture of such signals would correspond to perfectly localized trajectories associated
with the instantaneous frequencies in the TF plane, values of linear transforms are spread over a
ribbon whose geometry depends jointly on the signal and the window (see Figures 4.1 and 4.2 for
illustrations).

In order to overcome this difficulty, in the late 70’s Kodera, Gendrin and de Villedary pioneered an
approach aimed at “modifying” the “moving window method” (i.e., the STFT) [4, 5]. Their analysis
pointed out that the spreading of the STFT magnitude (the quantity that is usually displayed in
graphical representations) can be compensated by taking into account the phase information that
is usually discarded. This offered a dramatic improvement in terms of readability but because no

47



48 CHAPTER 4. REASSIGNMENT TECHNIQUES AND SYNCHROSQUEEZING

inversion formula exists this approach did not receive much attention.
Subsequently, in the 80’s came the development of Wigner-type distributions, that could be tailored
to guarantee perfect localization of signals with specific FM laws (linear for the Wigner distribution
and, e.g., hyperbolic for some of its generalizations), though at the expense of new difficulties,
e.g. cross-terms that hampered readability in the multicomponent case. Nevertheless, this new
way of interpreting squared linear transforms permitted a revisit of Kodera’s approach and an
extension of its applicability beyond the STFT. Moreover, Auger and Flandrin (who coined the
term “reassignment”) showed in the early 90’s that the explicit use of the STFT phase can be
efficiently replaced by a combination of STFTs with suitable windows [6]. This was the starting
point of its use in a variety of new domains, such as audio [7], physics [8] or ecology [9].
In parallel and independently, Maes and Daubechies developed another phase-based technique that
they termed “synchrosqueezing” [10]. Its purpose was very similar to that of reassignment (indeed
it is a special case), with the additional advantage of allowing for reconstruction.

4.2 Notation and Multicomponent Signal Definition

We recall that the STFT of f is defined by:

V g
f (t, ω) =

∫
R
f(τ)g(τ − t)e−i2πω(τ−t) dτ (4.1)

The spectrogram Sgf (t, ω) is then usually defined as |V g
f (t, ω)|2. One of the most popular cases is

when g is the Gaussian window 1√
2πσ

e−
t2

2σ2 . Multicomponent signals f to be considered hereafter

in either reassignment or synchrosqueezing techniques in the STFT framework are defined by:

f(t) =

K∑
k=1

fk(t), with fk(t) = ak(t)e
i2πφk(t), (4.2)

for some finite K, where ak(t) > 0 is a continuously differentiable function, φk is a two times
continuously differentiable function satisfying φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for all t. In the
following, fk will be referred to as an AM-FM component or a mode of f . In that context, ideal
TF (ITF) representations can be defined as:

ITFq(t, ω) =

N∑
k=1

ak(t)
qδ(ω − φ′k(t)), (4.3)

where q is a positive integer depending on the chosen TF distribution (TFD), the STFT (resp.
spectrogram) being associated with q = 1 (resp. q = 2). In that context, φ′k(t) is called the
instantaneous frequency (IF) of the kth mode at time t.

4.3 Uncertainty Principle for Multicomponent Signals

The most significant issue in TF signal analysis is the uncertainty principle which stipulates that one
cannot localize a signal with an arbitrary precision both in time and frequency. TF representations
often include parameters to allow for the balance between frequency resolution and time localization.
In the case of the STFT (or spectrogram), this can be achieved by varying the size of the analysis
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Figure 4.1: A and B: Illustration of the Heisenberg uncertainty principle: spectrogram of a sax-
ophone sound computed with two different Gaussian windows (A: σ = 9 ms, B: σ = 15 ms); C:
Wigner-Ville distribution of the saxophone sound.

window. As an illustration, we display the spectrogram of a saxophone sound (i.e. a succession
of several notes) on Figure 4.1 for different sizes of the window g: a small window localizes the
transients well (beginning of each note), while a large one gives precise frequency information. There
have been many attempts to optimize this trade-off among which the Wigner-Ville distribution,
other quadratic representations from the Cohen’s class [1, 2], or multi-linear distributions (see [11]
for instance). However, improvements in terms of TF resolution brought about by these techniques
usually rely on strong assumptions, so that each method is suited only for a specific class of signals.

4.4 Time-Frequency Representation Enhancement with Reassign-
ment

Reassignment techniques offer an alternative approach. They aim to sharpen the TF representation
while keeping the temporal localization and are particularly well adapted to multicomponent signals.
Starting with the definition (4.1) of the STFT, the spectrogram can be written as [1]:

Sgf (t, ω) =

∫∫
R2

Wg(τ − t, ν − ω)Wf (τ, ν) dτ dν, (4.4)

where Wf (t, ω) is the Wigner-Ville distribution (WVD), defined for any f in L2(R) by

Wf (t, ω) :=

∫
R
f(t+ τ/2) f∗(t− τ/2) e−i2πωτ dτ. (4.5)

The spectrogram is thus the 2D smoothing of the WVD of the analyzed signal by the WVD of
the analyzing window. This alternative formulation allows for a simple understanding of the main
features of a spectrogram when compared to a WVD. On the one hand, a WVD is known to sharply
localize individual linear chirps in the TF plane but the 2D smoothing involved in the spectrogram
computation results in a smearing of their energy distribution. On the other hand, the quadratic
nature of the WVD is known to create oscillatory interference between individual components ([3,
chapter 3], see Figure 4.1 C for an illustration) which can be removed by the 2D smoothing used
in the spectrogram computation. The analysis is therefore faced with a trade-off between TF
localization and the interference level.
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From (4.4), it follows that the value of the spectrogram at (t, ω) is the sum of all WVD signal
contributions within the TF domain over which the WVD of the window is essentially nonzero. The
principle of the reassignment method (RM) illustrated here on the spectrogram is to compensate
for the TF shifts induced by the 2D smoothing defining the spectrogram. To do so, a meaningful
TF location to which to assign the local energy given by the spectrogram is first determined. It
corresponds to the centroid of the distribution (4.4), whose coordinates are defined by

ω̂f (t, ω) :=
1

Sgf (t, ω)

∫∫
R2

ν Wg(τ − t, ν − ω)Wf (τ, ν) dτ dν

t̂f (t, ω) :=
1

Sgf (t, ω)

∫∫
R2

τ Wg(τ − t, ν − ω)Wf (τ, ν) dτ dν.

Both quantities, which define locally an instantaneous frequency and a group delay, enable perfect
localization of linear chirps, i.e. φ′(t̂f (t, ω)) = ω̂f (t, ω). RM then consists in moving the value of
the spectrogram from the point of computation to this centroid [6]:

Ŝgf (t, ω) =

∫∫
R2

Sgf (τ, ν) δ (ω − ω̂f (τ, ν)) δ
(
t− t̂f (τ, ν)

)
dτ dν, (4.6)

where δ stands for the Dirac distribution. Due to the above mentioned property of (t̂f (t, ω), ω̂f (t, ω)),
RM perfectly localizes linear chirps while removing most of the interference. However, in practice,
the centroid (t̂f , ω̂f ) is not evaluated as above. Remarking that the above operators can be written
as:

t̂f (t, ω) := t− 1

2π
∂ω arg V g

f (t, ω),

ω̂f (t, ω) :=
1

2π
∂t arg V g

f (t, ω),

a more efficient [6] procedure computes them according to

ω̂f (t, ω) = ω − 1

2π
=

{
V g′

f (t, ω)

V g
f (t, ω)

}

t̂f (t, ω) = t+ <

{
V tg
f (t, ω)

V g
f (t, ω)

}
,

where tg stands for the function tg(t) and <{Z} (resp. ={Z}) is the real (resp. imaginary) part
of the complex number Z. Compared to the standard spectrogram, its reassigned version can thus
be computed with a moderate increase in the computational cost, since three STFTs are evaluated
(and combined) instead of one. An illustration of RM is given in the sub-figure called ”RM” of
Figure 4.2.

4.5 Multicomponent Signal Reconstruction with Synchrosqueez-
ing

While RM provides a direct and powerful representation of a multicomponent signal in the TF plane,
no mode reconstruction technique using the reassigned transform is straightforward. In contrast,
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the SynchroSqueezing Transform (SST), introduced by Maes and Daubechies in [10], enhances
the TFD given by the STFT in a manner similar to RM with the spectrogram, but still enables
mode retrieval. This property is of great importance since the understanding of a multicomponent
signal as defined in (4.2) is tightly related to the analysis of its constituent modes. Furthermore,
in contrast to EMD, mode reconstruction using SST is carried out in a convenient mathematical
framework. Indeed, a recent result [16] shows that the SST is a good approximation to the ideal
TF representation of the signal f (with q = 1 see (4.3)) and enables mode reconstruction when f
is made of weakly modulated modes. We now present the SST in the STFT framework with the
emphasis on the differences with RM providing insights into some theoretical results.

4.5.1 SST in a Nutshell

In contrast with RM which enhances the TFD given by the spectrogram, the SST operates directly
on the STFT. The construction of the SST is closely related to the synthesis formula

f(t) =
1

g(0)

∫
R
V g
f (t, ω) dω, (4.7)

which sums the STFT in frequency for each time t. However, when f is made of separate components
fk in the TF plane, i.e. verifying (4.2) and conditions (4.11) and (4.12) (see below), the main part
of the STFT of fk is localized in the vicinity of the ridge (t, φ′k(t)), which can be seen as the
TF trajectory associated with component k. The interesting angular frequencies (AF) ω used to
reconstruct fk are then selected as those such that ω̂f (t, ω) is a good approximation of φ′k(t) [17].
Based on this idea, the synchrosqueezing operator reassigns the STFT as follows:

T gf (t, ω) =
1

g(0)

∫
R
V g
f (t, ν)δ(ω − ω̂f (t, ν)) dν. (4.8)

Note that this definition is similar to that used by RM, except that time reassignment is not
considered and V g

f is used instead of the spectrogram (an illustration of what the operator T gf does
is given in the sub-figure called ”SST” of Figure 4.2).
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Figure 4.2: center: blue (resp. red) arrows symbolizing how the reassignment is performed with
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signal STFT modulus depicted on the left; right: reassignment carried out with RM (resp. SST)
for the signal STFT depicted in the central subfigure.
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Having computed the synchrosqueezing operator T gf , the kth mode is then reconstructed by inte-

grating T gf in the vicinity of the corresponding ridge:

fk(t) ≈
∫
{ω,|ω−φ′k(t)|<d}

T gf (t, ω) dω, (4.9)

for some small parameter d. Since φ′k(t) is unknown and needs to be estimated in practice, this
local averaging of T gf in frequency (t being fixed) is compulsory to retrieve fk.

Given T gf and assuming the number K of components is known, a ridge extraction technique can
be used to estimate the φ′ks before proceeding with mode retrieval. For this, there exists a variety
of methods [18][19], but those based on ridge estimation are particularly well adapted to the SST
case. Briefly, the principle of the latter techniques is to minimize the following energy functional
initially proposed by Carmona et al. [20]:

Ef (ϕ) =

K∑
k=1

−
∫
R
|T gf (t, ϕk(t))|2 dt+

∫
R
λϕ′k(t)

2 + βϕ′′k(t)
2 dt. (4.10)

Doing so, one finds smooth curves ϕk along which the magnitude of T gf is maximal, λ and β enabling
a trade-off between smoothness of the curve and energy maximization. Although this general
variational formulation looks very appealing, it is hard to implement. Heuristic algorithms such
as for instance simulated annealing [20] or the crazy climbers algorithm [21] which are particularly
appropriate in a noisy context have to be used. Another simple yet efficient approach related to the
resolution of (4.10) was developed in [22] and consists of a local determination of the ridges starting
from different initializations and then in an averaging of the results obtained. All these three
methods behave very similarly on the examples studied, and the illustrative examples that follow
will use the last method as ridge estimator. A summary of how the SST performs mode retrieval
is given in Figure 4.2. To conclude, it is worth noting here alternative approaches that assume a
polynomial phase for the modes [23], whereas the SST does not require such an assumption.

4.5.2 Mathematical Foundations of the SST

The discussion above on mode retrieval is reinforced by some theoretical results mostly derived in
the wavelet framework in [16] and then adapted to the STFT context in [17]. Our goal here is not
to delve too deeply into the derivation of these results, but to focus on what type of signals they
are valid for. They are obtained under the following assumptions on the signal f , assuming the
window g is Gaussian:

A1 the fks have weak frequency modulation, implying the existence of a small ε such that for
each t, one has:

σ2|φ′′k(t)| ≤ ε and |a′k(t)| ≤ εφ′k(t), (4.11)

where σ is the size of the Gaussian window.

A2 The modes are well separated in frequency which corresponds, assuming the frequency band-

width of g (in rad/s) is [−∆,∆] (∆ =

√
2 log(2)

σ since g is the Gaussian window), to an
inequality of type

|φ′k(t)− φ′l(t)| ≥ 2∆ (4.12)

for each t and k 6= l.
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Note that because the modes fk are such that φ′k(t) < φ′k+1(t) for all t, (4.12) can always be satisfied
by choosing a a Gaussian window with the appropriate size. A mode fk satisfying A1 will be called
in the sequel a Aε signal. Under these hypotheses, one has that:

1. For any (t, ω) in
⋃
k{(t, ω); |ω − φ′k(t)| ≤ ∆} =

⋃
k Bk, there exists a k such that |ω̂f (t, ω) −

φ′k(t)| ≤ Cε, where C is some constant.

2. The reconstruction error associated with the retrieval of fk by summing the coefficients around
T gf (t, φ′k(t)) following (4.9) tends to zero as ε goes to zero.

This clearly establishes, on one hand, the relation between the amplitude of ε and the quality of
the modes retrieval and, on the other hand, the role played by the window’s size in the separation
of the components.

4.5.3 Denoising Multicomponent Signals using SST

Here we illustrate how the SST provides us with a naive denoising procedure that can outperform
a state-of-the-art method based on wavelets. To do so, we consider the signal whose STFT is
shown on the left sub-figure of Figure 4.2 to which we add white Gaussian noise with varying
standard deviation, leading to different SNR (SNR in). Then we denoise this signal with the Block-
Thresholding (BT) method developed in [24], a TF technique designed for audio recordings, and
also with the SST, by simply selecting 3 ridges as explained in section 4.5.1 (with λ = 0 and β = 0.02
; these parameters, though not optimal, lead to good results in practice). The results displayed on
Figure 4.3 in terms of the SNR before and after denoising (SNR in and out respectively, the SNR out

being computed as ‖f‖2
‖f−f̃‖2 where f̃ is the denoised signal) show a much better denoising performance

of the SST over BT on this particular example, provided σ is appropriately chosen. As soon as the
ridges are detected, the SST thus enables signal denoising in a straightforward manner. However,
when the signal contains highly modulated modes, as in the studied case, the use of too large a
window should be proscribed, as is reflected by the first inequality of (4.11). In this regard, we will
try later to go beyond this limitation by taking into account the modulation in the synchrosqueezing
operator. It is also of note that, as the modes are not perfectly monochromatic, their SST is not
perfectly reassigned onto the ridges. In this regard, the parameter d introduced in the reconstruction
formula (4.9) enables compensation for the lack of accuracy in the estimation of φ′k(t) by means of
ω̂f (t, ω). Indeed, it has to be chosen all the larger that the modulation is important (d = 8 rad/s
being satisfactory in the studied case). Finally, we remark that by considering modified versions
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Figure 4.3: Denoising performance with the SST and BT techniques for the signal whose STFT is
depicted on the left of Figure 4.2 and for various window’s size σ, d being fixed to 8 rad/s.
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of the spectrogram one could obtain better ridge estimations than with the SST in such a noisy
context [14]. However, doing so, the reconstruction properties inherent to the SST would be lost.

4.5.4 Adapting the SST to a Stronger Modulation

Our goal is here to propose a new development to better take mode modulation into in the SST. For
a mode f(t) = a ei2πφ(t) such that φ′′(t) = 0 for all t, one exactly has φ′(t) = ω̂f (t, ω), so that when
φ′′ is small compared to φ′ in the vicinity of t, the approximation of φ′(t) by ω̂f (t, ω) is fully justified.

However, when it is not the case, e.g. when the signal f is a linear chirp f(t) = aeiαt
2

= aeiφ(t),
and when a Gaussian analysis window is used, then:

φ′(t) = ω̂cf (t, ω) := ω̂f (t, ω) + φ′′(t)2σ4(ω̂f (t, ω)− ω). (4.13)

This expression a posteriori explains why the denoising performance of the method based on the
SST introduced in section 4.5.3 deteriorates when σ is chosen too large. Indeed, when dealing with
strongly modulated components the factor φ′′k(t)

2σ4 is no longer negligible, making the approxima-
tion of φ′(t) by ω̂f (t, ω) very inaccurate.
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Figure 4.4: A: top left: |T gf | of the signal of the central sub-figure of Figure 4.2; top right :
reconstructed mode (solid line) and the ground truth f3 (dashed line), with d = 1 rad/s. Second
row: same figures using T̃ gf instead of T gf . B: denoising results using the algorithm presented in

section 4.5.3 but using T̃ gf (the parameter d being still fixed to 8 rad/s)

For a linear chirp, one has t̂f (t, ω) = t + σ4φ′′(t)
1+φ′′(t)2σ4 (ω − φ′(t)), therefore using (4.13) one obtains

φ′′(t) = − 1
σ4

t̂f (t,ω)−t
ω̂f (t,ω)−ω , and finally the following closed form for ωcf (t, ω): ω̂f (t, ω) + 1

σ4

(t̂f (t,ω)−t)2
ω̂f (t,ω)−ω .

Defining a new synchrosqueezing operator T̃ gf by replacing ω̂f (t, ω) by ω̂cf (t, ω) leads to a sharper
representation. An illustration of this is given in Figure 4.4 A. The reconstruction of the high
frequency mode of the left sub-figure of Figure 4.2, carried out using only the coefficients on the
ridge associated with that mode, shows that the signal energy is much more concentrated around
the ridge when T̃ gf is used instead of T gf (SNR after reconstruction equals 40 dB (resp. 10 dB) in
the first (resp. second) case).
To consider the ridge estimation based on ω̂cf (t, ω) rather than ω̂f (t, ω) not only improves the quality
of the reconstruction of strongly modulated modes but also impacts the denoising performance of the
SST-based technique. Indeed, the denoising algorithm obtained by selecting the coefficients around
the ridges obtained from T gf was found to be sensitive to the choice for the window’s size. On the
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contrary, because of relation (4.13), ω̂cf (t, ω) leads to a stable approximation of φ′(t) in the case
of a strong modulation when σ varies. This has the following consequence: the denoising results
obtained with the SST-based technique are improved with this new estimator when σ increases
(comparison between Figure 4.3 and 4.4 B).

4.5.5 Computation of the new IF estimate

Based on the above developments we would like to define a new IF estimate in a proper mathematical

framework. Let us define ω̃f (t, η) =
∂tV

g
f (t,η)

2iπV gf (t,η)
and then introduce:

t̃f (t, η) = t−
∂ηV

g
f (t, η)

2iπV g
f (t, η)

. (4.14)

Similarly to ω̂f (t, η) = R(ω̃f (t, η)), we define t̂f (t, η) = R(t̃f (t, η)). First, we define an estimate of
the frequency modulation as follows.

Definition 1 Let f ∈ L2(R) and consider when V g
f (t, η) 6= 0 and ∂t

(
∂ηV

g
f (t,η)

V gf (t,η)

)
6= 2iπ the quantity

q̃f (t, η) =
∂tω̃f (t, η)

∂tt̃f (t, η)
=

∂t

(
∂tV

g
f (t,η)

V gf (t,η)

)
2iπ − ∂t

(
∂ηV

g
f (t,η)

V gf (t,η)

) . (4.15)

An estimate of the frequency modulation is then defined by

q̂f (t, η) = R (q̃f (t, η)) . (4.16)

Definition 2 Let f ∈ L2(R), we define the second order IF complex estimate of f as:

ω̃
(2)
f (t, η) =

{
ω̃f (t, η) + q̃f (t, η)(t− t̃f (t, η)) if ∂tt̃f (t, η) 6= 0

ω̃f (t, η) otherwise,
(4.17)

and then its real part ω̂
(2)
f (t, η) = R(ω̃

(2)
f (t, η)).

Remark 1 It can be proved that q̂f (t, η) = φ′′(t) and ω̂
(2)
f (t, η) = φ′(t) , when f is a Gaussian

modulated linear chirp, i.e. a chirp where both φ and log(A) are quadratic.



56 CHAPTER 4. REASSIGNMENT TECHNIQUES AND SYNCHROSQUEEZING

Proposition 1

Let f ∈ L2(R), then the IF estimate ω̂
(2)
f (t, η) can be expressed by means of five different

STFTs, since we have:

ω̃f (t, η) = η − 1

2iπ

V g′

f (η, t)

V g
f (η, t)

,

q̃f (t, η) =
1

2iπ

V g′′

f (t, η)V g
f (t, η)− (V g′

f (t, η))2

V tg
f (t, η)V g′

f (t, η)− V tg′

f (t, η)V g
f (t, η)

,

t− t̃f (η, t) = −
V tg
f (t, η)

V g
f (t, η)

.

provided g, g′, g′′, tg, tg′ are in L1(R).

Proof The expressions for ω̃f (t, η) and t− t̃f (t, η) are straightforward. Indeed, since g is in C2(R),
the STFT of f belongs to C∞(R), and we have:

∂ηV
g
f (t, η) = −2iπV tg

f (t, η)

∂tV
g
f (t, η) = 2iπηV g

f (t, η)− V g′

f (t, η).
(4.18)

Based on these equalities, the expression for q̃f (t, η) is easy to obtain.

The second order synchrosqueezing operator then reassigns the STFT as follows:

T gf,2(t, ω) =
1

g(0)

∫
R
V g
f (t, ν)δ(ω − ω̂(2)

f (t, ν)) dν. (4.19)

and then the modes are reconstructed through:

fk(t) ≈
∫
{ω,|ω−φ′k(t)|<d}

T gf,2(t, ω) dω, (4.20)

4.6 Applications of SST to Physiological Signals

Particular applications of SST are related to the study of ECG signals [26] of which we give an
illustration hereafter. During anesthesia, the anesthetic agents exert differential effects on the
neural activity of different regions of the brain. While the cortical activity is commonly recorded by
electroencephalography (EEG), this technique is not adapted to assist in the control of the essential
components of anesthesia including motor suppression, analgesia and autonomic activity, which are
largely governed by the sub-cortical regions, such as the autonomic nervous system (ANS). It is well
known that the ANS regulates the vital physiological functions and controls emergency responses
[27, chapter 12]. A non-invasive and common technique is to assess the ANS activity using ECG
recordings (see Figure 4.5 A) by measuring the variability of the time intervals between sequential
heart beats, called the heart rate variability (HRV). This measurement analyzed using SST may be
able to provide information of use in anesthesia. In clinical practice, the heart beat rate is assessed
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by computing the number of beats (or R peaks) in a minute. However, it is likely that information
is hidden in the measurement, which can be uncovered by analyzing the R-to-R peak signal by
means of the RRI signal, defined as the cubic-spline interpolant of

(
ti,

1
ti+1−ti

)
, the R peaks being

located in {ti}Ni=1. The RRI signal of an anesthetized patient changes drastically at the time of
waking as illustrated by Figure 4.5 B around the time 800 s.

A

B

Figure 4.5: A: small portion of an ECG signal (the blue curve), the red circles indicate the R peaks.
B: RRI signal associated with an ECG signal of a patient waking up from anesthesia (the waking
time is around 800 s)

Our concern is to show how to use SST to study RRI signals of patients waking up from anesthesia
with spontaneous breathing [28], by studying the RRI signal of Figure 4.5 B. To start with, we
compute a detrended RRI, called RRID, by subtracting to the original RRI signal its local mean
m(t) computed using a median filter, i.e. RRI(t) = m(t) + RRID(t). We then apply the SST to
RRID (computed using a Kaiser window g) to finally obtain the representation of Figure 4.6.
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Figure 4.6: moduli of the SST of RRID computed using a Kaiser window. The red curve su-
perimposed is the BIS index reflecting the anesthetic level – the lower the value, the deeper the
anesthetic level. The blue curve superimposed is the anesthetic drug concentration. Notice the
dramatic change of BIS and that of the reassigned spectrogram around 800 s
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To analyze Figure 4.6, we consider a signal in the Aε class rhythmic (see section 4.5.2), otherwise
non-rhythmic. On Figure 4.6, a transition from rhythmic to non-rhythmic dynamics in the RRI sig-
nal is visible: before 800 s, there are two dominant curves corresponding to two Aε functions – from
0 to 200 s and from 0 to 800 s, while after 800 s, no such behavior persists. In other words, RRID

can be written in the form RRID(t) =
2∑

k=1

ak(t) cos(φk(t)) with ak, φk satisfying (4.11) before 800

s (one of the component vanishing after 200 s), whereas is irrelevant after this time. Furthermore
this change of behavior also corresponds to the transition from deep to light level of anesthesia as
corroborated by the objective anesthetic depth index, the Bi-spectral index (BIS) (the red curve
superimposed on Figure 4.6). BIS is evaluated from the simultaneously recorded electroencephalog-
raphy; the higher the BIS index, the lighter the anesthetic depth. We also superimpose on Figure
4.6 the anesthetic drug concentration for comparison (blue curve).
Cortical activity is known to become non rhythmic when the anesthetic level decreases. Combined
with the physiological fact that HRV is mainly controlled by the sub-cortical level, the above results
show that the same phenomenon exists in RRI signals, which in turn suggests that the sub-cortical
activity becomes non rhythmic when the anesthetic level decreases.
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