1 #ifndef LAP_DoubleSymmetricMatrix_H
2 #define LAP_DoubleSymmetricMatrix_H
94 const tBoolean& isTransA,
const double* A)=0;
virtual void rankSymmetricProduct(const double &alpha, const double &beta, const tLVectorIndex &nARows, const tLVectorIndex &nACols, const tLVectorIncrement &incA, const tLVectorIndex &ldA, const tBoolean &isTransA, const double *A)=0
compute the symmetric matrix This:=beta.This+alpha op(A).t(op(A))
this class describes a general double symmetric matrix
Definition: LAP_DoubleSymmetricMatrix.h:21
Definition: LAP_DoubleMatrix.h:18
#define tBoolean
Definition: types.h:48
virtual tBoolean isUpper() const
return true if the matrix is upper
Definition: LAP_DoubleSymmetricMatrix.h:65
#define lapack_real
Definition: lapack_functions.h:9
virtual ~LAP_DoubleSymmetricMatrix()
destroy a matrix
Definition: LAP_DoubleSymmetricMatrix.h:46
virtual tBoolean isSymmetric() const
return true if the matrix is symmetric
Definition: LAP_DoubleSymmetricMatrix.h:60
Definition: LAP_DoubleFullGeneralMatrix.h:30
LAP_DoubleSymmetricMatrix()
build a matrix
Definition: LAP_DoubleSymmetricMatrix.h:38
this class describes a general double symmetric matrix
Definition: LAP_DoubleUpperMatrix.h:17
DEFINE_SPTR(LAP_DoubleUpperMatrix)
virtual void matrixProduct(const tBoolean &leftSide, const LAP_DoubleFullGeneralMatrix &B, const lapack_real &alpha, const lapack_real &beta, LAP_DoubleFullGeneralMatrix &C) const =0
make the product:
#define tLVectorIndex
Definition: lapack_types.h:13
#define tLVectorIncrement
Definition: lapack_types.h:16
virtual SP::LAP_DoubleUpperMatrix choleskyFactorization()=0
compute the choleskey factorization of the symmetric matrix A is modified such that the upper matrix ...