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Copositive cone

Definition

A real symmetric n x n matrix A such that x” Ax > 0 for all

x € R is called copositive.

the set of all such matrices is a regular convex cone, the copositive

cone C,

» many applications in optimization

» difficult to describe

related cones

» completely positive cone C;,
» sum N, + S, of nonnegative and positive semi-definite cone

» doubly nonnegative cone NV, N S;
CiCN,NSTCcN,+S+ce,



Extreme rays

Definition

Let K C R" be a regular convex cone. An nonzero element u € K
is called extreme if it cannot be decomposed into a sum of other
elements of K in a non-trivial manner. In other words, u = v + w
with v,w € K imply v = au, w = Su for some o, 3 > 0.

in [Hall, Newman 63] the extreme rays of C, belonging to NV, + S,
have been described:

» the extreme rays of N,: Ej; and Ej + Eji
» rank 1 matrices A = xx” with x having both positive and
negative elements
the other extreme rays of C, are called exceptional

Perspective goal: Describe the exceptional extreme rays of C,,.



Reduced rays

Definition (Diananda 62, Baumert 65)

A copositive matrix A € C, is called reduced if it cannot be
represented as a sum of a copositive and a nonnegative matrix in a
non-trivial manner. In other words, A= B + C with B € C, and
Ce N, imply B=Aand C=0.

Lemma
Let A € C, be an extreme matrix. Then A is either reduced or
nonnegative.

exceptional extreme rays have to be reduced

[Hall, Newman 1963] reduced matrices satisfy A; < /AiiAj;



Zero patterns

zero patterns helpful in the description of reducedness

Definition (Baumert 65)

Let A € C,, be a copositive matrix. A nonzero nonnegative vector
u € R’ is called zero of A if uTAu=0. The index set

suppu = {i|u; > 0} is called the support of wu.

The set of supports of all zeros of A is called the zero pattern of A.

the zero pattern is a set of subsets of {1,...,n}

Theorem (Diananda 62)

Let A € C, be a copositive matrix, u a zero and | = supp u its
support.

Then the principal submatrix A; = (Ajj)i jei is positive
semi-definite.



Size of supports

Lemma (Baumert 65)

Let A € C,, be irreducible with respect to the cone of nonnegative
matrices. If there exists a zero u of A with |supp u| > n—1, then
AeSh.

zeros u of exceptional extreme copositive matrices with nonzero
diagonal satisfy 2 < |suppu| < n—2



General reduced rays

Definition (Diur et al, 2013)

A copositive matrix A € C,, is called reduced with respect to a
subset M C &, if it cannot be in a non-trivial manner represented
as a sum A= B + C with B copositive and C € M.

Lemma
Let A € C, be an extreme matrix. Then A is either reduced with

respect to ST + N, or in ST + N,

exceptional extreme rays are reduced with respect to S} + N,



Description of general irreducibility

Theorem (Dickinson, H. 2014)

Let A € C,. Then for a matrix B € S, there exists § > 0 such that
A+ 8B € C, if and only if uT Bu > 0 for all zeros u of A, and
(Bu); > 0 for all zeros u of A such that u” Bu= 0 and all i such
that (Au); = 0.

[Dickinson, H.: Considering copositivity locally (submitted)]



Automorphism group

the group R’ , acts on C, by d : A diag(d)Adiag(d)

for every A € C,, there exists a normalized A’ in the orbit of A
such that

diag A’ € {0,1}"
if diag A’ # 0, then diagA £~ 0and AcC,_1 + N,

we may assume diag A =1 w.l.o.g.

the permutation group S, actson C, by P: A — PAPT
this action respects the property of being normalized with respect
to the action of R |

these groups leave also NV, and S, invariant = they respect the
property of being reduced with respect to NV, + S;



Extreme rays in low dimensions

Theorem (Diananda 1962)
For n < 4 the relation C, = S} + N, holds.

no exceptional extreme rays for n < 4

Theorem (H., 2011)

Let A € Cs be an exceptional extreme ray. Then A is in the orbit of

a T-matrix with ¢ = (Y1,...,¢5) €ERY and 1 + -+ s <7
or in the orbit of the Horm matrix with respect to the action of
AUt(C5).



T-matrices

a T-matrix is a matrix of the form

1 —cos iy cos(ths +15)  cos(t +13) —cos )3
— cosy 1 — cos s cos(ths +101)  cos(tbz + 1b4)
T(¥) = | cos(ths + 15) — cos 1 — cosn cos(th1 + 1)
cos(ths +13)  cos(ts + 1) — cos 1y 1 — cos
— coss cos(ths +104)  cos(thy + 1) — cos 1 1

with ¢1,...,95 >0and S5 9% <7
the Horn matrix is of the form T(¢) with ¢ =0



Approach:

Find necessary conditions on the minimal zero
pattern of matrices which are reduced with
respect to &Y.

For every pattern found, find the extremal
matrices corresponding to it.



Minimal zeros

Definition
A zero u of a copositive matrix A is called minimal if there exists no
zero v of A such that the inclusion supp v C supp u holds strictly.

Lemma
Let A€ C, and let | C {1,...,n} be a nonempty index set. Then
the following are equivalent:

> A has a minimal zero with support |,

» the principal submatrix A, is positive semi-definite with corank
1, and the generator of the kernel of A; can be chosen such
that all its elements are positive.



Consequences of a minimal zero

let A€ C, and let u be a minimal zero of A with support /

» for every index subset such that J C [ strictly, A; >0
> the subvector u; of the zero generates the kernel of A,
> the minimal zero with support / is unique up to scaling

» | not comparable by inclusion to the support of any other
minimal zero

Corollary

The number of minimal zeros of a copositive matrix is finite up to
scaling.

convenient for treatment with combinatorial methods



Decomposition of zeros

Lemma

Let A€ C, and let u be a zero of A with support |. Then the set of
zeros v of A with support suppv C | is a polyhedral cone, namely

vy is in the intersection of ker A; with the nonnegative orthant RM'.
The extreme rays of this cone are generated exactly by the minimal

zeros v of A with suppv C I.

Corollary
Every zero of A can be represented as a convex combination of
minimal zeros.



Sufficient condition for minimality

Lemma

Let A€ C, and u be a zero of A with support |. Suppose that A,
has a principal submatrix of size |I| — 1 which is positive definite.
Then u is a minimal zero.

sufficient if there exists a minimal zero v with support J ¢ [ such
that |/ \J]| =1



Overlapping zeros

Theorem

Let A€ C, and | C {1,...,n} an index set such that A; > 0. Let
ul,...,u™ be zeros of A such that (suppu') \ | = {k'} consists of
exactly one element, u',... u™ are mutually different modulo
scaling, and suppu! N1 C --- C suppu™N | for all
r=1,...,m—1.

Then k,... k™ are mutually different, and u',... u™ are
minimal. If v is a zero of A with suppv C | U {kl, ..., k™}, then

v => 1", aju’ for some nonnegative scalars o'. If in addition v is
minimal, then v is proportional to one of the uX.

note: condition A; > 0 guaranteed by existence of a minimal zero
u such that | C supp u strictly



Two overlapping zeros

Corollary

Let A € C, and u,v minimal zeros of A with supports supp u = 1,
suppv = J. Suppose |J\ I| =1 consists of one element. Then
every zero w of A with support suppw C I U J can be represented
as a convex conic combination w = au + Sv with o, 8 > 0.

no minimal zeros w with suppw C I U J other than v and v



Irreducibility with respect to S

Theorem
A copositive matrix A € C,, is irreducible with respect to the cone
8" if and only if the linear span of the minimal zeros of A equals

R". Equivalently, the number of linearly independent minimal zeros
is at least n.

in particular, the number of minimal zeros is at least n



Supports of size 2

Lemma

Let A€ C, withdiag A = 1. Let u be a zero of A with
supp u = {i,j}.

Then u is minimal and u; = u;.

without loss of generality we may assume u; = u; =1

Consequence: Aj = —1 if and only if {/,j} is a minimal zero

support
then Aj + Ajc > 0 for all k

define aj = L arccos(—Aj)
for reduced matrices aj € [0,1] and above conditions become
aj =0 (aj > 0) and ajp + oy > 1



Supports of size 3

the set {A € Sf | diag A = 1} is bounded by the Cayley surface

the element-wise map x %arcsinx transforms it into a

tetrahedron with the same vertices

define ajj = 1 arccos(—Ay)

Corollary

Let A € C,, be reduced with diag A = 1. Let u be a zero of A with
suppu = {i,j,k}. Then ajj + aj + aje = 1. If {i,j, k} does not
contain a minimal zero support, then o;j + aj + cje > 1.



MAXCUT polytope

Definition

The MAXCUT polytope MC, C S is the convex hull of all
matrices A € ST such that Ay € {-1,+1} foralli,j=1,...,n,
i.e., all matrices of the form w ', v € {—1,+1}".

Lemma (Hirschfeld 2004; Goemans, Williamson 1995)

Let A € S be a positive semi-definite matrix with A; =1,
i=1,...,n. Let B be the real symmetric n x n matrix defined
entry-wise by Bjj = 2ajj — 1 = %arcsin Aij, i,j=1,...,n. Then
B e MC,.



Linear relations

Corollary

Let A € C,, be reduced with diag A=1. Let | C {1,...,n} be the
support of some minimal zero of A. Define

Bij =2 — 1= %arcsin Ajj, B = (Bj).

Then By € MCyy,. If J C I strictly, then B, € relint MC|,,.

gives strict and nonstrict linear inequalities on o

for every pairwise distinct indices i1,...,i5 € {1,...,n} we have

Zl§j<k§5 i, =>4



Low dimensions

the number of equivalence classes (with respect to the action of
Sp) of minimal zero patterns of matrices A € C,, which satisfy all
restrictions is

v

0forn<4
2forn=5
44 forn=06
12378 for n =7

v

v

v

hence C, cannot have exceptional extreme rays for n < 4, proving
quickly Dianandas theorem



Cone Cs

the two equivalence classes of minimal zero patterns have
representatives

{{1,2},{2,3}, {3, 4}, {4,5}, {1,5}},

{{1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5}}
realized by the Horn form and the T-matrices, respectively

these are the exceptional extreme rays of Cs



Cone Cg

minimal zero patterns satisfying all necessary conditions
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Website http://nadezhdaa.wix.com/copositiv

&eceplional 626
coposilive forms

Contact

The purpose of this website is to classify the exceptional extreme 6x6 copaositive forms. This task amounts to consider 80 cases of possible
minimal zero support sets which such a form can have, A detailed description of the problem and an instruction how to solve & case is given
here. Further information can be found here, Everybody who is familiar with matrix-vector multiplications, determinants, and trigonometry
can participate, no knowledge of higher mathematics is needed.

Solutions should be sent in pdf format. A solution should mention the case number, describe all copositive forms with the given minimal
zero support set if there are any, and state that there are none in the opposite case. If there are copositive forms, it should be determined
whether they are extremal or not. All statements have to be mathematically proven. After a check for correctness the solutions will be
published on the site.

colour code

the case is unsolved

exceptional extreme copaositive forms
with the corresponding minimal zero

6{1,23.{1,3}{2.4}.13,4.5}.{1.5,6}.{4.5,6} support set exist




Example of family of extreme rays

the minimal zero pattern

{{1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{3,4,6},{1,4,6},{1,2,6}}
corresponds to the extremal matrices

1 —cosdy cos(da + ¢s)  cos(dz + ¢g) —cos ¢ —cos(¢s + £)
—cos gy 1 — cos ¢ cos(ghy + ¢5)  cos(da + Pu) cos(ps + ds + &)
cos(¢a + ¢5) — cos gy 1 —cos ¢y cos(¢y + ¢2) cos(dt + @2 — &)
cos(gz + ¢3) cos(py + ¢s) — oS Py 1 — oS ¢ —cos(dz — &)
— COos ¢y cos(dg + ) cos(dy + o) —cos ¢y 1 cos €
—cos(és+ £) cos(ds 1 dut §) cos(ds by —£) —cosign—€)  cosé 1

with ¢1,..., 65 >0, S0, ¢ <, € € (—¢3, b2)
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