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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Convex optimization problems

minimize linear objective function with respect to convex

constraints
min f(x)
xeX

f = (c,x), X convex

X c R" is called the feasible set
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Regular convex sets

Definition
A regular convex set X C R" is a closed convex set having
nonempty interior and containing no lines.

can assume the feasible set to be regular
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Definition of barriers

Let X C R" be a regular convex set. A v-self-concordant barrier
for X is a smooth function F : X° — R such that

@ F”(x) > 0 (convexity)

@ limy_ 9x F(x) = +oo (boundary behaviour)

@ |F;h'|?2 < vF;h'n for all h € T,R" (gradient inequality)

@ |Fikh'hihk| < 2(F;h'h)3/2 for all h € T(R"
(self-concordance)

@ F” defines a Hessian metric on X°
@ uses only the affine connection on R" = affine invariance
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Interior-point methods using barriers

min {c, X
xeX<’ >

constrained convex program
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Interior-point methods using barriers

min {c, X
xeX<’ >

constrained convex program
let F(x) = +oo for all x ¢ X°

mxin 7(C,X) + F(x)

unconstrained program, 7 > 0 a parameter
by convexity and boundary behaviour of F this program is
convex
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Interior-point methods using barriers

min {c, X
xeX<’ >

constrained convex program
let F(x) = +oo for all x ¢ X°
mxin 7(C,X) + F(x)

unconstrained program, 7 > 0 a parameter
by convexity and boundary behaviour of F this program is
convex

the minimizer x} of the unconstrained program tends to the
minimizer x* of the constrained program as 7 — +o0
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Purpose of self-concordance

[F,hi|? < vF jh'hi for all h € T,R" (gradient inequality)
IFikh'hihk| < 2(F ;h'h)3/2 for all h € T,R" (self-concordance)

self-concordance ensures good behaviour of the Newton
method for computing x* [Nesterov, Nemirovski 1994]

the smaller v, the faster the algorithm
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Conic optimization and barriers

riers on convex sets
Conic programs
Logarithmically homogeneous barriers

Regular convex cones

now specializing to cones ...

Definition

A regular convex cone K C R" is a convex cone which is
regular as a set.

dual cone
K*={y eRy|({X,y) >0 V¥xeK}

is also regular
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Conic programs

Definition
A conic program over a regular convex cone K ¢ R" is an
optimization problem of the form

min(c,x): Ax =Dh.
xeK
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Geometric interpretation

the feasible set is the
intersection of K with an
affine subspace
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Symmetric cones

A regular convex cone K is called self-dual if it is linearly
isomorphic to its dual K*.

A regular convex cone K is called homogeneous if its
automorphism group Aut(K) acts transitively on it.

Definition

A self-dual, homogeneous convex cone is called symmetric.

theory of conic programs over symmetric cones particularly well
developed
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Logarithmically homogeneous functions

let K C R" be a regular convex cone
a logarithmically homogeneous function F : K® — R" satisfies

F(ax) = —vloga+F(x) VYa>0,xeK®

v > 0 is called homogeneity parameter
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs

Logarithmically homogeneous barriers

Logarithmically homogeneous functions

let K C R" be a regular convex cone
a logarithmically homogeneous function F : K® — R" satisfies

F(ax) = —vloga+F(x) VYa>0,xeK®
v > 0 is called homogeneity parameter

F—ckF=v—crv
FJXi = -V
FJij = —F’i
FJinXj =V
4 F’ijFJFJ =V
for F locally strongly convex the gradient inequality
IFih'|? < vF jh'h is satisfied
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let K C R" be a regular convex cone. A self-concordant
logarithmically homogeneous barrier on K is a self-concordant
barrier which at the same time is a logarithmically
homogeneous function. The homogeneity parameter v is called
the barrier parameter.

® F(ax) = —vloga + F(x) (logarithmic homogeneity)
@ F”(x) > 0 (convexity)

@ limy_. 9k F(x) = +oo (boundary behaviour)

@ |Fkh'hihk| < 2(F ;h'h)3/2 (self-concordance)

invariant with respect to linear transformations
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Duality

Theorem (Nesterov, Nemirovski 1994)

Let K C R" be a regular convex cone and F : K°® - R a
self-concordant logarithmically homogeneous barrier on K with
parameter v. Then the Legendre transform F* is a
self-concordant logarithmically homogeneous barrier on —K*
with parameter v.

the map x — F’(x) takes the level surfaces of F to the level
surfaces of F*
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Conic optimization and barriers Convex programs
Barriers on convex sets
Conic programs
Logarithmically homogeneous barriers

Examples

| coneK | barrier F (x) | parameter v |
R" — >, logXx; n
Ln —log(xg — 11 x?) 2
S+(n) —logdet X n
H..(n)
Q+(n)
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

centro-affine
hypersurfaces

@ level surfaces of barrier F are centro-affine embeddings

@ centro-affine embeddings define logarithmically
homogeneous functions up to affine scaling F — cF + b
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g Y Centro-affine equivalents of barriers

Applications

Normalization

F logarithmically homogeneous function with parameter v
F—cF+b = vV Cy

|F,ijkhihjhk| < 2(F’ijhihj)3/2 = |CF7ijkhihjhk| < 2C71/2(CF7ijhihj)3/2

Convention: We divide the barriers by their parameter v and

consider functions with homogeneity parameter 1. The barrier
parameter then appears in the self-concordance inequality

|F,ijk hi hj hk‘ < 2\/;(F,ij hi hj )3/2
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Splitting theorem

Theorem (Tsuji 1982; Loftin 2002)

Let K ¢ R"*! be a regular convex cone, and F : K° - R a
locally strongly convex logarithmically homogeneous function
with homogeneity parameter 1.

Then the Hessian manifold (K°,F ;) splits into a direct product
of a radial 1-dimensional part and a transversal n-dimensional
part. The submanifolds corresponding to the radial part are
rays, the submanifolds corresponding to the transversal part
are level surfaces of F. The metric on the level surfaces is the
centro-affine metric.
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Centro-affine objects on K

let M c K° ¢ R"™1 be a level surface of F

consider M as centro-affine embedding

extend forms on TyM to T4xK?° by putting them equal to zero on
the radial part

gi Fi —FiFj
Cijk Ijk 2F ,JF K — 2F,ik F7 2F; kF,i + 4F,iF,j F7k
Ti = Cig* FiF 7 — n+1F
VCii Fik — 3F ™ (FirFus + Fike Fjis + FirFjks)
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Centro-affine pendants of barriers

let F be a logarithmically homogeneous function on K ¢ R"*1
and M a level surface of F

Question: Which conditions has the centro-affine immersion to
satisfy in order for F to be a self-concordant barrier?

convexity: Fjj =0« gj =0

boundary behaviour: limy_, 5« F(X) = co < M asymptotic to 0K
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Pendant of self-concordance

Lemma

The s_eh_‘-concordance cpncordance condition
Fiikh'hh¥| < 2/p(F jih'h1)3/2 for all tangent vectors h € T,K°
is equivalent to the condition

[Ciu'uluk| < 24(giu'u)*/?
for all tangent vectors u € TxM, where

v—2

V= v—1

self-concordant functions correspond to centro-affine
hypersurfaces with bounded cubic form
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Summary

Theorem

Let K c R"*! be a regular convex cone.
Every barrier F on K with parameter v defines by its level
surfaces a homothetic family of locally strongly convex
centro-affine hypersurface embeddings of hyperbolic type,
asymptotic to 0K, with cubic form bounded by ~ on the unit
sphere.

Conversely, every locally strongly convex centro-affine
hypersurface embedding M c R"** of hyperbolic type,
asymptotic to 0K, with cubic form bounded by ~ on the unit
sphere, defines up to an additive constant a unique barrier with
parameter v on K which is constant on M.

The bound ~ and the parameter v are related by v =

v—2
v—1°
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Dependence between v and v

On cones K ¢ R"1 n > 1, there exist no logarithmically
homogeneous self-concordant barriers with parameter v < 2.
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Distinguished role of second-order cones

Theorem (Pick, Berwald)

Let M be an equiaffine hypersurface immersion with vanishing
cubic form. Then M is a quadric.

Let K ¢ R"*! be a regular convex cone and F a barrier on K
with parameter v. Then the following are equivalent.

v =2

2) K is a second-order cone and F is the canonical barrier on it.
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Barriers and centro-affine geometr Splitting theorem
g Y Centro-affine equivalents of barriers

Applications

Affine hyperspheres

Lemma (Schneider 1967)

Let M be a complete n-dimensional hyperbolic affine )

hypersphere with mean curvature —H. Then the length CijkC”k
of the cubic form on M is bounded from above by 4n(n — 1)H.
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Applications

Affine hyperspheres

Lemma (Schneider 1967)

Let M be a complete n-dimensional hyperbolic affine )

hypersphere with mean curvature —H. Then the length CijkC”k
of the cubic form on M is bounded from above by 4n(n — 1)H.

The cubic form of M is bounded by

2(n—1)v—H
—_— YueTyM: |jul|=1
— My

ICixu'uluk| <
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Einstein-Hessian barriers

affine hyperspheres with H = —1 are centro-affine embeddings

Let K C R" be a regular convex cone. The barrier F on K
which has as its level surfaces the complete hyperbolic affine
hyperspheres asymptotic to OK has barrier parameter v < n.

call this barrier the Einstein-Hessian barrier
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Calabi product

Lemma (Sasaki 1980)

Let K ¢ R", K’ ¢ R™ be regular convex cones and F,F’ the
Einstein-Hessian barriers on them. Then “F%?]’,F' is the
Einstein-Hessian barrier on K x K’. Its level surfaces are the

Calabi product of the level surfaces of F and F’.

Calabi product of complete hyperbolic hyperspheres
corresponds to direct product of convex cones
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Parallel cubic form

Theorem (Hu, Li, Vrancken 2011)

A locally strongly convex affine hypersurface of R"*1, equipped
with the Blaschke metric, and with parallel cubic form, is a
qguadric or a Calabi product, with factors being hyperboloids
and standard immersions of SL(m,R)/SO(m),
SL(m,C)/SU(m), SU*(2m)/Sp(m), or Eg(_2¢)/Fa.

Roland Hildebrand Centro-affine differential geometry and conic optimization



Splitting theorem
Centro-affine equivalents of barriers
Applications

Classification of symmetric cones

Barriers and centro-affine geometry

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product
of a finite number of the following irreducible symmetric cones:
@ second-order cone

@ matrix cones S (n), H(n), Q(n) of real, complex, or
guaternionic hermitian positive semi-definite matrices

@ Albert cone O, (3) of octonionic hermitian positive
semi-definite 3 x 3 matrices
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Simple characterization of VC = 0

Corollary

Let M c R"*! be a locally strongly convex Blaschke
hypersurface immersion with cubic form parallel with respect to
the Levi-Civita connection.

Then either M is a quadric or M can be extended to a complete
hyperbolic affine hypersphere which is asymptotic to a
symmetric cone.

The determinant of the Jordan algebra generating the
symmetric cone is constant on M.
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Splitting theorem
Centro-affine equivalents of barriers
Applications

Barriers and centro-affine geometry

Nonpositive sectional curvature

the affine hyperspheres asymptotic to second-order cones have
nonpositive sectional curvature bounded away from zero

Question: How small must the cubic form of a centro-affine
hypersurface immersion be to guarantee nonpositivity of the
sectional curvature?

Let M be a hyperbolic centro-affine hypersurface immersion
with cubic form bounded by |Cixu'u/u¥| < /2 for all unit length
vectors u € TyM. Then M has nonpositive sectional curvature.

saturated by affine hypersphere asymptotic to ]Rii
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Objects defined by cones

Lagrangian submanifolds in para-Kéhler space Barriers and Lagrangian submanifolds
Applications

Lagrangian
submanifolds




Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Product of projective spaces

let RP", RP, be the primal and dual real projective space

no scalar product, but orthogonality
M ={(x,p) € RP" x RP, |x [ p}

is a dense subset of RP" x RP,

para-Kahler space form isomorphic to reduced paracomplex
projective space [Gadea, Amilibia 1992]
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Product of projective spaces

let RP", RP, be the primal and dual real projective space
no scalar product, but orthogonality
M ={(x,p) € RP" x RPp|x L p}

is a dense subset of RP" x RP,

para-Kahler space form isomorphic to reduced paracomplex
projective space [Gadea, Amilibia 1992]

OM = {(x,p) € RP" x RP,|x L p}

is a submanifold of RP" x RP, of codimension 1
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Contact structure on oM

the projections =, 7* of RP" x RP,, onto the factors define
n-dimensional distributions J. on RP" x RP,

traces J. on M are of dimensionn — 1

The manifold &M equipped with the distribution J, + J_ is a
contact manifold.
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Cross-ratio manifold
efined by cones
Lagrangian submanifolds in para-Kahler space Ba s and Lagrangian submanifolds
Applications

Cross-ratio

X1, X2, X3, X4 Points on the projective line RP?!

(X1 — X3)(X2 — Xa)
(X2 — X3)(X1 — Xa)

(X1,X2; X3,X4) =
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Generalization to n dimensions

[Ariyawansa, Davidon, McKennon 1999]: instead of 4 collinear
points use 2 points and 2 dual points

(u,x’;u’,x) — quadra-bracket of x, p, x’, p’
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space £ s and Lagrangian submanifolds
Applications

Two-point function on M

letz = (x,p),z’ = (x',p’) € M C RP" x RP,

(z;2') = (2';2) :== (u,x’;U’,x)

defines a symmetric function (+;-) : M x M — R

lim (z;2") = +o0
z—O0M
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Cross-ratio and geodesic distance

Theorem
Letz,z’ € M be two points and d(z, z’) their geodesic distance
in M.
@ If the geodesic linking z, z’ is of elliptic type, then
(z;2") >0and d(z,z') = arcsin \/(z; z').

@ If the geodesic linking z, z’ is light-like, then (z;z’) = 0.

@ If the geodesic linking z, z’ is of hyperbolic type, then
(z;2') <0and d(z,z') = arcsinh /—(z; 2’).

(z; Z') is the only projective invariant of a pair of points in M.

-

call M the cross-ratio manifold
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Projective images of cones

let K c R"*! be a regular convex cone

the canonical projection M : R"*1\ {0} — RP" maps K \ {0} to
a compact convex subset C ¢ RP"

the canonical projection INM* : Ry \ {0} — RP, maps K*\ {0}
to a compact convex subset C* C RP,
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Images of conic boundaries

let K c R"*! be a regular convex cone

the canonical projection
Mx N*: (R {0}) x (Rpy1 \ {0}) — RP" x RP,, maps the set

Ak = {(x,p) € (0K \ {0}) x (OK"\ {0})[x L p}
to asetdox C OM

The set )k is Legendrian with respect to the contact structure
on oM.

The projections 7, 7* of RP" x RP}, to the factors map dx onto
0C and 0C*, respectively.
If K is smooth, then d§x is homeomorphic to sn-1,
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Images of barriers

let K ¢ R"*! be a regular convex cone and F : K® - R a
barrier on K

M =1 x M [{(x,—F'(x)) |x € K°}]

is a smooth nondegenerate Lagrangian submanifold of M with
boundary dk

invariant with respect to duality

Roland Hildebrand Centro-affine differential geometry and conic optimization



Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Bijection with level surfaces

there is a canonical bijection between a level surface of F (or
F*) and the submanifold M

Lemma

The canonical bijection between M and the level surfaces of F
is an isometry.

The image of the cubic form under this bijection can be
expressed through the second fundamental form Il of M by

C(X,Y,Z) = —2w(lI(X,Y),Z).
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Equivalence to centro-affine geometry

applicable to any nondegenerate centro-affine immersion:
project pair (position vector, image of conormal map)

Theorem

Nondegenerate Lagrangian submanifolds of M are in
one-to-one correspondence with homothetic families of
nondegenerate centro-affine hypersurface immersions in R+,
The centro-affine metric on the immersion equals the metric on
the submanifold inherited from M.

The cubic form on the immersion C and the second
fundamental form on the submanifold obey the relation

C(X,Y,Z) = —2w(lI(X,Y),Z).
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Affine hyperspheres

Corollary (independently obtained by D. Fox)

A nondegenerate Lagrangian submanifold M C M is minimal if
and only if the corresponding family of centro-affine immersions
are affine hyperspheres.

no convexity or completeness assumptions
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Equivalents of barriers

Corollary

Let K ¢ R"*! be a regular convex cone.
The barriers on K with parameter v correspond to positive
definite Lagrangian submanifolds M of M of hyperbolic type

inscribed in dk , with second fundamental form bounded by
_ v=2
=
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Geometric interpretation
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Cross-ratio manifold
Obji efined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Local approximation

Lagrangian geodesic submanifolds of M are totally geodesic.

let F : K° — R be a barrier with parameter v and M C M the
corresponding Lagrangian submanifold

at a given point z € M the tangent totally geodesic Lagrangian
submanifold to M approximates M up to 1st order
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Cross-ratio manifold
Objects defined by cones

Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds
Applications

Global approximation

the tangent totally geodesic Lagrangian submanifold defines
the barrier of a second-order cone Ly, 1

L1 can be viewed as approximating K at the ray
corresponding to z

Lemma

Let K C R" be a regular convex cone, F a barrier on K with
parameter v and z € M a point on the corresponding
Lagrangian submanifold. Let L, be the second-order cone
defined by the tangent totally geodesic submanifold at z.

If we pass to a coordinate system where L, is centered and
blow up (shrink) the horizontal affine section of L, by a factor of
Vv — 1, we obtain an outer (inner) approximation of K.
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Geometric interpretation
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Upper bound on geodesic distance

in a Riemannian manifold, geodesic distances on a
submanifold are not shorter than in the ambient manifold

not so in a pseudo-Riemannian manifold

Theorem

Let M C M be a definite Lagrangian submanifold of hyperbolic
type. Suppose that for every two points z,z’ € M there exists a
path linking z, z’ which projects bijectively to a line in the factor
RP" (or RPy).

Then the geodesic distance on M is bounded from above by
the geodesic distance on M, i.e., by arc sinh \/—(z; z).
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Cross-ratio manifold
Objects defined by cones
Lagrangian submanifolds in para-Kahler space Barriers and Lagrangian submanifolds

Applications

Bound on centro-affine immersions

Corollary

Let x,x” € M be two points on a locally strongly convex
centro-affine hypersurface M c R"*! of hyperbolic type that
can be linked by a path on M that projects bijectively to a line
segment in RP". Let p,p’ be the tangent spaces to M at x, x’.
Then the geodesic distance d(x, x") in the centro-affine metric
is bounded from above by arc sinh v/—Q, where Q is the
guadra-bracket of x, p,x’, p’.
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Einstein-Hessian metrics

Theorem (Cheng, Yau 1980)

Let X C R" be a regular convex set. Then the boundary value
problem

detG” = e%C, Glox = 400

has a unique locally strongly convex solution.

Question: Is this solution or a multiple of it a barrier, i.e., is it
self-concordant and does it satisfy the gradient inequality?
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Rational solutions

let K C R" be a regular convex cone and F the
Einstein-Hessian barrier on K

Question: For which cones K the function e2F = detF” is the
inverse of a polynomial? (symmetric cones?)

For which cones K is it a rational function? (homogeneous
cones?)
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Optimal barrier parameter

let K C R" be a regular convex cone

Question: What is the smallest possible parameter of a barrier
onK?

What is the smallest possible bound on the second fundamental
form of a Lagrangian submanifold of M inscribed in ok ?

partial answer: lower bounds available
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How small can the distance be?

let z,z’ € M be such that the geodesic [z,z’] is of hyperbolic
type

with no further restrictions infd(z, z’) = 0 (choose a path close
to the distributions J4.)

Question: Does an upper bound on the second fundamental
form of M imply a lower bound on the geodesic distance
d(z,z') on M?
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let p,g > 1 such that % + % = 1 and consider the cone
K = {(x,y,z) ERxRxR" x>0 y>0, |z]? < xl/pyl/q}

with s = d the affine hypersphere with mean curvature —1
asymptotic to this cone has its cubic form bounded by

2(n—1)|s — 1]
V(s +1)(n+s)’

for points z, z’ on the geodesic corresponding to the 2-plane
z = 0 we have

2

-1/2 5
d(z,z') = <% + 1) arcsinh ( % + h/ﬁ)
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Distances for y = 2

08

Geodesic distance on M

06

0 02 04 0.6 08 g 12 14 16 18 2
Geodesic distance on cross-ratio manifold
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Thank you
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