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Convex optimization problems

minimize linear objective function with respect to convex
constraints

min
x∈X

f (x)

f = 〈c, x〉, X convex

X ⊂ R
n is called the feasible set
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Regular convex sets

Definition

A regular convex set X ⊂ R
n is a closed convex set having

nonempty interior and containing no lines.

can assume the feasible set to be regular
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Definition of barriers

Definition

Let X ⊂ R
n be a regular convex set. A ν-self-concordant barrier

for X is a smooth function F : X o → R such that

F ′′(x) � 0 (convexity)

limx→∂X F (x) = +∞ (boundary behaviour)

|F,ihi |2 ≤ νF,ijhihj for all h ∈ TxR
n (gradient inequality)

|F,ijkhihjhk | ≤ 2(F,ijhihj)3/2 for all h ∈ TxR
n

(self-concordance)

F ′′ defines a Hessian metric on X o

uses only the affine connection on R
n ⇒ affine invariance
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Interior-point methods using barriers

min
x∈X

〈c, x〉

constrained convex program

let F (x) = +∞ for all x 6∈ X o

min
x

τ〈c, x〉 + F (x)

unconstrained program, τ > 0 a parameter
by convexity and boundary behaviour of F this program is
convex

the minimizer x∗
τ of the unconstrained program tends to the

minimizer x∗ of the constrained program as τ → +∞
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Purpose of self-concordance

|F,ihi |2 ≤ νF,ijhihj for all h ∈ TxR
n (gradient inequality)

|F,ijkhihjhk | ≤ 2(F,ijhihj)3/2 for all h ∈ TxR
n (self-concordance)

self-concordance ensures good behaviour of the Newton
method for computing x∗

τ [Nesterov, Nemirovski 1994]

the smaller ν, the faster the algorithm
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Regular convex cones

now specializing to cones ...

Definition

A regular convex cone K ⊂ R
n is a convex cone which is

regular as a set.

dual cone

K ∗ = {y ∈ Rn | 〈x , y〉 ≥ 0 ∀ x ∈ K}

is also regular
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Conic programs

Definition

A conic program over a regular convex cone K ⊂ R
n is an

optimization problem of the form

min
x∈K

〈c, x〉 : Ax = b.
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Geometric interpretation

the feasible set is the
intersection of K with an
affine subspace
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Symmetric cones

A regular convex cone K is called self-dual if it is linearly
isomorphic to its dual K ∗.

A regular convex cone K is called homogeneous if its
automorphism group Aut(K ) acts transitively on it.

Definition

A self-dual, homogeneous convex cone is called symmetric.

theory of conic programs over symmetric cones particularly well
developed
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Logarithmically homogeneous functions

let K ⊂ R
n be a regular convex cone

a logarithmically homogeneous function F : K o → R
n satisfies

F (αx) = −ν logα+ F (x) ∀ α > 0, x ∈ K o

ν > 0 is called homogeneity parameter

F 7→ cF ⇒ ν 7→ cν

F,ix i = −ν

F,ijx j = −F,i

F,ijx ix j = ν

F ,ijF,iF,j = ν

for F locally strongly convex the gradient inequality
|F,ihi |2 ≤ νF,ijhihj is satisfied
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Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let K ⊂ R
n be a regular convex cone. A self-concordant

logarithmically homogeneous barrier on K is a self-concordant
barrier which at the same time is a logarithmically
homogeneous function. The homogeneity parameter ν is called
the barrier parameter.

F (αx) = −ν logα+ F (x) (logarithmic homogeneity)

F ′′(x) � 0 (convexity)

limx→∂K F (x) = +∞ (boundary behaviour)

|F,ijkhihjhk | ≤ 2(F,ijhihj)3/2 (self-concordance)

invariant with respect to linear transformations
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Duality

Theorem (Nesterov, Nemirovski 1994)

Let K ⊂ R
n be a regular convex cone and F : K o → R a

self-concordant logarithmically homogeneous barrier on K with
parameter ν. Then the Legendre transform F ∗ is a
self-concordant logarithmically homogeneous barrier on −K ∗

with parameter ν.

the map x 7→ F ′(x) takes the level surfaces of F to the level
surfaces of F ∗
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Examples

cone K barrier F (x) parameter ν

R
n
+ −∑n

i=1 log xi n
Ln − log(x2

0 −∑n−1
i=1 x2

i ) 2
S+(n) − log det X n
H+(n)
Q+(n)
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level surfaces of barrier F are centro-affine embeddings

centro-affine embeddings define logarithmically
homogeneous functions up to affine scaling F 7→ cF + b

Roland Hildebrand Centro-affine differential geometry and conic optimization



Conic optimization and barriers
Barriers and centro-affine geometry

Lagrangian submanifolds in para-Kähler space
Open problems

Splitting theorem
Centro-affine equivalents of barriers
Applications

Normalization

F logarithmically homogeneous function with parameter ν

F 7→ cF + b ⇒ ν 7→ cν

|F,ijkhihjhk | ≤ 2(F,ijh
ihj)3/2 ⇔ |cF,ijkhihjhk | ≤ 2c−1/2(cF,ijh

ihj)3/2

Convention: We divide the barriers by their parameter ν and
consider functions with homogeneity parameter 1. The barrier
parameter then appears in the self-concordance inequality

|F,ijkhihjhk | ≤ 2
√
ν(F,ijh

ihj)3/2
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Splitting theorem

Theorem (Tsuji 1982; Loftin 2002)

Let K ⊂ R
n+1 be a regular convex cone, and F : K o → R a

locally strongly convex logarithmically homogeneous function
with homogeneity parameter 1.
Then the Hessian manifold (K o,F,ij) splits into a direct product
of a radial 1-dimensional part and a transversal n-dimensional
part. The submanifolds corresponding to the radial part are
rays, the submanifolds corresponding to the transversal part
are level surfaces of F . The metric on the level surfaces is the
centro-affine metric.
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Centro-affine objects on K

let M ⊂ K o ⊂ R
n+1 be a level surface of F

consider M as centro-affine embedding

extend forms on TxM to TxK o by putting them equal to zero on
the radial part

gij F,ij − F,iF,j

Cijk F,ijk − 2F,ijF,k − 2F,ikF,j − 2F,jkF,i + 4F,iF,jF,k

Ti = Cijkg jk F,ijkF ,jk − 2
n+1F,i

∇lCijk F,ijkl − 1
2F ,rs(F,ijrFkls + F,ikrF,jls + F,ilrF,jks)
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Centro-affine pendants of barriers

let F be a logarithmically homogeneous function on K ⊂ R
n+1

and M a level surface of F

Question: Which conditions has the centro-affine immersion to
satisfy in order for F to be a self-concordant barrier?

convexity: F,ij � 0 ⇔ gij � 0

boundary behaviour: limx→∂K F (x) = ∞ ⇔ M asymptotic to ∂K
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Pendant of self-concordance

Lemma

The self-concordance concordance condition
|F,ijkhihjhk | ≤ 2

√
ν(F,ijhihj)3/2 for all tangent vectors h ∈ TxK o

is equivalent to the condition

|Cijku iu juk | ≤ 2γ(giju
iu j)3/2

for all tangent vectors u ∈ TxM, where

γ =
ν − 2√
ν − 1

.

self-concordant functions correspond to centro-affine
hypersurfaces with bounded cubic form

the smaller the cubic form, the smaller the barrier parameterRoland Hildebrand Centro-affine differential geometry and conic optimization
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Summary

Theorem

Let K ⊂ R
n+1 be a regular convex cone.

Every barrier F on K with parameter ν defines by its level
surfaces a homothetic family of locally strongly convex
centro-affine hypersurface embeddings of hyperbolic type,
asymptotic to ∂K , with cubic form bounded by γ on the unit
sphere.
Conversely, every locally strongly convex centro-affine
hypersurface embedding M ⊂ R

n+1 of hyperbolic type,
asymptotic to ∂K , with cubic form bounded by γ on the unit
sphere, defines up to an additive constant a unique barrier with
parameter ν on K which is constant on M.
The bound γ and the parameter ν are related by γ = ν−2√

ν−1
.
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Dependence between γ and ν

Corollary

On cones K ⊂ R
n+1, n ≥ 1, there exist no logarithmically

homogeneous self-concordant barriers with parameter ν < 2.
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Distinguished role of second-order cones

γ = 0 ⇔ ν = 2

Theorem (Pick, Berwald)

Let M be an equiaffine hypersurface immersion with vanishing
cubic form. Then M is a quadric.

Corollary

Let K ⊂ R
n+1 be a regular convex cone and F a barrier on K

with parameter ν. Then the following are equivalent.
1) ν = 2.
2) K is a second-order cone and F is the canonical barrier on it.
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Affine hyperspheres

Lemma (Schneider 1967)

Let M be a complete n-dimensional hyperbolic affine
hypersphere with mean curvature −H. Then the length CijkC ijk

of the cubic form on M is bounded from above by 4n(n − 1)H.

Lemma

The cubic form of M is bounded by

|Cijku iu juk | ≤ 2(n − 1)
√
−H√

n
∀ u ∈ TxM : ||u|| = 1
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Einstein-Hessian barriers

affine hyperspheres with H = −1 are centro-affine embeddings

Corollary

Let K ⊂ R
n be a regular convex cone. The barrier F on K

which has as its level surfaces the complete hyperbolic affine
hyperspheres asymptotic to ∂K has barrier parameter ν ≤ n.

call this barrier the Einstein-Hessian barrier
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Calabi product

Lemma (Sasaki 1980)

Let K ⊂ R
n, K ′ ⊂ R

n′

be regular convex cones and F ,F ′ the
Einstein-Hessian barriers on them. Then nF+n′F ′

n+n′ is the
Einstein-Hessian barrier on K × K ′. Its level surfaces are the
Calabi product of the level surfaces of F and F ′.

Calabi product of complete hyperbolic hyperspheres
corresponds to direct product of convex cones
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Parallel cubic form

Theorem (Hu, Li, Vrancken 2011)

A locally strongly convex affine hypersurface of Rn+1, equipped
with the Blaschke metric, and with parallel cubic form, is a
quadric or a Calabi product, with factors being hyperboloids
and standard immersions of SL(m,R)/SO(m),
SL(m,C)/SU(m), SU∗(2m)/Sp(m), or E6(−26)/F4.
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Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product
of a finite number of the following irreducible symmetric cones:

second-order cone

matrix cones S+(n), H+(n), Q+(n) of real, complex, or
quaternionic hermitian positive semi-definite matrices

Albert cone O+(3) of octonionic hermitian positive
semi-definite 3 × 3 matrices
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Simple characterization of ∇̂C = 0

Corollary

Let M ⊂ R
n+1 be a locally strongly convex Blaschke

hypersurface immersion with cubic form parallel with respect to
the Levi-Civita connection.
Then either M is a quadric or M can be extended to a complete
hyperbolic affine hypersphere which is asymptotic to a
symmetric cone.
The determinant of the Jordan algebra generating the
symmetric cone is constant on M.
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Nonpositive sectional curvature

the affine hyperspheres asymptotic to second-order cones have
nonpositive sectional curvature bounded away from zero

Question: How small must the cubic form of a centro-affine
hypersurface immersion be to guarantee nonpositivity of the
sectional curvature?

Lemma

Let M be a hyperbolic centro-affine hypersurface immersion
with cubic form bounded by |Cijku iu juk | ≤

√
2 for all unit length

vectors u ∈ TxM. Then M has nonpositive sectional curvature.

saturated by affine hypersphere asymptotic to R
3
+
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Product of projective spaces

let RPn,RPn be the primal and dual real projective space

no scalar product, but orthogonality

M = {(x ,p) ∈ RPn ×RPn | x 6⊥ p}

is a dense subset of RPn × RPn

para-Kähler space form isomorphic to reduced paracomplex
projective space [Gadea, Amilibia 1992]

∂M = {(x ,p) ∈ RPn × RPn | x ⊥ p}
is a submanifold of RPn × RPn of codimension 1
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Contact structure on ∂M

the projections π, π∗ of RPn × RPn onto the factors define
n-dimensional distributions J± on RPn × RPn

traces J̃± on ∂M are of dimension n − 1

Lemma

The manifold ∂M equipped with the distribution J̃+ + J̃− is a
contact manifold.
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Cross-ratio

x1, x2, x3, x4 points on the projective line RP1

(x1, x2; x3, x4) =
(x1 − x3)(x2 − x4)

(x2 − x3)(x1 − x4)
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Generalization to n dimensions

[Ariyawansa, Davidon, McKennon 1999]: instead of 4 collinear
points use 2 points and 2 dual points

(u, x ′;u′, x) — quadra-bracket of x ,p, x ′,p′
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Two-point function on M

let z = (x ,p), z′ = (x ′,p′) ∈ M ⊂ RPn × RPn

(z; z′) = (z′; z) := (u, x ′;u′, x)

defines a symmetric function (·; ·) : M×M → R

lim
z→∂M

(z; z′) = ±∞
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Cross-ratio and geodesic distance

Theorem

Let z, z′ ∈ M be two points and d(z, z′) their geodesic distance
in M.

If the geodesic linking z, z′ is of elliptic type, then
(z; z′) > 0 and d(z, z′) = arcsin

√

(z; z′).

If the geodesic linking z, z′ is light-like, then (z; z′) = 0.

If the geodesic linking z, z′ is of hyperbolic type, then
(z; z′) < 0 and d(z, z′) = arc sinh

√

−(z; z′).

(z; z′) is the only projective invariant of a pair of points in M.

call M the cross-ratio manifold
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Projective images of cones

let K ⊂ R
n+1 be a regular convex cone

the canonical projection Π : Rn+1 \ {0} → RPn maps K \ {0} to
a compact convex subset C ⊂ RPn

the canonical projection Π∗ : Rn+1 \ {0} → RPn maps K ∗ \ {0}
to a compact convex subset C∗ ⊂ RPn
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Images of conic boundaries

let K ⊂ R
n+1 be a regular convex cone

the canonical projection
Π×Π∗ : (Rn+1 \ {0})× (Rn+1 \ {0}) → RPn ×RPn maps the set

∆K = {(x ,p) ∈ (∂K \ {0})× (∂K ∗ \ {0}) | x ⊥ p}

to a set δK ⊂ ∂M

Lemma
The set δK is Legendrian with respect to the contact structure
on ∂M.
The projections π, π∗ of RPn × RPn to the factors map δK onto
∂C and ∂C∗, respectively.
If K is smooth, then δK is homeomorphic to Sn−1.
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Images of barriers

let K ⊂ R
n+1 be a regular convex cone and F : K o → R a

barrier on K

M = Π× Π∗ [{(x ,−F ′(x)) | x ∈ K o}]

is a smooth nondegenerate Lagrangian submanifold of M with
boundary δK

invariant with respect to duality
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Bijection with level surfaces

there is a canonical bijection between a level surface of F (or
F ∗) and the submanifold M

Lemma

The canonical bijection between M and the level surfaces of F
is an isometry.
The image of the cubic form under this bijection can be
expressed through the second fundamental form II of M by

C(X ,Y ,Z ) = −2ω(II(X ,Y ),Z ).
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Equivalence to centro-affine geometry

applicable to any nondegenerate centro-affine immersion:
project pair (position vector, image of conormal map)

Theorem

Nondegenerate Lagrangian submanifolds of M are in
one-to-one correspondence with homothetic families of
nondegenerate centro-affine hypersurface immersions in R

n+1.
The centro-affine metric on the immersion equals the metric on
the submanifold inherited from M.
The cubic form on the immersion C and the second
fundamental form on the submanifold obey the relation

C(X ,Y ,Z ) = −2ω(II(X ,Y ),Z ).
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Affine hyperspheres

Corollary (independently obtained by D. Fox)

A nondegenerate Lagrangian submanifold M ⊂ M is minimal if
and only if the corresponding family of centro-affine immersions
are affine hyperspheres.

no convexity or completeness assumptions
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Equivalents of barriers

Corollary

Let K ⊂ R
n+1 be a regular convex cone.

The barriers on K with parameter ν correspond to positive
definite Lagrangian submanifolds M of M of hyperbolic type
inscribed in δK , with second fundamental form bounded by
γ = ν−2√

ν−1
.
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Geometric interpretation
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Local approximation

Lemma

Lagrangian geodesic submanifolds of M are totally geodesic.

let F : K o → R be a barrier with parameter ν and M ⊂ M the
corresponding Lagrangian submanifold

at a given point z ∈ M the tangent totally geodesic Lagrangian
submanifold to M approximates M up to 1st order
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Global approximation

the tangent totally geodesic Lagrangian submanifold defines
the barrier of a second-order cone Ln+1

Ln+1 can be viewed as approximating K at the ray
corresponding to z

Lemma

Let K ⊂ R
n be a regular convex cone, F a barrier on K with

parameter ν and z ∈ M a point on the corresponding
Lagrangian submanifold. Let Ln be the second-order cone
defined by the tangent totally geodesic submanifold at z.
If we pass to a coordinate system where Ln is centered and
blow up (shrink) the horizontal affine section of Ln by a factor of√
ν − 1, we obtain an outer (inner) approximation of K .
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Upper bound on geodesic distance

in a Riemannian manifold, geodesic distances on a
submanifold are not shorter than in the ambient manifold

not so in a pseudo-Riemannian manifold

Theorem

Let M ⊂ M be a definite Lagrangian submanifold of hyperbolic
type. Suppose that for every two points z, z′ ∈ M there exists a
path linking z, z′ which projects bijectively to a line in the factor
RPn (or RPn).
Then the geodesic distance on M is bounded from above by
the geodesic distance on M, i.e., by arc sinh

√

−(z; z′).
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Bound on centro-affine immersions

Corollary

Let x , x ′ ∈ M be two points on a locally strongly convex
centro-affine hypersurface M ⊂ R

n+1 of hyperbolic type that
can be linked by a path on M that projects bijectively to a line
segment in RPn. Let p,p′ be the tangent spaces to M at x , x ′.
Then the geodesic distance d(x , x ′) in the centro-affine metric
is bounded from above by arc sinh

√
−Q, where Q is the

quadra-bracket of x ,p, x ′,p′.
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Einstein-Hessian metrics

Theorem (Cheng, Yau 1980)

Let X ⊂ R
n be a regular convex set. Then the boundary value

problem
det G′′ = e2G, G|∂X = +∞

has a unique locally strongly convex solution.

Question: Is this solution or a multiple of it a barrier, i.e., is it
self-concordant and does it satisfy the gradient inequality?
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Rational solutions

let K ⊂ R
n be a regular convex cone and F the

Einstein-Hessian barrier on K

Question: For which cones K the function e2F = det F ′′ is the
inverse of a polynomial? (symmetric cones?)

For which cones K is it a rational function? (homogeneous
cones?)
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Optimal barrier parameter

let K ⊂ R
n be a regular convex cone

Question: What is the smallest possible parameter of a barrier
on K ?

What is the smallest possible bound on the second fundamental
form of a Lagrangian submanifold of M inscribed in δK ?

partial answer: lower bounds available
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How small can the distance be?

let z, z′ ∈ M be such that the geodesic [z, z′] is of hyperbolic
type

with no further restrictions inf d(z, z′) = 0 (choose a path close
to the distributions J±)

Question: Does an upper bound on the second fundamental
form of M imply a lower bound on the geodesic distance
d(z, z′) on M?
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let p,q > 1 such that 1
p + 1

q = 1 and consider the cone

K =
{

(x , y , z) ∈ R×R× R
n−1 | x ≥ 0, y ≥ 0, ||z||2 ≤ x1/py1/q

}

with s = q
p the affine hypersphere with mean curvature −1

asymptotic to this cone has its cubic form bounded by

2γ =
2(n − 1)|s − 1|
√

(ns + 1)(n + s)
,

for points z, z′ on the geodesic corresponding to the 2-plane
z = 0 we have

d(z, z′) =

(

γ2

4
+ 1
)−1/2

arc sinh

(
√

γ2

4
+ 1
√

−(z; z′)

)
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Thank you
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