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Uncertain conic programs

min
x

〈c, x〉 : Ax + b ∈ K

K ⊂ RN regular convex cone, x ∈ R
n vector of decision variables

data A, b, c may be uncertain and vary in an uncertainty set U

let x∗ be the (nominal) optimal solution

for perturbed data A′ = A + δA, b′ = b + δb the constraint might be

violated:

A′x∗ + b′ 6∈ K
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Robust counterpart

Example 1 (Nemirovski, SP XI Vienna, 2007):

in 19 (13) of the 90 NETLIB LP test programs

(http://www.netlib.org/lp/data/), perturbation of the data by

0.01% leads to violation by 5% (50%) of some constraints

remedy : solve robust counterpart

min
x

τ : 〈c, x〉 ≤ τ, Ax + b ∈ K ∀ (A, b, c) ∈ U

in the sequel we consider the cost vector c to be certain
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Example 1 (continued)

”cost of robustness” is usually negligible

in all of the 90 NETLIB LP problems, cost of robust optimal

solution is < 0.4% (< 1%) worse than that of the nominal optimal

solution if robustified against perturbations of 0.01% (0.1%)

magnitude
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Example 2

Ben-Tal & Nemirovski, ”Robust convex optimization”, 1998:

truss topology design optimized with respect to a nominal load f∗

highly unstable: application of a small force (10% of f∗) leads to

an 3000-fold increase of the compliance

compliance of the robustified design is only 0.24% larger than that

of the nominal one

5



Uncertainty description

complexity of robust conic program depends both on K and U

we suppose uncertainty set U given by

(A, b) = (A0, b0) +
m−1
∑

k=1

uk · (Ak, bk), u ∈ B

B ⊂ R
m−1 compact convex set

trivial case: finite number of scenarios

⇔ B convex polyhedral set with small number of vertices
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Robust counterpart : reformulation

define cone

KB = {(τ ; τu) ∈ R
m | τ ≥ 0, u ∈ B}

then robust counterpart becomes

min
x

〈c, x〉 :

(

m−1
∑

k=0

ukAk

)

x +
m−1
∑

k=0

ukbk ∈ K ∀ u ∈ KB

or equivalently

min
x

〈c, x〉 : Ax[KB ] ⊂ K,

where Ax : R
m → R

N given by

Ax(u) =

(

m−1
∑

k=0

ukAk

)

x +

m−1
∑

k=0

ukbk

coefficients of linear map Ax affine in x
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Positive maps

for regular convex cones K1 ⊂ R
n1 , K2 ⊂ R

n2 , call a linear map

A : R
n1 → R

n2 K1-to-K2 positive if A[K1] ⊂ K2

cone of positive maps is itself a regular convex cone in R
n1n2

K-to-R+ positive cone is the dual cone K∗

(K1 × · · · × Km)-to-(K′
1 × · · · × K′

m′) positive cone is the product
∏m

k=1

∏m′

k′=1
of Kk-to-K′

k′ positive cones

nice description of robust counterpart depends on availability of

nice description of the KB-to-K positive cone
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Choice of uncertainty B

L1-ball (hyper-octahedron) ok for small number of uncertain

variables, but in higher dimensions it becomes ”spiky”

L2-ball well-balanced uncertainty naturally occurring when data is

obtained from parametric estimation

L∞-ball (box) occurs if we have interval uncertainty, often

intractable due to large number of vertices

robust LP with box-constrained uncertainty is an LP

(Ben-Tal & Nemirovski, ”Robust convex optimization”, 1998)
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Ellipsoidal uncertainty

Lorentz cone

Lm = {(u0, . . . , um−1)
T |u0 ≥ ||(u1, . . . , um−1)

T ||2}

robust counterpart for ellipsoidal uncertainty can be written as

min
x

〈c, x〉 : Ax Lm-to-K positive

Ax : R
m → R

N affine in x

due to possibility of taking products we can have

• independent ellipsoids on different data

• uncertainties which are convex hulls of different, possibly

degenerated ellipsoids (e.g. L1-L2 hybrid ball)

10



Existing results

robust LP with ellipsoidal uncertainty (even for intersections of

ellipsoids) is a CQP (Ben-Tal & Nemirovski, 1998)

Lm-to-Lm′ positive cone efficiently computable (Nemirovski)

hence robust CQP with ellipsoidal uncertainty computable with

cutting-plane methods — practically unfeasible for m ≈ m′ ≥ 10

if uncertainty on each constraint independent, and uncertainty on

zero components independent of uncertainty on the other

components, then the robust counterpart of a CQP is an SDP

(Ben-Tal & Nemirovski, 1998)
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Existing results

SDP with rank 2 ellipsoidal uncertainty is an SDP (Ben-Tal &

Nemirovski, ”Robust convex optimization”, 1998)

min
x

〈c, x〉 :

A0 +
n
∑

k=1

xkAk +
m−1
∑

j=1

uj

(

(bj + xT Bj)d
T + d(bT

j + BT
j x)

)

� 0

∀ ||u||2 ≤ 1

with d fixed
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Lm-to-S+(n) positive cone

S(n) — space of n × n real symmetric matrices

A(n) — space of n × n real skew-symmetric matrices

S+(n) ⊂ S(n) — cone of PSD matrices

consider a map A : R
m → S(n) given by

x 7→
m−1
∑

k=0

xkAk, Ak ∈ S(n)
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Standard relaxation

define an associated matrix

MA =























A0 + A1 A2 · · · · · · Am−1

A2 A0 − A1 0 · · · 0
... 0

. . . 0 0
... 0 0 A0 − A1 0

Am−1 0 · · · 0 A0 − A1























suppose

∃ X ∈ A(m − 1) ⊗A(n) : MA + X � 0 (suf)

then A is Lm-to-S+(n) positive
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Proof
let z ∈ R

n be arbitrary

let x ∈ ∂Lm be normalized to x0 + x1 = 1

convex conic closure of such x is Lm

then with x̃ = (x2, . . . , xm−1)
T we have x2

0 − x2
1 = x0 − x1 = ||x̃||22

compute

[(1 x̃T ) ⊗ zT ] X









1

x̃



⊗ z



 = 0

[(1 x̃T ) ⊗ zT ] MA









1

x̃



⊗ z



 =

zT [A0 + A1 + 2
m−1
∑

k=2

xkAk + ||x̃||22(A0 − A1)]z = 2zT A(x)z ≥ 0

hence A(x) � 0 and A is Lm-to-S+(n) positive
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LMI description

for n = 1 condition (suf) is trivially necessary

Theorem (Størmer, 1951) If n = 2, then condition (suf) is also

necessary for positivity of the map A.

Theorem (Woronowicz, 1976) If n = 3 and m ≤ 4, then condition

(suf) is also necessary for positivity of the map A.

Theorem (H., 2007) If n = 3, then condition (suf) is also

necessary for positivity of the map A.

this yields a (lifted) LMI representation of the Lm-to-S+(n)

positive cone for n ≤ 3
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Lm-to-Ln positive cone

consider a map A : R
m → R

n given by a real n × m matrix

interpret A as an element of R
n ⊗ R

m

define a linear map Wr : R
r → S(r − 1) by

Wr(x) =























x0 + x1 x2 · · · · · · xr−1

x2 x0 − x1 0 · · · 0
... 0

. . . 0 0
... 0 0 x0 − x1 0

xr−1 0 · · · 0 x0 − x1






















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Standard relaxation

suppose

∃ X ∈ A(n − 1) ⊗A(m − 1) : (Wn ⊗Wm)(A) + X � 0 (suf2)

then A is Lm-to-Ln positive

Proof

let x ∈ ∂Ln be normalized to x0 + x1 = 1

let y ∈ ∂Lm be normalized to y0 + y1 = 1

define x̃ = (x2, . . . , xn−1)
T , ỹ = (y2, . . . , ym−1)

T
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compute

[(1 x̃T ) ⊗ (1 ỹT )] X









1

x̃



⊗





1

ỹ







 = 0

[(1 x̃T )⊗ (1 ỹT )] (Wn ⊗Wm)(A)









1

x̃



⊗





1

ỹ







 = 4xT Ay ≥ 0

hence A[Lm] ⊂ Ln by self-duality of Ln and A is Lm-to-Ln positive
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LMI description

Theorem (Yakubovich, 1962) If n = 3 or m = 3, then condition

(suf2) is also necessary for positivity of the map A.

Theorem (Størmer, 1951) If n = 4 or m = 4, then condition (suf2)

is also necessary for positivity of the map A.

Theorem (H., 2008) Condition (suf2) is also necessary for

positivity of the map A for arbitrary n, m.

this yields a (lifted) LMI representation of the Lm-to-Ln positive

cone
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Example
(W4 ⊗W4)(A) =











































A++ A+2 A+3 A2+ A22 A23 A3+ A32 A33

A+2 A+− A22 A2− A32 A3−

A+3 A+− A23 A2− A33 A3−

A2+ A22 A23 A−+ A−2 A−3

A22 A2− A−2 A−−

A23 A2− A−3 A−−

A3+ A32 A33 A−+ A−2 A−3

A32 A3− A−2 A−−

A33 A3− A−3 A−−











































A+± = A00 ± A01 + A10 ± A11, A−± = A00 ± A01 − A10 ∓ A11,

A±k = A0k ± A1k, Ak± = Ak0 ± Ak1
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LMI description of robust programs

robust counterpart of mixed LP/CQP/SDP with SDP individual

block size not exceeding 3 for real symmetric blocks and 2 for

complex hermitian blocks

K = R
NLP

+ ×

NCQP
∏

i=1

Lni
×

NSDP
∏

i=1

S+(3)

with uncertainty given by convex hulls of a finite number of

ellipsoids is a mixed CQP/SDP

block structure is inherited from original program as well as from

structure of uncertainty
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