Robust conic quadratic programming

with ellipsoidal uncertainties

Roland Hildebrand (LJK Grenoble 1 / CNRS, Grenoble)

KTH, Stockholm; November 13, 2008

Uncertain conic programs

$$\min_{x} \langle c, x \rangle : Ax + b \in K$$

 $K \subset \mathbb{R}^N$ regular convex cone, $x \in \mathbb{R}^n$ vector of decision variables data A, b, c may be uncertain and vary in an uncertainty set U

let x^* be the (nominal) optimal solution

for perturbed data $A' = A + \delta A$, $b' = b + \delta b$ the constraint might be violated:

$$A'x^* + b' \not\in K$$

Robust counterpart

Example 1 (Nemirovski, SP XI Vienna, 2007):

in 19 (13) of the 90 NETLIB LP test programs (http://www.netlib.org/lp/data/), perturbation of the data by 0.01% leads to violation by 5% (50%) of some constraints

remedy: solve robust counterpart

$$\min_{x} \tau : \langle c, x \rangle \le \tau, \ Ax + b \in K \quad \forall \ (A, b, c) \in U$$

in the sequel we consider the cost vector c to be certain

Example 1 (continued)

"cost of robustness" is usually negligible

in all of the 90 NETLIB LP problems, cost of robust optimal solution is <0.4% (<1%) worse than that of the nominal optimal solution if robustified against perturbations of 0.01% (0.1%) magnitude

Example 2

Ben-Tal & Nemirovski, "Robust convex optimization", 1998:

truss topology design optimized with respect to a nominal load f^* highly unstable: application of a small force (10% of f^*) leads to an 3000-fold increase of the compliance

compliance of the robustified design is only 0.24% larger than that of the nominal one

Uncertainty description

complexity of robust conic program depends both on K and U we suppose uncertainty set U given by

$$(A,b) = (A^0, b^0) + \sum_{k=1}^{m-1} u_k \cdot (A^k, b^k), \quad u \in B$$

 $B \subset \mathbb{R}^{m-1}$ compact convex set

trivial case: finite number of scenarios

 $\Leftrightarrow B$ convex polyhedral set with small number of vertices

Robust counterpart: reformulation

define cone

$$K_B = \{ (\tau; \tau u) \in \mathbb{R}^m \mid \tau \ge 0, \ u \in B \}$$

then robust counterpart becomes

$$\min_{x} \langle c, x \rangle : \left(\sum_{k=0}^{m-1} u_k A^k \right) x + \sum_{k=0}^{m-1} u_k b^k \in K \quad \forall \ u \in K_B$$

or equivalently

$$\min_{x} \langle c, x \rangle : \ \mathcal{A}_x[K_B] \subset K,$$

where $\mathcal{A}_x: \mathbb{R}^m \to \mathbb{R}^N$ given by

$$\mathcal{A}_x(u) = \left(\sum_{k=0}^{m-1} u_k A^k\right) x + \sum_{k=0}^{m-1} u_k b^k$$

coefficients of linear map A_x affine in x

Positive maps

for regular convex cones $K_1 \subset \mathbb{R}^{n_1}$, $K_2 \subset \mathbb{R}^{n_2}$, call a linear map $A: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$ K_1 -to- K_2 positive if $A[K_1] \subset K_2$

cone of positive maps is itself a regular convex cone in $\mathbb{R}^{n_1 n_2}$

K-to- \mathbb{R}_+ positive cone is the dual cone K^*

 $(K_1 \times \cdots \times K_m)$ -to- $(K'_1 \times \cdots \times K'_{m'})$ positive cone is the product $\prod_{k=1}^m \prod_{k'=1}^{m'}$ of K_k -to- $K'_{k'}$ positive cones

nice description of robust counterpart depends on availability of nice description of the K_B -to-K positive cone

Choice of uncertainty B

 L_1 -ball (hyper-octahedron) ok for small number of uncertain variables, but in higher dimensions it becomes "spiky"

 L_2 -ball well-balanced uncertainty naturally occurring when data is obtained from parametric estimation

 L_{∞} -ball (box) occurs if we have interval uncertainty, often intractable due to large number of vertices

robust LP with box-constrained uncertainty is an LP (Ben-Tal & Nemirovski, "Robust convex optimization", 1998)

Ellipsoidal uncertainty

Lorentz cone

$$L_m = \{(u_0, \dots, u_{m-1})^T \mid u_0 \ge ||(u_1, \dots, u_{m-1})^T||_2\}$$

robust counterpart for ellipsoidal uncertainty can be written as

$$\min_{x} \langle c, x \rangle : \mathcal{A}_x L_m$$
-to- K positive

 $\mathcal{A}_x: \mathbb{R}^m \to \mathbb{R}^N$ affine in x

due to possibility of taking products we can have

- independent ellipsoids on different data
- uncertainties which are convex hulls of different, possibly degenerated ellipsoids (e.g. L_1 - L_2 hybrid ball)

Existing results

robust LP with ellipsoidal uncertainty (even for intersections of ellipsoids) is a CQP (Ben-Tal & Nemirovski, 1998)

 L_m -to- $L_{m'}$ positive cone efficiently computable (Nemirovski)

hence robust CQP with ellipsoidal uncertainty computable with cutting-plane methods — practically unfeasible for $m \approx m' \geq 10$

if uncertainty on each constraint independent, and uncertainty on zero components independent of uncertainty on the other components, then the robust counterpart of a CQP is an SDP (Ben-Tal & Nemirovski, 1998)

Existing results

SDP with rank 2 ellipsoidal uncertainty is an SDP (Ben-Tal & Nemirovski, "Robust convex optimization", 1998)

$$\min_{x} \langle c, x \rangle$$
:

$$A_0 + \sum_{k=1}^{n} x_k A_k + \sum_{j=1}^{m-1} u_j \left((b_j + x^T B_j) d^T + d(b_j^T + B_j^T x) \right) \succeq 0$$

$$\forall ||u||_2 \leq 1$$

with d fixed

 L_m -to- $S_+(n)$ positive cone

 $\mathcal{S}(n)$ — space of $n \times n$ real symmetric matrices

 $\mathcal{A}(n)$ — space of $n \times n$ real skew-symmetric matrices

 $S_{+}(n) \subset \mathcal{S}(n)$ — cone of PSD matrices

consider a map $A: \mathbb{R}^m \to \mathcal{S}(n)$ given by

$$x \mapsto \sum_{k=0}^{m-1} x_k A_k, \quad A_k \in \mathcal{S}(n)$$

Standard relaxation

define an associated matrix

$$\mathcal{M}_{A} = \begin{pmatrix} A_{0} + A_{1} & A_{2} & \cdots & \cdots & A_{m-1} \\ A_{2} & A_{0} - A_{1} & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 & 0 \\ \vdots & 0 & 0 & A_{0} - A_{1} & 0 \\ A_{m-1} & 0 & \cdots & 0 & A_{0} - A_{1} \end{pmatrix}$$

suppose

$$\exists X \in \mathcal{A}(m-1) \otimes \mathcal{A}(n) : \quad \mathcal{M}_A + X \succeq 0 \quad \text{(suf)}$$

then A is L_m -to- $S_+(n)$ positive

Proof

let $z \in \mathbb{R}^n$ be arbitrary

let $x \in \partial L_m$ be normalized to $x_0 + x_1 = 1$ convex conic closure of such x is L_m then with $\tilde{x} = (x_2, \dots, x_{m-1})^T$ we have $x_0^2 - x_1^2 = x_0 - x_1 = ||\tilde{x}||_2^2$ compute

$$\left[\left(1 \ \tilde{x}^T \right) \otimes z^T \right] X \left[\left(\begin{array}{c} 1 \\ \tilde{x} \end{array} \right) \otimes z \right] = 0$$

$$\left[\left(1 \ ilde{x}^T
ight) \otimes z^T
ight] \, \mathcal{M}_A \left[\left(egin{array}{c} 1 \ ilde{x} \end{array}
ight) \otimes z
ight] =$$

$$z^{T}[A_{0} + A_{1} + 2\sum_{k=2}^{m-1} x_{k}A_{k} + ||\tilde{x}||_{2}^{2}(A_{0} - A_{1})]z = 2z^{T}A(x)z \ge 0$$

hence $A(x) \succeq 0$ and A is L_m -to- $S_+(n)$ positive

LMI description

for n = 1 condition (suf) is trivially necessary

Theorem (Størmer, 1951) If n = 2, then condition (suf) is also necessary for positivity of the map A.

Theorem (Woronowicz, 1976) If n = 3 and $m \le 4$, then condition (suf) is also necessary for positivity of the map A.

Theorem (H., 2007) If n = 3, then condition (suf) is also necessary for positivity of the map A.

this yields a (lifted) LMI representation of the L_m -to- $S_+(n)$ positive cone for $n \leq 3$

 L_m -to- L_n positive cone

consider a map $A: \mathbb{R}^m \to \mathbb{R}^n$ given by a real $n \times m$ matrix interpret A as an element of $\mathbb{R}^n \otimes \mathbb{R}^m$ define a linear map $\mathcal{W}_r: \mathbb{R}^r \to \mathcal{S}(r-1)$ by

$$W_r(x) = \begin{pmatrix} x_0 + x_1 & x_2 & \cdots & \cdots & x_{r-1} \\ x_2 & x_0 - x_1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 & 0 \\ \vdots & 0 & 0 & x_0 - x_1 & 0 \\ x_{r-1} & 0 & \cdots & 0 & x_0 - x_1 \end{pmatrix}$$

Standard relaxation

suppose

$$\exists X \in \mathcal{A}(n-1) \otimes \mathcal{A}(m-1) : \quad (\mathcal{W}_n \otimes \mathcal{W}_m)(A) + X \succeq 0 \qquad (\text{suf}2)$$

then A is L_m -to- L_n positive

Proof

let $x \in \partial L_n$ be normalized to $x_0 + x_1 = 1$

let $y \in \partial L_m$ be normalized to $y_0 + y_1 = 1$

define
$$\tilde{x} = (x_2, \dots, x_{n-1})^T$$
, $\tilde{y} = (y_2, \dots, y_{m-1})^T$

compute

$$\left[(1 \ \tilde{x}^T) \otimes (1 \ \tilde{y}^T) \right] X \ \left[\left(\begin{array}{c} 1 \\ \tilde{x} \end{array} \right) \otimes \left(\begin{array}{c} 1 \\ \tilde{y} \end{array} \right) \right] = 0$$

$$[(1 \ \tilde{x}^T) \otimes (1 \ \tilde{y}^T)] \ (\mathcal{W}_n \otimes \mathcal{W}_m)(A) \left[\begin{pmatrix} 1 \\ \tilde{x} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ \tilde{y} \end{pmatrix} \right] = 4x^T Ay \ge 0$$

hence $A[L_m] \subset L_n$ by self-duality of L_n and A is L_m -to- L_n positive

LMI description

Theorem (Yakubovich, 1962) If n = 3 or m = 3, then condition (suf2) is also necessary for positivity of the map A.

Theorem (Størmer, 1951) If n = 4 or m = 4, then condition (suf2) is also necessary for positivity of the map A.

Theorem (H., 2008) Condition (suf2) is also necessary for positivity of the map A for arbitrary n, m.

this yields a (lifted) LMI representation of the L_m -to- L_n positive cone

Example
$$(\mathcal{W}_4 \otimes \mathcal{W}_4)(A) =$$

$$\begin{pmatrix} A_{++} & A_{+2} & A_{+3} & A_{2+} & A_{22} & A_{23} & A_{3+} & A_{32} & A_{33} \\ A_{+2} & A_{+-} & A_{22} & A_{2-} & A_{32} & A_{3-} \\ A_{+3} & A_{+-} & A_{23} & A_{2-} & A_{33} & A_{3-} \\ A_{2+} & A_{22} & A_{23} & A_{-+} & A_{-2} & A_{-3} \\ A_{22} & A_{2-} & A_{-2} & A_{--} \\ A_{23} & A_{2-} & A_{-3} & A_{--} \\ A_{3+} & A_{32} & A_{33} & A_{-+} & A_{-2} & A_{-3} \\ A_{32} & A_{3-} & A_{3-} & A_{-2} & A_{--} \end{pmatrix}$$

$$A_{+\pm} = A_{00} \pm A_{01} + A_{10} \pm A_{11}, A_{-\pm} = A_{00} \pm A_{01} - A_{10} \mp A_{11},$$

 $A_{\pm k} = A_{0k} \pm A_{1k}, A_{k\pm} = A_{k0} \pm A_{k1}$

LMI description of robust programs

robust counterpart of mixed LP/CQP/SDP with SDP individual block size not exceeding 3 for real symmetric blocks and 2 for complex hermitian blocks

$$K = \mathbb{R}_{+}^{N_{LP}} \times \prod_{i=1}^{N_{CQP}} L_{n_i} \times \prod_{i=1}^{N_{SDP}} S_{+}(3)$$

with uncertainty given by convex hulls of a finite number of ellipsoids is a mixed CQP/SDP

block structure is inherited from original program as well as from structure of uncertainty