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Uncertain conic programs I

min{c,z) : Ar+be K

K C RY regular convex cone, x € R" vector of decision variables

data A, b, c may be uncertain and vary in an uncertainty set U

let * be the (nominal) optimal solution

for perturbed data A"’ = A+ A, b’ = b+ 0b the constraint might be
violated:
Az +bV ¢ K




Robust counterpart I

Example 1 (Nemirovski, SP XI Vienna, 2007):

in 19 (13) of the 90 NETLIB LP test programs
(http://www.netlib.org/lp/data/), perturbation of the data by
0.01% leads to violation by 5% (50%) of some constraints

remedy : solve robust counterpart

min7 :(c,x) <7, Ar+be K V (A,bc)ecU

x

in the sequel we consider the cost vector c to be certain




Example 1 (continued)

”cost of robustness” is usually negligible

in all of the 90 NETLIB LP problems, cost of robust optimal

solution is < 0.4% (< 1%) worse than that of the nominal optimal
solution if robustified against perturbations of 0.01% (0.1%)

magnitude




‘ Example 2 I

Ben-Tal & Nemirovski, ” Robust convex optimization”, 1998:

truss topology design optimized with respect to a nominal load f*

highly unstable: application of a small force (10% of f*) leads to

an 3000-fold increase of the compliance

compliance of the robustified design is only 0.24% larger than that

of the nominal one




Uncertainty description I

complexity of robust conic program depends both on K and U

we suppose uncertainty set U given by

m—

(A,b) = (A%, b°) + Z (AFbY), weB
k=1

B c R™~! compact convex set

trivial case: finite number of scenarios

& B convex polyhedral set with small number of vertices




‘ Robust counterpart : reformulation.

Kp={(r;7u) e R |7 >0, u e B}

define cone

then robust counterpart becomes

m—1 m—1
min{c, x) : <Z ukAk> T + Zukbk cK VYVue Kpg

x

k=0 k=0

or equivalently
min(c,z) : A;[Kp] C K,

where A, : R™ — R" given by

m—1 m—1
Az (u) = (Z ukAk> T + Z ug b
k=0 k=0

coefficients of linear map A, affine in x




‘ Positive maps I

for regular convex cones K1 C R™, Ky C R™2, call a linear map
A:R™ — R™ K-to-Ks positive if A[K1] C K

cone of positive maps is itself a regular convex cone in R™1"2

K-to-R positive cone is the dual cone K™

(K1 X -+« X Kp)-to-(K{ x --- x K ,) positive cone is the product
HZL:1 HZL of Kj-to-K,, positive cones

nice description of robust counterpart depends on availability of
nice description of the Kpg-to-K positive cone




‘ Choice of uncertainty B I

L1-ball (hyper-octahedron) ok for small number of uncertain

variables, but in higher dimensions it becomes ”spiky”

Lo-ball well-balanced uncertainty naturally occurring when data is

obtained from parametric estimation

Loo-ball (box) occurs if we have interval uncertainty, often

intractable due to large number of vertices

robust LP with box-constrained uncertainty is an LP

(Ben-Tal & Nemirovski, ” Robust convex optimization”, 1998)




‘ Ellipsoidal uncertainty I

Lorentz cone
Ly = {(uo, ... um—1)" |ug > [|(u1, ..., um—1)"||2}
robust counterpart for ellipsoidal uncertainty can be written as
rrgjin(c, x): Ay Lpy,-to-K positive
A, R™ — RY affine in x
due to possibility of taking products we can have

e independent ellipsoids on different data

e uncertainties which are convex hulls of different, possibly
degenerated ellipsoids (e.g. Li-Ly hybrid ball)




Existing results I

robust LP with ellipsoidal uncertainty (even for intersections of
ellipsoids) is a CQP (Ben-Tal & Nemirovski, 1998)

L,-to-L,,» positive cone efficiently computable (Nemirovski)

hence robust CQP with ellipsoidal uncertainty computable with

cutting-plane methods — practically unfeasible for m ~ m’ > 10

if uncertainty on each constraint independent, and uncertainty on
zero components independent of uncertainty on the other
components, then the robust counterpart of a CQP is an SDP
(Ben-Tal & Nemirovski, 1998)




‘ Existing results I

SDP with rank 2 ellipsoidal uncertainty is an SDP (Ben-Tal &
Nemirovski, ”Robust convex optimization”, 1998)

min(c, ) :
T

n m—1
k=1 71=1

V [Jull2 <1
with d fixed




L,-to-Sy (n) positive cone

S(n) — space of n x n real symmetric matrices
A(n) — space of n x n real skew-symmetric matrices

Si(n) C §(n) — cone of PSD matrices

consider a map A : R™ — S(n) given by

m—1

€T — Z rrAg, Ar € S(n)
k=0




‘ Standard relaxation .

define an associated matrix

{ Ao+ Ay Ay
Ao Ay — 47 O

0 0
0 0 Ay— A, 0
\ A 0 0 Ao — Ay )

suppose

I XeAm—-1)®An): Mu+X >0 (suf)

then A is L,,-to-Sy(n) positive




let x € OL,,, be normalized to g + 21 = 1

let z € R" be arbitrary

convex conic closure of such z is L,

T 2

then with = = (x2,...,2m_1)" we have CU% — I =Tp —T1 = ||:i||%

compute

(12" "] X

1
(12" @ 2"] Ma ® 2

~

X

m—1
ZT[Ag+ AL +2 ) apdAp + ||2][3(A0 — A1)]z = 22T A(z)z > 0
k=2

hence A(x) = 0 and A is L,,-to-Sy(n) positive




‘ LMI description I

for n = 1 condition (suf) is trivially necessary

Theorem (Stgrmer, 1951) If n = 2, then condition (suf) is also
necessary for positivity of the map A.

Theorem (Woronowicz, 1976) If n = 3 and m < 4, then condition

(suf) is also necessary for positivity of the map A.

Theorem (H., 2007) If n = 3, then condition (suf) is also

necessary for positivity of the map A.

this yields a (lifted) LMI representation of the L,,-to-S1(n)
positive cone for n < 3




L,,-to-L,, positive cone I

consider a map A : R™ — R"” given by a real n X m matrix

interpret A as an element of R” @ R™

define a linear map W, : R" — §(r — 1) by

( To + X1

L2




‘ Standard relaxation .

suppose

IXeAn-1)@Am—-1): Wa@W,)(A)+X =0

then A is L,,-to-L,, positive

let x € 0L,, be normalized to xg + 1 = 1

let y € OL,, be normalized to yg +y1 =1

define = = (zo, .. .,xn_l)T, g = (y2, .. >ym—1)T




compute

= Azl Ay >0

hence A[L,,] C L, by self-duality of L,, and A is L,,-to-L,, positive




‘ LMI description I

Theorem (Yakubovich, 1962) If n = 3 or m = 3, then condition
(suf2) is also necessary for positivity of the map A.

Theorem (Stgrmer, 1951) If n = 4 or m = 4, then condition (suf2)

is also necessary for positivity of the map A.

Theorem (H., 2008) Condition (suf2) is also necessary for

positivity of the map A for arbitrary n, m.

this yields a (lifted) LMI representation of the L,,-to-L,, positive
cone




‘ Example I
(Wi @ Wy)(A) =
(

\

Ay =App £ Aon + Ao £ A, Ay = Ago £ Ao1 — Ao F Ais,
Aty = Aok £ A1k, Akt = Ao £ A

A, A,
Ay A__
A3

A3

A__




LMI description of robust programs I

robust counterpart of mixed LP/CQP/SDP with SDP individual
block size not exceeding 3 for real symmetric blocks and 2 for

complex hermitian blocks

Ncorp Nspp

K=RY"x [ Ln, x ] 5+0)
1=1 1=1

with uncertainty given by convex hulls of a finite number of
ellipsoids is a mixed CQP/SDP

block structure is inherited from original program as well as from

structure of uncertainty




