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Quadratically constrained quadratic programs (QCQP)

let

� Sn be the space of real symmetric n× n matrices

� Sn
+ ⊂ Sn the cone of positive semi-definite matrices

a QCQP is a problem of the form [Ramana, Goldman 1995]

min
x∈Rn

xTSx : xTAix = 0, i = 1, . . . , k; xTBx = 1

A1, . . . , Ak;B;S ∈ Sn define the homogeneous quadratic constraints, the inhomogeneous quadratic

constraint, and the quadratic cost function

set X = xxT ∈ Sn
+

we get

min
X∈K

〈S,X〉 : 〈B,X〉 = 1, rkX = 1

here K = L ∩ Sn
+

, where

L = {X ∈ Sn | 〈Ai, X〉 = 0 ∀ i = 1, . . . , k}

Definition

Linear sections of the cone of positive semi-definite matrices Sn
+

are called spectrahedral cones.
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Semi-definite relaxation of QCQPs

original QCQP:

min
X∈K

〈S,X〉 : 〈B,X〉 = 1, rkX = 1

K spectrahedral cone

can be relaxed to a semi-definite program (SDP) by dropping the rank constraint:

min
X∈K

〈S,X〉 : 〈B,X〉 = 1

this SDP is convex and can be efficiently solved by freely (CLP, LiPS, SDPT3, SeDuMi, ...) and

commercially (CPLEX, MOSEK, ...) available solvers

Lemma

Let K be such that its extreme rays are generated by rank 1 matrices. Then either the two problems are

both infeasible, or the SDP is unbounded, or both problems have the same optimal value.

Definition

We call a spectrahedral cone rank 1 generated (ROG) if its extreme rays are generated by rank 1 matrices.

Rank 1 generated spectrahedral cones · Frontiers of High Dimensional Statistics, Optimization, a nd
Econometrics, Moscow, February 26th, 2015 · Page 3 (16)



Applications of QCQPs and its relaxations

numerous problems in statistics can be written as QCQP and tackled by its semi-definite relaxation

� MLE for angular synchronization problem [Bandeira, Boumal, Singer 2014]

� information theoretical clustering [Wang, Sha 2011]

� MAP assignment over discrete Markov random fields [Huang, Chen, Guibas 2014]

� robust PCA [McCoy, Tropp 2011]

� inference on graphs [Wainwright, Jordan 2003]

� sparse PCA [d’Aspremont, El Ghaoui, Jordan, Lanckriet 2004; d’Aspremont, Bach, El Ghaoui 2014;

Krauthgamer, Nadler, Vilenchik 2015]

� sparse covariance selection, sparse SVD, sparse nonnegative matrix factorization [d’Aspremont et al

2007]

� high-dimensional sparse PCA [Amini, Wainwright 2009]

� . . .
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Examples of rank 1 generated spectrahedral cones

� full positive semi-definite matrix cone Sn
+

� cone of positive semi-definite n× n Hankel matrices Hann
+

� cone of positive semi-definite n× n tridiagonal matrices Trin+

� K =
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the positive semi-definite Hankel matrices are the moment cone of the univariate polynomials of degree 2n

the last 15-dimensional cone is the moment cone of the ternary quartics, which are nonnegative if and only

if they can be represented as a sum of squares [Hilbert 1888]
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ROG cones as algebraic interiors

Definition (Helton, Vinnikov 2007)

A closed set C ⊂ R
m is an algebraic interior if there exists a polynomial p on R

m such that C equals the

closure of a connected component of the set {x ∈ R
m | p(x) > 0}. Such a polynomial is called defining

polynomial.

Lemma (Helton, Vinnikov 2007)

Let C be an algebraic interior. Then the defining polynomial p of C with minimal degree (the minimal

defining polynomial) is unique up to multiplication by a positive constant. Any other defining polynomial of

C is divisible by p.

every spectrahedral cone is a convex algebraic interior with a homogeneous minimal defining polynomial

Theorem

Let K be a ROG spectrahedral cone whose interior consists of positive definite matrices. Then the

determinantal defining polynomial d of K is a minimal defining polynomial.

applicable to any non-degenerate spectrahedral cone K ⊂ Sn
+ such that there exist linearly independent

vectors x1, . . . , xn ∈ R
n satisfying xix

T
i ∈ K , i = 1, . . . , n
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Rank, degree, Carathéodory number

the degree of the minimal defining polynomial of an algebraic interior C is called the degree of C

Lemma

Let K be a ROG spectrahedral cone. Then the degree of K is given by degK = maxX∈K rkX .

Definition (Guler, Tunçel 1998)

Let K be a closed pointed convex cone. The Carathéodory number κ(x) of a point x ∈ K is the minimal

number k such that there exist extreme elements x1, . . . , xk of K satisfying x =
∑k

i=1
xi.

The Carathéodory number κ(K) of the cone K is the maximum of κ(x) over x ∈ K .

Lemma

Let K be a ROG spectrahedral cone. For every X ∈ K , its Carathéodory number is given by

κ(X) = rkX .

Corollary

The Carathéodory number of a ROG cone equals its degree.
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Isomorphisms of ROG cones

let L ⊂ Sn, L′ ⊂ Sn′

be linear subspaces of matrix spaces n ≤ n′

call L,L′ isomorphic if there exists a full rank matrix A such that the map X 7→ AXAT takes L onto L′

such isomorphisms preserve rank and signature

Definition

We call spectrahedral cones K ⊂ Sn
+, K ′ ⊂ Sn′

+ isomorphic if they can be represented as intersections

K = L ∩ Sn
+, K ′ = L′ ∩ Sn′

+ with isomorphic subspaces L ⊂ Sn, L′ ⊂ Sn′

.

spectrahedral cones which are linearly isomorphic as cones are not necessarily isomorphic in this sense

example R
2
+:

K =

{(

a 0

0 b

)

∈ S2
+, a, b ∈ R

}

, K ′ =











a 0 0

0 a+ b 0

0 0 b



 ∈ S3
+, a, b ∈ R







Theorem

Two ROG cones are isomorphic in the sense above if and only if they are linearly isomorphic as cones.

geometric structure determines algebraic structure (all ROG representations of a cone are isomorphic)
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Direct sums and simple cones

let K1 ⊂ R
n1 , . . . ,Km ⊂ R

nm be convex cones

the convex cone K = {(x1, . . . , xm) ∈ R
n1+...nm | x1 ∈ K1, . . . , xm ∈ Km} is called

the direct sum of K1, . . . ,Km

Theorem

Let K be a ROG cone which is representable as a direct sum of cones K1, . . . , Km. Then

� K1, . . . ,Km are also ROG,

� K possesses a block-diagonal representation corresponding to the decomposition,

� the k-th block is a representation of the factor cone Kk .

On the other hand, if K1, . . . ,Km are ROG cones, then the corresponding block-diagonal representation

of their direct sum is a ROG representation.

Definition

We call a ROG cone which is not a non-trivial direct sum of other cones a simple ROG cone.

Lemma

Each ROG cone decomposes into a finite number of simple ROG cones which are unique up to

permutation.
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Full extensions of ROG cones

Lemma

Let K be a spectrahedral cone. Then the spectrahedral cone

{(

X ∗

∗ ∗

)

� 0, X ∈ K

}

is a ROG cone if and only if K is ROG.

we call K ′ a full extension of K if it is isomorphic to a cone of the above form

Lemma

A ROG cone K ⊂ Sn
+ is a full extension of some smaller ROG cone if and only if there exist nontrivial

linear subspaces L ⊂ Sn and H ⊂ R
n such that K = L ∩ Sn

+ and xyT + yxT ∈ L for all x ∈ H ,

y ∈ R
n.

the full extension of a ROG cone is simple
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Intertwinings of ROG cones

Lemma

Let F1, F2 be faces of the positive semi-definite matrix cone Sn
+ and L1, L2 their linear hulls. Let

L ⊂ Sn be a linear subspace such that L1 ∩ L2 ⊂ L = (L ∩ L1) + (L ∩ L2). Then the

spectrahedral cone K = L ∩ Sn
+

equals the sum of its faces K1 = L1 ∩K , K2 = L2 ∩K .

Moreover, K is a ROG cone if and only if K1,K2 are ROG cones.





X11 X12 0

XT
12 X22 0

0 0 0



 ∈ L1 ∩ L,





0 0 0

0 X22 X23

0 XT
23 X33



 ∈ L2 ∩ L,





X11 X12 0

XT
12 X22 X23

0 XT
23 X33



 ∈ L,





0 0 0

0 ∗ 0

0 0 0



 ∈ L.

we call K an intertwining of K1,K2

� an intertwining of K1,K2 is a projection of the direct sum K1 ⊕K2

� any two ROG cones can be intertwined along a 1-dimensional face

� example: the tridiagonal matrices are intertwinings of copies of S2
+
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Example: continuous family

for mutually distinct angles ϕ1, ϕ2, ϕ3, ϕ4 ∈ [0, π) define the cone Kϕ1,ϕ2,ϕ3,ϕ4
by





















































α1 α2 α3 cosϕ1 α4 cosϕ2 α5 cosϕ3 α6 cosϕ4

α2 α7 α3 sinϕ1 α4 sinϕ2 α5 sinϕ3 α6 sinϕ4

α3 cosϕ1 α3 sinϕ1 α8 0 0 0

α4 cosϕ2 α4 sinϕ2 0 α9 0 0

α5 cosϕ3 α5 sinϕ3 0 0 α10 0

α6 cosϕ4 α6 sinϕ4 0 0 0 α11


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

Lemma

The cone Kϕ1,ϕ2,ϕ3,ϕ4
is a ROG cone. Two cones Kϕ1,ϕ2,ϕ3,ϕ4

, Kϕ′

1
,ϕ′

2
,ϕ′

3
,ϕ′

4

are isomorphic if

and only if the corresponding quadruples of lines l(ϕ1), . . . , l(ϕ4) ⊂ R
2 and l(ϕ′

1), . . . , l(ϕ
′

4) ⊂ R
2

define projectively equivalent quadruples of points in RP 1.

Kϕ1,ϕ2,ϕ3,ϕ4
is the intertwining of 5 copies of S2

+
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Relation between dimension and degree

codimension 1:

Lemma (Dines’ theorem)

Let L ⊂ Sn be a linear subspace of codimension 1. Then the cone K = L ∩ Sn
+

is ROG.

codimension 2:

Theorem

Let K = {X ∈ Sn
+ | 〈X,Q1〉 = 〈X,Q2〉 = 0} be a ROG cone of degree n ≥ 3, where Q1, Q2 are

linearly independent quadratic forms. Then K is isomorphic to the direct sum S1
+
⊕ S2

+
if n = 3 and to a

full extension of this sum if n > 3.

low dimensions:

Theorem

Let K be a simple ROG cone of degree n. Then dimK ≥ 2n− 1.

examples:

� positive semi-definite Hankel matrices

� positive semi-definite tridiagonal matrices
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Isolated extreme rays

Theorem

Let K be a ROG cone of degree n. Then the number of its isolated extreme rays does not exceed n. Let

R1, . . . , Rk be the isolated extreme rays of K . Then K is isomorphic to a direct sum K ′ ⊕ R
k
+, where

K ′ is a ROG cone of degree n− k without isolated extreme rays, and the extreme rays R1, . . . , Rk

correspond to the extreme rays of the summand R
k
+

.

isolated extreme rays split off as direct summands

consequence: simple cones of degree degK ≥ 2 have no isolated extreme rays
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Classification of simple ROG cones for small degrees

degree 1:

� dim 1: S1
+

degree 2:

� dim 3: S2
+

degree 3:

� dim 5: Tri3+, Han3+

� dim 6: S3
+

degree 4:

� dim 7: Han4+, full extension of S1
+

⊕ S1
+
⊕ S1

+
, Tri4+, intertwining of Han3

+ and S2
+

� dim 8: full extension of S1
+ ⊕ S2

+

� dim 9: full extensions of S1
+ ⊕ S1

+ and Han3+; S2
+ ⊗ S2

+; {X � 0 | 〈X,Q〉 = 0} with Q of

signature (+ + +−)

� dim 10: S4
+
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Thank you!
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