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Regular convex cones

Definition
A regular convex cone K C R" is a closed convex cone having
nonempty interior and containing no lines.

let (-,-) be a scalar product on R"
K*={peRn|(X,p) >0 VxeK}

is called the dual cone
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Symmetric cones

Definition
A regular convex cone K C R" is called self-dual if there exists
a scalar product (-, -) on R" such that K = K*.

Definition

A regular convex cone K C R" is called homogeneous if the
automorphism group Aut(K) acts transitively on K°.

Definition

A self-dual, homogeneous regular convex cone is called
symmetric.
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Jordan algebras

an algebra A is a vector space V equipped with a bilinear
operatione :V xV — V

Definition

An algebra J is a Jordan algebra if

@ xey =yexforall x,y € J (commutativity)
o x2e(xey)=xe(x2ey)forallx,y € J (Jordan identity)

where x2 = X e X.

Definition

A Jordan algebra is formally real or Euclidean if > ; xk2 =0
implies xx = O for all k, m.
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Examples

let Q be a real symmetric matrix and e € R" such that
e’Qe=1

the quadratic factor J»(Q) is the space R" equipped with the
multiplication

XxXey=e"Qx-y+e'Qy -x—x'Qy-e
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Examples

let Q be a real symmetric matrix and e € R" such that
e’Qe=1

the quadratic factor J»(Q) is the space R" equipped with the
multiplication

XxXey=e"Qx-y+e'Qy -x—x'Qy-e

let H be an algebra of Hermitian matrices over a real
coordinate algebra (R, C, H, Q)

then the corresponding Hermitian Jordan algebra is the vector
space underlying H equipped with the multiplication

AB + BA

AeB —
¢ 2
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Classification of Euclidean Jordan algebras

Theorem (Jordan, von Neumann, Wigner 1934)

Every Euclidean Jordan algebra is a direct product of a finite
number of Jordan algebras of the following types:

quadratic factor with matrix Q of signature + — - - - —
real symmetric matrices

guaternionic Hermitian matrices

°
°
@ complex Hermitian matrices
°
°

octonionic Hermitian 3 x 3 matrices
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Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

The symmetric cones are exactly the cones of squares of
Euclidean Jordan algebras, K = {x?|x € J}.

Every symmetric cone can be hence represented as a direct
product of a finite number of the following irreducible symmetric
cones:

@ Lorentz (or second order) cone
Ly, = {(xo,...,xn_l)\xo > xl2 +---+x§_1}

@ matrix cones S, (n), H(n), Q4 (n) of real, complex, or
guaternionic hermitian positive semi-definite matrices

@ Albert cone O, (3) of octonionic hermitian positive
semi-definite 3 x 3 matrices
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Unital and simple Jordan algebras

Definition
A Jordan algebra is called unital if it possesses a unit element
e, satisfyinguee =u forallu € J.

Definition

A Jordan algebra is called simple if it is not nil and has no
non-trivial ideal.

Theorem (Jordan, von Neumann, Wigner 1934)

Euclidean Jordan algebras are unital and decompose in a
unique way into a direct product of simple Jordan algebras.
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Jordan algebras
9 Trace forms and determinant

Exponential map

define recursively u™?! =y e u™
with u® = e, define the exponential map

1k

u
exp(u) =) 17
? k!

k=

Theorem (Kocher)

Let J be a Euclidean Jordan algebra and K its cone of squares.
Then the exponential map is injective and its image is the
interior of K,

exp[J] = K°.
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Logarithm

let J be a Euclidean Jordan algebra with cone of squares K

then we can define the logarithm
log: K° —J

as the inverse of the exponential map
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Exponential and logarithm
Trace forms and determinant

Jordan algebras

Definition

Definition

Let J be a Jordan algebra. A symmetric bilinear form ~ on J is
called trace form if y(u,v ew) = y(u e v,w) for all u,v,w € J.
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Jordan algebras Trace forms and determinant

Generic minimum polynomial

for every u in a unital Jordan algebra there exists m such that
o u® ul ... ,u™1 are linearly independent
o UM =cgu™t — UM 4 — (=1)Mopu®

Pu(A) = A" — gAML 4o (—1)Mo, is the minimum
polynomial of u

Theorem (Jacobson, 1963)

There exists a unique minimal polynomial

P(A) = A" — o (U)A™ L 4. 4 (=1)Mop (u), the generic
minimum polynomial, such that py|p for all u. The coefficient
ok (u) is homogeneous of degree k in u. The coefficient

t(u) = o1(u) is called generic trace and the coefficient

n(u) = om(u) the generic norm.
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Exponential and logarithm

Jordan algebras Trace forms and determinant

Generic bilinear trace form

Theorem (Jacobson)
Let J be a unital Jordan algebra. The symmetric bilinear form

7(u,v) =t(uev)

is a trace form, called the generic bilinear trace form.

for Euclidean Jordan algebras with cone of squares K we have
logn(x) =t(logx) = 7(e,logx)

for all x € K°
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Jordan algebras Trace forms and determinant

Euclidean Jordan algebras

Theorem (Kocher)

Let J be a unital real Jordan algebra. Then the following
conditions are equivalent.

@ J is Euclidean
@ there exists a positive definite trace form v on J.

if J is a simple Euclidean Jordan algebra, then any
non-degenerate trace form v on J is proportional to the generic
bilinear trace form =

hence ~(e,logx) is proportional to log n(x)
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Notation for derivatives

let F : U — R be a smooth function on U C A", where A" is the
n-dimensional affine real space

OF __ 8%F
we note 5= = F o T2 xF

= F o3 etc.

note F-“? for the inverse of the Hessian

Roland Hildebrand A PDE characterizing determinants of symmetric cones



Hessian metrics
The PDE
The partial differential equation Connection with Jordan algebras

Hessian metrics

Definition

Let U C A" be a domain equipped with a pseudo-metric g.
Then g is called Hessian if there locally exists a smooth function
F such that g = F”. The function F is called Hessian potential.

the geodesics of a pseudo-metric obey the equation
X + Z re xPxv

with s, the Christoffel symbols

for a Hessian metric we have

)
ﬁ’Y 2 Z Fe F,,B'y&
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Parallelism condition

the third derivative F”” of the Hessian potential is parallel with
respect to the Hessian metric F” if

0
WF,aﬂw + Z (rgéF,ﬁw + rZaan + rzcsF,aﬁn) =0
n

in short notation DD3F — 0, with D the flat connection of A"
and D the Levi-Civita connection of the Hessian metric

oz/jw& Z F 7/)0 aﬂp Yoo + F,(prﬁ&r + F,a&pF,/jﬂ/a)

po
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Integrability condition

differentiating with respect to x” and substituting the fourth
order derivatives by the right-hand side, we get

Fagyon = % Z FPoRH (FﬁnvF,aWF,wa + FanuF p80F 60
PyO sV
+  FamwFapuF gse + FanuF o F gse + F g F youF ase
+  FamF psvF ase + FawF spuF ave + FonuF psuF ave
+ FﬁnvF,a/mF,ﬁw + F,anuFva,Bw + FﬁnvFﬁqu,aﬁa
+  FomuF povF as0)

anti-commuting 0, n gives the integrability condition

FP7EH(F snuF souF ono + FanuF povF pro + FymiF s F apo
—F 85vF mouF ave — FasuF oneF gre — FMMF,pnvF,aﬂa) =0.
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1 ,
letKg = -T% =—-3%; F9F 5.5, then K, =K%
contracting the integrability condition with F-"¢, we get
C KHKP ¢ KH C kMkrP
Z (KauKépKﬂw T KﬂuKéngw - KwKépKaﬁ
Hyp
_ BrCkr _kHKC _KEKSCKP ) =
KUKSKE, — KEKSKE, — KISKS,KE,) =0

Ny

this is satisfied if and only if

1 5\
> (KoguK(ﬁ)nguo‘uﬁqu — KK S, KL uuPurv ) =0

a,B3,7,0,14,p

for all tangent vectors u, v
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Jordan algebra defined by F

choose a point e € U and define a multiplication on TeU by
uev =K(u,v),

(Uev)® ZKﬁ ubv?

then TeU becomes a commutative algebra J

the integrability condition becomes
K(K(K(u,u),v),u) = K(K(u,v),K(u,u))

or

(U2ev)eu = (ueV)eu?

hence J is a Jordan algebra
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Trace form

the pseudo-metric g = F”(e) satisfies

guev,w)= > FsKjulvw?

B:7,6,p

_ 1 |:|:|:7055P’Y_1 F Sy Py Y
= 73 Z By dpo u"vrw —_52 SpyU VW

/87'7757970 ’Y,(S,p

1

= D Fpsu’F poFfviw?

57,77671)70-
= > Fapu’KIvPw? =g(u,vew).

By7,0,p

hence g is a trace form
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Algebra defined by F

Theorem (H., 2012)

Let F : U — R be a solution of the equation DD3F = 0. Let

e € U and let J be the algebra defined on T¢U by the structure
coefficients Kg, = —3 > "5 F*°F 5,5 at e.

Then J is a Jordan algebra, and the Hessian metric g = F"(e)
is a non-degenerate trace form on J.

@ if F is convex and log-homogeneous, then J is Euclidean

@ if in addition J is simple, then g is proportional to the
generic bilinear trace 7
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Logarithmically homogeneous functions

Definition

Let U C R" be an open conic set. A logarithmically
homogeneous function on U is a smooth function F : U — R
such that

F(ax) = —vloga + F(x)

foralla > 0,x € U.
The scalar v is called the homogeneity parameter.
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F defined by algebra

Theorem (H., 2012)

Let J be a Euclidean Jordan algebra and K its cone of squares.
Let v be a non-degenerate trace form on J.
Then F : K° — R defined by

F(x) = —v(e,logx)

is a solution of the equation DD3F = 0 such that F”(e) = ~
and, under identification of T¢K° and J, the multiplication in J is
given by Kg = —3 > sF°F g; ate.

-
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Main results

Theorem (H., 2012)

Let K =K; x --- x K, be a symmetric cone and Ky, ..., Ky its
irreducible factors.

Then for every set of non-zero reals «, . .., am, the function

F : K° — R given by

m
F(A1,..,Am) = = > axlogn(Ay)
k=1

is log-homogeneous and satisfies the equation DD3F = 0. The
function F is convex if and only if oc > O for all k.
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Theorem (H., 2012)

Let U C A" be a subset of affine space and let F : U — R be a
log-homogeneous convex solution of the equation DD3F = 0.
Then there exists a symmetric cone K = K; x --- x Ky, € A",
positive reals oy, ..., am, and a constant ¢ such that F can be
extended to a solution F : K° — R given by

m
F(AL...,Am) == axlogn(A) +c.
k=1
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when dropping convexity assumption, generalization beyond
Euclidean Jordan algebras possible:

Hildebrand R. Centro-affine hypersurface immersions with
parallel cubic form. arXiv preprint math.DG:1208.1155

Thank you
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