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Regular convex cones

Definition

A regular convex cone K ⊂ R
n is a closed convex cone having

nonempty interior and containing no lines.

The dual cone

K
∗ = {s ∈ Rn | 〈x , s〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.



Conic programs

Definition

A conic program over a regular convex cone K ⊂ R
n is an

optimization problem of the form

min
x∈K

〈c , x〉 : Ax = b.



Geometric interpretation

the feasible set is the
intersection of K with an
affine subspace

min
z
〈c ′, z〉 : A

′
z + b

′ ∈ K

explicit parametrization



Duality

primal program
min
x∈K

〈c , x〉 : Ax = b

dualizing constraint Ax = b gives

min
x∈K

max
z

(〈c , x〉 − 〈z ,Ax − b〉)
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Duality

primal program
min
x∈K

〈c , x〉 : Ax = b

dualizing constraint Ax = b gives

min
x∈K

max
z

(〈c , x〉 − 〈z ,Ax − b〉)

max
z

min
x∈K

(−〈AT
z − c , x〉+ 〈b, z〉)

minimizing over x gives the dual program

max
s=−(AT z−c)∈K∗

〈b, z〉



Assumptions

suppose the conic program satisfies:

I the cost function is not constant on the feasible set
(c 6∈ row(A))

I the feasible set is properly affine (b 6= 0)

these conditions transform into each other under duality



Affine spaces

primal affine space

PA = {x |Ax = b} ⊂ R
n

dim PA = k , n − k number of rows of A

dual affine space

DA = {s | ∃ z : s = −(AT
z − c)} ⊂ Rn

dim DA = n − k

dim PA + dim DA = n



Linear spaces

PA = {x |Ax = b}, DA = {s | ∃ z : s = −(AT z − c)}

primal displacements: P∆ = {δx |A δx = 0}
dual displacements: D∆ = {δs | ∃ z : δs = −AT δz}

〈δx , δs〉 = 0, P∆ = D⊥
∆



Linear spaces

PA = {x |Ax = b}, DA = {s | ∃ z : s = −(AT z − c)}

primal displacements: P∆ = {δx |A δx = 0}
dual displacements: D∆ = {δs | ∃ z : δs = −AT δz}

〈δx , δs〉 = 0, P∆ = D⊥
∆

let PL,DL be the linear hulls of PA,DA

P∆ ⊂ PL, D∆ ⊂ DL yields P⊥
L

⊂ D∆, D⊥
L

⊂ P∆

D
⊥
L ⊂ P∆ ⊂ PL, P

⊥
L ⊂ D∆ ⊂ DL

codimensions equal 1



Level sets

PL = {x | ∃ α : Ax = αb}, DL = {s | ∃ z , β : s = −(AT z − βc)}

for δs = −AT δz ∈ D∆ we have 〈δs, x〉 = −δzT Ax = −α δzT b

hence P⊥
L

= {−AT δz | bT δz = 0}

D⊥
L

= {δx |Aδx = 0, 〈c , x〉 = 0}

the orthogonal subspaces P⊥
L
,D⊥

L
define precisely those directions

in DA,PA where the dual and primal cost functions do not change

P⊥
L
,D⊥

L
define the displacements of the level sets



PA/D
⊥
L

is canonically isomorphic to the (affine) line of cost
function values



Primal and dual values

I primal and dual feasible values form intervals

I interiors of the intervals do not intersect

I there may or may not be a duality gap

I if the intervals intersect, the primal and dual feasible points
corresponding to the intersection are orthogonal and optimal



Radial transformations

the image of the feasible
set is not affinely
equivalent to the original

it is projectively equivalent

PL,DL are invariant, but
P∆,D∆ are not



Transformation of the cost function

the image of the cost function is in general not affine
it is linear-fractional
the ensemble of the level sets is preserved



Equivalent conic programs

linear-fractional functions can be made affine by a monotonic
transformation of the function value, a = m ◦ l

such transformations preserve the ensemble of level sets

the minimum is mapped to the minimum



Equivalent conic programs

linear-fractional functions can be made affine by a monotonic
transformation of the function value, a = m ◦ l

such transformations preserve the ensemble of level sets

the minimum is mapped to the minimum

we get another conic program whose minimum is a multiple of the
original one



neither the feasible set nor
the cost function are
affinely equivalent

but the solution of one
conic program can easily
be obtained from the
solution of the other



can we find a framework in which the two conic programs are the
same?

Is there a possibility to build a theory of
convex projective programming?

I have to optimize over subsets of projective space

I have to give up notion of the value of the cost function

I what remains are the level sets and their ordering



Cones in projective space

P
n−1 — projective space, set of 1-dimensional subspaces of Rn

Pn−1 — dual projective space, set of 1-dimensional subspaces of Rn

π : Rn \ {0} → P
n−1, π∗ : Rn \ {0} → Pn−1 — projections

K ⊂ R
n regular convex cone, C = π[K \ {0}] ⊂ P

n+1

K ∗ ⊂ R
n dual cone, C ∗ = π∗[K

∗ \ {0}] ⊂ Pn−1

C ,C ∗ compact convex sets containing no projective lines



Feasible sets in projective space

PA = {x |Ax = b}, DA = {s | ∃ z : s = −(AT z − c)}

PP = π[PA] = π[PL \ {0}], DP = π[DA] = π[DL \ {0}] are
projective subspaces of dimensions k , n − k

the primal and dual feasible sets project to C ∩ PP ⊂ P
n−1,

C ∗ ∩ DP ⊂ Pn−1



Orthogonal subspaces

affine subspaces A ⊂ R
n do not have an orthogonal affine space

A⊥ ⊂ Rn

but projective subspaces P ⊂ P
n−1 have an orthogonal projective

space P⊥ ⊂ Pn−1

let L = π−1[P ] ∪ {0} ⊂ R
n, and L⊥ ⊂ Rn its orthogonal subspace

define P⊥ = π∗[L⊥ \ {0}]

if dim P = k , then dim L = k + 1, dim L⊥ = n − k − 1,
dim P⊥ = n − k − 2, (P⊥)⊥ = P

dim P + dim P⊥ = n − 2

let P ⊂ P
n−1, D ⊂ Pn−1 be projective subspaces, then

P
⊥ ⊂ D ⇔ D

⊥ ⊂ P



Orthogonality and duality

we have D⊥
L

⊂ PL, P⊥
L

⊂ DL with codimension 2

apply projections π, π∗

we get D⊥
P

⊂ PP , P⊥
P

⊂ DP with codimension 2

Lemma Let P1,P2 ⊂ P
n−1 be projective subspaces of dimensions

k1, k2 such that P1 ⊂ P2 and k2 − k1 = 2. Then the set of
projective subspaces P of dimension k , k1 < k < k2, such that
P1 ⊂ P ⊂ P2, is isomorphic to the projective line P

1.

the affine line PA/D
⊥
L

of cost function values is replaced by the
projective line



Values of feasible points

C ⊂ P
n−1, C ∗ ⊂ Pn−1 — dual pair of closed convex sets containing

no lines

let x ∈ C ∩ PP be a primal feasible point

Lemma If x 6∈ D⊥
P

, then there exists a unique projective subspace
P of dimension k − 1 such that x ∈ P and D⊥

P
⊂ P ⊂ PP .

call this the value of the point x

the map ⊥ is an isomorphism between the projective line of primal
values and the set of subspaces D such that P⊥

P
⊂ D ⊂ DP , i.e.,

the projective line of dual values

we shall identify them in the sequel



Values and orthogonality

Lemma Let PP ⊂ P
n−1, DP ⊂ Pn−1 be projective subspaces of

dimension k , n − k such that D⊥
P

⊂ PP . Let P ,D be such that
D⊥

P
⊂ P ⊂ PP , P⊥

P
⊂ D ⊂ DP , each inclusion being proper. Let

x ∈ P \ D⊥
P

, s ∈ D \ P⊥
P

be points.
Then D = P⊥ if and only if x ⊥ s.

if D = P⊥, then x ∈ P yields s ∈ D = P⊥ ⊂ x⊥



Values and orthogonality

Lemma Let PP ⊂ P
n−1, DP ⊂ Pn−1 be projective subspaces of

dimension k , n − k such that D⊥
P

⊂ PP . Let P ,D be such that
D⊥

P
⊂ P ⊂ PP , P⊥

P
⊂ D ⊂ DP , each inclusion being proper. Let

x ∈ P \ D⊥
P

, s ∈ D \ P⊥
P

be points.
Then D = P⊥ if and only if x ⊥ s.

if D = P⊥, then x ∈ P yields s ∈ D = P⊥ ⊂ x⊥

I we have s ∈ DP and D⊥
P

⊂ s⊥

I let now x ⊥ s, then x ∪ D⊥
P

⊂ s⊥

I this gives P ⊂ s⊥, s ∈ P⊥ ∩ D, and D = P⊥



Primal and dual values

by convexity of C ,C ∗ the sets of primal feasible values and of dual
feasible values are intervals on P

1

let x ∈ C ∩ PP , s ∈ C ∗ ∩ DP be points in the interior of the
feasible sets, with values P ,D

they correspond to feasible points x̄ , s̄ in the interior of K ∩ PA,
K ∗ ∩ DA

but 〈x̄ , s̄〉 > 0, hence x 6⊥ s, and P⊥ 6= D

the interiors of the intervals of primal and dual feasible values do
not intersect



Infeasibility and feasibility

Theorem The following are equivalent (primal infeasibility):

I P⊥
P
∩ (C ∗)o 6= ∅

I all values are dual feasible

I PP ∩ C = ∅

Theorem The following are equivalent (primal strict feasibility):

I P⊥
P
∩ C ∗ = ∅

I the interval of primal feasible values is solid

I PP ∩ C o 6= ∅

depends on the relation between the singular set P⊥
P

and the dual
convex set C ∗



duality gaps can occur only if P⊥
P

touches C ∗ or D⊥
P

touches C



Regular case

let P⊥
P
∩ C ∗ = ∅, D⊥

P
∩ C = ∅, then

I both the primal and dual feasible values form a proper closed
interval

I the interior of one is the complement of the other (no duality
gap)



extremal values correspond to minimization and maximization of
the cost function



Corresponding conic program

I optimization over intersection of PA with K ∪ (−K )

I value ±∞ becomes an ordinary point



Other objects

distances:

I product Pn−1 × Pn−1 is a pseudo-Riemannian space

I distance between pairs (x , s) measured by the projective
cross-ratio

barriers:

I can be constructed from log-homogeneous barriers

I represented as Riemannian submanifolds M ⊂ P
n−1 × Pn−1

I self-concordance parameter ν and curvature γ related by
γ = ν−2√

ν−1

I links to affine differential geometry



Central path

I set of primal-dual feasible points (x , s) on the barrier:
(PP × DP) ∩ M

I identifies the interval of primal values with the interval of dual
values

I links the two extremal points

I distance on the central path bounds the progress of affine IPM
from below



Interior-point methods

let (x , s), (x ′, s ′) be two primal-dual feasible pairs

|I ′|/|I | ≤ (cosh d − sinh d)2, where d is the distance between (x , s)
and (x ′, s ′)



Conclusion

features of the projective theory

I set of objective values is compact

I primal and dual programs are always bounded

I duality gap and feasibility determined by position of singular
subspaces P⊥

P
,D⊥

P

I simple geometric interpretation of barriers and central paths

I fusion of primal and dual setup

I mathematical basis is affine differential geometry

outlook

I fully projective interior-point methods

I additional structure when cone is symmetric



Thank you


