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Outline

∙ cones of positive polynomials

∙ Newton polytopes

∙ SOS relaxations

∙ generalized copositive cones

∙ relaxations based on copositive cones
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Cones of positive polynomials

ℒA — linear space of polynomials

p(x1, . . . , xn) =
∑

�∈A

c�x
�

A ⊂ ℕ
n — set of multi-indices

dimℒA = #A

the polynomial is identified with the coefficient vector c�

PA cone of positive polynomials in coefficient space

Example: Motzkin polynomial

A = {(4, 2, 0), (2, 4, 0), (0, 0, 6), (2, 2, 2)},

pM (x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 ∼ (1, 1, 1,−3)T ∈ PA
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Newton polytope

for p ∈ ℒA

N(p) = conv{� ∣ c�(p) ∕= 0}

Newton polytope associated with p

NA = ∪p∈ℒA
N(p) = convA

Newton polytope associated with ℒA

Theorem Let p ∈ PA and let �∗ ∈ A be extremal in N(p). Then c�∗ > 0 and �∗

is even.

hence assume w.r.o.g. that the extremal points of A are even

otherwise PA contained in proper subspace of ℒA
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Sums of squares

ΣA =

{

p ∈ ℒA ∣ ∃ N, qk : p =
N
∑

k=1

q2k

}

Σℎ,A =

{

p ∈ ℒA ∣ ∃ N, qk : pℎ =
N
∑

k=1

q2k

}

ℎ nonzero positive polynomial

ΣA,Σℎ,A inner semidefinite relaxations of PA

in general ΣA ∕= PA, not even dim ΣA = dim PA, e.g. pM ∕∈ ΣA

Theorem Let p =
∑N

k=1 q
2
k. Then N(qk) ⊂ N(p)/2 ∀ k = 1, . . . , N .

⇒ if p =
∑N

k=1 q
2
k ∈ PA, then qk ∈ ℒNA/2∩ℕn
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Structure of ΣA

ℱ ⊂ ℕ
n, xℱ the vector of monomials {x�}�∈ℱ

Σℱ,A = {p ∈ ℒA ∣ ∃ N, qk ∈ ℒℱ : p(x) =

N
∑

k=1

q2k}

= {p ∈ ℒA ∣ ∃ C ર 0 : p(x) = xT
ℱCxℱ}

is an inner semidefinite relaxation for PA

w.r.o.g. ℱ ⊂ NA/2 ∩ ℕ
n

ℱ smaller ⇒ relaxation weaker

ΣA = ΣNA/2∩ℕn,A is the strongest of this type, taking ℱ ⊃ NA/2 ∩ ℕ
n yields the

same relaxation
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PA as generalized copositive cone

suppose ℱ + ℱ ⊃ A

Xℱ = {xℱ ∣x ∈ ℝ
n}, Cℱ = {C ∣XTCX ≥ 0 ∀ X ∈ Xℱ}

PA = {p ∈ ℒA ∣ ∃ C ∈ Cℱ : p(x) = xT
ℱCxℱ}

Definition [Luo,Sturm,Zhang 2003] Let X ⊂ ℝ
m. A quadratic form C is called

copositive w.r. to the domain X if xTCx ≥ 0 for all x ∈ X .

Cℱ cone of copositive forms w.r. to Xℱ

in general Cℱ contains a linear subspace, induced by linear dependencies between

the elements of XXT , X ∈ Xℱ

condition p ∈ ℒA translates into linear constraints on C

9



Structure of PA (cont.)

PA is a projection of a section of the copositive cone Cℱ

projection: along the linear subspace

section: sets coefficients with indices in (ℱ + ℱ) ∖ A to zero

Structure of relaxation Σℱ,A

relaxation Σℱ,A: copositive cone w.r. to Xℱ replaced by PSD cone (copositive

w.r. to the whole space ℝ
#ℱ )

larger domain ⇒ smaller copositive cone

Σℱ,A projection of a section of the PSD cone
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LMI representable copositive cones

examples of domains X with LMI representable copositive cone:

X = {x ∣B(x) ≥ 0}, X = {x ∣B(x) = 0}

B quadratic form (S-lemma)

X = ℝ
k
+, k = 1, . . . , 4

(classical copositive cones)

X = E ∩H

E ellipsoid, H affine half-space ([Sturm,Zhang 2001])

X set of rank 1 matrices of size 2× n (matrices PSD 2n× 2n block-Hankel)
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Xℱ for different ℱ

Theorem (Main observation) Let ℱ = {�1, . . . , �N} ⊂ ℤ
n,

ℱ ′ = {�′1, . . . , �′N} ⊂ ℤ
n s.t.

∙ �k ≡ �′kmod2 for all k = 1, . . . , N

∙ the images of the matrices (�1, . . . , �N )T and (�′1, . . . , �′N )T coincide

Then the closures of Xℱ and Xℱ ′ coincide.

⇔ ∃ invertible linear map ℋ : ℝn → ℝ
n s.t. ℱ ′ = ℋ[ℱ ] and parity is preserved

on ℱ

Consequence: Cℱ = Cℱ ′

A → A′ = ℋ[A] corresponds to a nonlinear change of variables x in ℝ
n

ℱ + ℱ ⊃ A ⇒ ℱ ′ + ℱ ′ ⊃ A′

PA = PA′ , Σℱ,A = Σℱ ′,A′
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Motzkin polynomial: ℱ = {(0, 0, 3), (1, 2, 0), (2, 1, 0), (1, 1, 1)}

⎛

⎜

⎜

⎝

−1 2 0

2 −1 0

0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

0 1 2 1

0 2 1 1

3 0 0 1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 3 0 1

0 0 3 1

3 0 0 1

⎞

⎟

⎟

⎠

ℱ ′ = {(0, 0, 3), (3, 0, 0), (0, 3, 0), (1, 1, 1)}
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Motzkin polynomial

p′M (x, y, z) = x6+y6+z6−3x2y2z2 = (x2+y2+z2)(x4+y4+z4−x2y2−y2z2−z2x2)

⎛

⎜

⎜

⎝

1 −1/2 −1/2

−1/2 1 −1/2

−1/2 −1/2 1

⎞

⎟

⎟

⎠

ર 0

p′M is SOS

moreover: PA = PA′ = ΣA′

p1(c) = c1x
4y2+c2x

2y4+c3z
6−c4x

2y2z2, p2(c) = c2x
6+c1y

6+c3z
6−c4x

2y2z2

p1(c) ≥ 0 ⇔ p2(c) ≥ 0 ⇔ p2(c) is SOS
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New family of relaxations

let again ℱ = NA/2 ∩ ℕ
n

Σℱ,A = Σℱ ′,A′ but we can have

ℱ ′′ ⊃ ℱ ′ strictly

s.t.

Nℱ ′′ = Nℱ ′ = NA′/2

relaxation ΣA′ = Σℱ ′′,A′ with ℱ ′′ = NA′/2 ∩ ℤ
n can be sharper than ΣA

we can have dim ΣA′ > dim ΣA

the relaxation can even be exact for some A′

ℋ isomorphism of ℤn (det ℋ = ±1), then ΣA = ΣA′

⇒ we can consider equivalence classes
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