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Affine connections

M — n-dimensional manifold, X, Y — vector fields on M
V x — operator of covariant differentiation along vector field X

i oy’ i \J
(VxY) = <axk + rjkw) Xk

Einstein summation convention: summation over repeating indices
I_J".k — Christoffel symbols of V
R(X,Y)=VxVy = VyVx — V[x,y] — curvature of V



Flat connections

Definition A connection V is called flat if its curvature is zero.

V flat < locally there exists a coordinate system s.t. FJ’:k =

Definition A connection V is called projectively flat if there exists
a flat connection V' such that the geodesics of V and V’ coincide
as sets.



Connections on hypersurfaces

M"=1 ¢ M" — hypersurface, D — affine connection on M"
How D can induce a connection V on M"~1?
& — transversal vector field

DxY =VxY +h(X,Y), X, YeTM!

» affine connection V: projection of D along &
» affine metric h: transversal component of D

» cubic form C = Vh — 3-tensor

K. Nomizu, T. Sasaki. Affine differential geometry: geometry of
affine immersions. Vol. 111 of Cambridge Tracts in Math.
Cambridge University Press, 1994.



Affine connection and affine metric




Centro-affine immersions

M C R" centro-affine hypersurface, D flat connection on R”
Ex)=—-x,xeM

= affine connection V projectively flat, cubic form C symmetric

V centro-affine connection, h centro-affine metric
invariance under homothety




(Pseudo)-Riemannian metrics

g: TxM x T,M — R (positive definite) nondegenerate quadratic
form o
g(X,Y)=giX'Y’

gives rise to Levi-Civita connection V

1 (0gj  Ogik 08k
2 \Oxk = Ox ox!

&il rJl'k =

metric parallel w.r. to its Levi-Civita connection
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Hessian and Codazzi structures

Definition Let V be an affine connection and g a pseudo-metric.
If Vg is totally symmetric, then (V, g) is called Codazzi structure.

(Vxe)Y,2) = (Vyg)(Z, X) = (Vzg)(X,Y)

= 2V — V — dual connection
(V, g) — dual Codazzi structure

Definition A Codazzi structure (V, g) with V flat is called Hessian
structure.

locally g = ", Vg = """ for some scalar function f : M — R

H. Shima. The geometry of Hessian structures. World Scientific,
2007.



Barriers on convex sets

C C R" closed convex set

barrier: F: C° — R smooth function

» F(x) = o0asx — 0C

» Hessian F” =0

» self-concordance: |F"(x)[h, h, h]| < 2(F"(x)[h, h])3/? for all
he T,.C°

> F"(x)[h, h] > v=Y(F'(x)[h])? for all h € T, C°

v — self-concordance parameter



Hessian structure

on C°
» D — flat affine connection from R"
» metric g = F”
» symmetric 3-tensor T = F"”’
» T =Dg

(D, g) Hessian structure



Dual barrier

R, = (R")* dual space
Legendre transform F* : R, — R, F*(p) = sup,cco(p, x) — F(x)

F* is a self-concordant barrier on its domain (C*)° with the same
self-concordance parameter as F

Let (D*, g*) be the Hessian structure induced by F* on (C*)°.



Primal-dual symmetry

x — F'(x) defines a bijection C° — (C*)°

Under this bijection the Hessian structures (D, g) and (D*, g*) are
dual to each other.



Barriers on convex cones

logarithmically homogeneous barrier
F(Ax) = —vlog A+ F(x) VxeK° A>0

v — parameter of logarithmic homogeneity = self-concordance
parameter

level surfaces are centro-affine and homothetic

a level surface determines F up to an additive constant if we take
the minimal v



Equivalence with centro-affine objects

by [Loftin, 2001]

> glm = —vh

» Ty =-vC
h — centro-affine metric, V — centro-affine connection,
C = Vh — cubic form

Corollary Under homothety, g|p and T are identical for
different level surfaces.

We obtain a natural projectively flat Codazzi structure (V, h)
on the level surfaces of F.



Self-concordance

Theorem [H., 2011] Let M C R” be a concave centro-affine
hypersurface which is asymptotic to a regular convex cone K C R".
Then M defines a logarithmically homogeneous self-concordant
barrier with parameter v if and only if |C(u, u, u)| < 27||u!|2/2 for
all u e TM, where v = v—2

v—1"

by [Pick,Berwald, 1923]
v=2&~v=0C=0&K=1L,

Corollary Let K C R", n > 2, be a regular convex cone. For every
self-concordant log-homogeneous barrier on K, v > 2.

The Lorentz cone with its barrier is the simplest cone.
interior-point algorithms should be able to solve CQP with a single
conic constraint in one step!



Duality

Legendre transform F — F* corresponds to

duality of centro-affine hypersurface immersions M — R” and
M — R,

defined by the conormal map.

In the absence of a volume form on R" the cornormal map is
defined up to homothety.



Primal and dual centro-affine immersion

Kt

_l:cm]orma]map

T[dTEp

M endowed with a dual pair of projectively flat Codazzi structures

consider M as submanifold in a product of projective spaces



Projective space

P"~1 — projective space, P,,_; — dual projective space
7 :R"\ {0} = P! 7, :R,\ {0} — P,_1 — projections

C = n[K]
C* = m[K*]

C c P11, C* C P,_1 compact convex sets containing no
projective lines



Barriers as submanifolds

Definition We call the 2(n — 1)-dimensional manifold
M ={(x,p)|x [ p} CP""1 x P, ; the Cross-ratio manifold.

with p = F/(x): M = {(n(x),m«(p)) | x € K°} C M s.t.
» dmM=n-1
» 7w : M — C° bijective

s © M — (C*)° bijective

» OM =A

A = {(r(x),m(p)) | x € OK\ {0}, p € OK*\ {0}, x L p} C
(P! x Pp_1) \ M = OM depends only on K

v

Which submanifolds M define self-concordant barriers?



Cross-ratio

X1, X2, X3, X4 points on the projective line

(1 — x3) (2 — xa)

X1, X2, X3, X4) =
( ) ’ ) (X2 — X3)(X]_ — X4)



Two-point function

[Ariyawansa,Davidon,McKennon '99]: instead of 4 collinear points
use 2 points and 2 dual points — quadra-bracket

Z= (Xv p)7zl = (lep/) eEMC Pn_l X Pn—l

(z;Z2)=(Z;2) = (u,x; U, x)



Cross-ratio manifold

for z~ 7
(z:2)=g(2 — 2,7 —2)+ O(||Z - 2[]®)
defines a pseudo-Riemannian metric of neutral signature on M

involution of tangent space J: TM — TM
Ju=(ux, up) = (ux, —up)

define w(X, Y) = g(JX, Y)

Theorem [H., 2011] w is a symplectic form (closed,
skew-symmetric, non-degenerated) which is compatible with g
(parallel with respect to the Levi-Civita connection D of g:
Dw = 0).

M becomes a homogeneous para-Kahler manifold



Lagrangian submanifolds

Definition A (n — 1)-dimensional submanifold M C M is called
Lagrangian if w|p = 0.

Theorem [H., 2011] Up to homothety, there is a 1-to-1
correspondence between the Lagrangian submanifolds of M and
the centro-affine immersions in R”.

Theorem [H., 2011] The projection of the Levi-Civita connection
D of g on a Lagrangian submanifold M C M along ker(dr) and
ker(dm,) defines two projectively flat affine connections V, V on
M. (V,g|m) and (V, g|um) are dual Codazzi structures. The cubic
form C = V(g|m) can be expressed by the second fundamental

form /I of M by

C(X,Y,Z) = —2w(ll(X,Y),2)



Two-dimensional case

K!




Geometric characterisation

a self-concordant barrier for K (and K*) is determined by a
submanifold M satisfying

» Lagrangian: w|y =0

» OM=A

» concavity: g|p <0

» self-concordance: C = Vg = —2wll uniformly bounded



Local approximation

The second fundamental form /I of a submanifold M of a
Riemannian manifold at a point X € M measures the deviation of
M from the tangent geodesic submanifold at M.

Theorem [H., 2011] Lagrangian geodesic submanifolds of M are
totally geodesic.

At a given point X € M the tangent totally geodesic submanifold
defines the barrier of an approximating Lorentz cone to K (and K*).

v—2

measures the
v—1

The projective self-concordance parameter v =

2nd order deviation of M from this barrier.



Dikin ellipsoids
pass to coordinate system where approximating Lorentz cone is

centered
inner and outer approximations of a cone K" are equal to the

approximating Lorentz cone scaled by /v — 1




Bounds on the barrier

on the section x = (1,%7)7

F(x) € [-(v = 1) log(vy — 1+ [[X]]) — log(1 F Vv — 1|X]])]

Bounds on the barrier function and approximating barrier for v = 3

Flx)+const




Distance function

Theorem [H., 2011] D(z,Z2') = \/—(z; Z’) real, symmetric,
nonnegative, compatible with —g|y, D(z,2') =0 & z = 2/,
Iimz/_@M D(Z,Z’) = +00.

can be used to

» measure the distance to the projective central path of a
primal-dual feasible pair

» measure the progress of one iteration from a primal-dual
feasible pair to the next one

not a real distance — violates triangle inequality

D(z1,22) > D(z1,20)\/1+ D?(2z2,20) + D(22,20)1/ 1 + D?(z1, 20)

for z1, zy, z» collinear in primal or dual projection



Universal barrier

[Nesterov and Nemirovski, 1994]

F(x) = const - Vol(K*(x))
K*(x) = {p € (R)* | {p,y —x) <1V y € K}
F(x) self-concordant with parameter v = O(n)

does not behave well with respect to product operator and duality



Affine spheres

Theorem [Calabi], [An-Li] ~ 1980 Let K C R” be a regular convex
cone. Then there exists, up to homothety, a unique concave
centro-affine hypersurface immersion which is asymptotic to K s.t.
Tk = g’J C/jk =0.

Affine hypersphere, can be computed by solving the
Monge-Ampére equation det u” = (—u)~("1) on a compact
section Q of K with boundary condition u|sq = 0.

corresponds to the minimal Lagrangian submanifold M c M with
oM = A



Affine sphere barrier

properties of the barrier function corresponding to the affine sphere

» self-concordant with v = O(n?) (conservative — from results
on PDEs)

» vlogdet F” = 2nF + const — characterizing equation

» dual barrier also affine sphere barrier

> Fienxiom = (£ Fn + 2 Fien ) - max {22, 4o

classical barriers for L,, R, S (n), Hy(n) are affine sphere barriers



Example: power cone

peEf2,), s +==1

1
q

T =

Po={(x,y,2)" | x"Pyt9 > |2} c R
self-dual convex cone

[Nesterov, 2006]

F(x,y,2z) = — |0g(x2/”y2/" — 22) —logx —logy
self-concordant with parameter v = 4

[Chares and Glineur, 2009]
2/p. 2/ 2 1 1
F(X,y7Z):—|Og(X py q_z)_EIOgX—EIOgy

self-concordant with parameter v = 3



Power cone cont'd

[Chares and Glineur, 2009]
— 2/p,2/q 2 2
F(x,y,z) = —log(x*/Py“/9 —z°) — [ 1 — — ) log x
p

conjectured to be self-concordant with parameter v =3 — %
Affine hypersphere

given by the orbit of the curve

{(x,y,2)T | px? — pTH =qy? — %1 = 22} under the action of the
group generated by the Lie algebra element

diag(2p +q,—p — 29,9 — p)

self-concordant with parameter v = %



Power cone cont'd

45
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Values of the self-concordance parameter

— — — Nesterov

— - — Chares
Chares conj
Affine sphere
lower bound




Outlook

What is done
» projective formulation of conic programming
» reduction to Lagrangian submanifolds of the cross-ratio
manifold
» bounds on the divergence of the Lagrangian submanifold from
totally geodesic approximation

What is to do
» fully projective interior-point methods

» additional structure when cone is symmetric

R. Hildebrand. Barriers on projective convex sets. To appear in
AIMS Proceedings, Sept. 2011.



