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Affine connections

M — n-dimensional manifold, X ,Y — vector fields on M

∇X — operator of covariant differentiation along vector field X

(∇XY )i =

(
∂Y i

∂xk + Γi
jkY j

)
X k

Einstein summation convention: summation over repeating indices

Γi
jk — Christoffel symbols of ∇

R(X ,Y ) = ∇X∇Y −∇Y∇X −∇[X ,Y ] — curvature of ∇



Flat connections

Definition A connection ∇ is called flat if its curvature is zero.

∇ flat ⇔ locally there exists a coordinate system s.t. Γi
jk = 0

Definition A connection ∇ is called projectively flat if there exists
a flat connection ∇′ such that the geodesics of ∇ and ∇′ coincide
as sets.



Connections on hypersurfaces

Mn−1 ⊂ Mn — hypersurface, D — affine connection on Mn

How D can induce a connection ∇ on Mn−1?

ξ — transversal vector field

DXY = ∇XY + h(X ,Y )ξ, X ,Y ∈ TMn−1

I affine connection ∇: projection of D along ξ

I affine metric h: transversal component of D
I cubic form C = ∇h — 3-tensor

K. Nomizu, T. Sasaki. Affine differential geometry: geometry of
affine immersions. Vol. 111 of Cambridge Tracts in Math.
Cambridge University Press, 1994.



Affine connection and affine metric



Centro-affine immersions
M ⊂ Rn centro-affine hypersurface, D flat connection on Rn

ξ(x) = −x , x ∈ M

⇒ affine connection ∇ projectively flat, cubic form C symmetric

∇ centro-affine connection, h centro-affine metric
invariance under homothety



(Pseudo)-Riemannian metrics

g : TxM × TxM → R (positive definite) nondegenerate quadratic
form

g(X ,Y ) = gijX iY j

gives rise to Levi-Civita connection ∇̂

gilΓ
l
jk =

1
2

(
∂gij

∂xk +
∂gik

∂x j −
∂gjk

∂x i

)

metric parallel w.r. to its Levi-Civita connection

∇̂g = 0



Hessian and Codazzi structures

Definition Let ∇ be an affine connection and g a pseudo-metric.
If ∇g is totally symmetric, then (∇, g) is called Codazzi structure.

(∇Xg)(Y ,Z ) = (∇Y g)(Z ,X ) = (∇Zg)(X ,Y )

∇̄ = 2∇̂ − ∇ — dual connection
(∇̄, g) — dual Codazzi structure

Definition A Codazzi structure (∇, g) with ∇ flat is called Hessian
structure.

locally g = f ′′, ∇g = f ′′′ for some scalar function f : M → R

H. Shima. The geometry of Hessian structures. World Scientific,
2007.



Barriers on convex sets

C ⊂ Rn closed convex set

barrier: F : C o → R smooth function

I F (x) → ∞ as x → ∂C
I Hessian F ′′ ≻ 0
I self-concordance: |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 for all

h ∈ TxC o

I F ′′(x)[h, h] ≥ ν−1(F ′(x)[h])2 for all h ∈ TxC o

ν — self-concordance parameter



Hessian structure

on C o

I D — flat affine connection from Rn

I metric g = F ′′

I symmetric 3-tensor T = F ′′′

I T = Dg
(D, g) Hessian structure



Dual barrier

Rn = (Rn)∗ dual space

Legendre transform F ∗ : Rn → R, F ∗(p) = supx∈Co ⟨p, x⟩ − F (x)

F ∗ is a self-concordant barrier on its domain (C ∗)o with the same
self-concordance parameter as F

Let (D∗, g∗) be the Hessian structure induced by F ∗ on (C ∗)o .



Primal-dual symmetry

x 7→ F ′(x) defines a bijection C o → (C ∗)o

Under this bijection the Hessian structures (D, g) and (D∗, g∗) are
dual to each other.



Barriers on convex cones

logarithmically homogeneous barrier

F (λx) = −ν log λ+ F (x) ∀ x ∈ K o , λ > 0

ν — parameter of logarithmic homogeneity = self-concordance
parameter

level surfaces are centro-affine and homothetic

a level surface determines F up to an additive constant if we take
the minimal ν



Equivalence with centro-affine objects

by [Loftin, 2001]
I g |M = −νh
I T |M = −νC

h — centro-affine metric, ∇ — centro-affine connection,
C = ∇h — cubic form

Corollary Under homothety, g |M and T |M are identical for
different level surfaces.

We obtain a natural projectively flat Codazzi structure (∇, h)
on the level surfaces of F .



Self-concordance

Theorem [H., 2011] Let M ⊂ Rn be a concave centro-affine
hypersurface which is asymptotic to a regular convex cone K ⊂ Rn.
Then M defines a logarithmically homogeneous self-concordant
barrier with parameter ν if and only if |C (u, u, u)| ≤ 2γ||u||3/2h for
all u ∈ TM, where γ = ν−2√

ν−1 .

by [Pick,Berwald, 1923]
ν = 2 ⇔ γ = 0 ⇔ C = 0 ⇔ K = Ln

Corollary Let K ⊂ Rn, n ≥ 2, be a regular convex cone. For every
self-concordant log-homogeneous barrier on K , ν ≥ 2.

The Lorentz cone with its barrier is the simplest cone.
interior-point algorithms should be able to solve CQP with a single
conic constraint in one step!



Duality

Legendre transform F 7→ F ∗ corresponds to

duality of centro-affine hypersurface immersions M → Rn and
M → Rn

defined by the conormal map.

In the absence of a volume form on Rn the cornormal map is
defined up to homothety.



Primal and dual centro-affine immersion

M endowed with a dual pair of projectively flat Codazzi structures

consider M as submanifold in a product of projective spaces



Projective space

Pn−1 — projective space, Pn−1 — dual projective space

π : Rn \ {0} → Pn−1, π∗ : Rn \ {0} → Pn−1 — projections

C = π[K ]
C ∗ = π∗[K ∗]

C ⊂ Pn−1,C ∗ ⊂ Pn−1 compact convex sets containing no
projective lines



Barriers as submanifolds

Definition We call the 2(n − 1)-dimensional manifold
M = {(x , p) | x ̸⊥ p} ⊂ Pn−1 × Pn−1 the Cross-ratio manifold.

with p = F ′(x): M = {(π(x), π∗(p)) | x ∈ K o} ⊂ M s.t.
I dim M = n − 1
I π : M → C o bijective
I π∗ : M → (C ∗)o bijective
I ∂M = ∆

∆ = {(π(x), π∗(p)) | x ∈ ∂K \ {0}, p ∈ ∂K ∗ \ {0}, x ⊥ p} ⊂
(Pn−1 × Pn−1) \M = ∂M depends only on K

Which submanifolds M define self-concordant barriers?



Cross-ratio

x1, x2, x3, x4 points on the projective line

(x1, x2; x3, x4) =
(x1 − x3)(x2 − x4)

(x2 − x3)(x1 − x4)



Two-point function

[Ariyawansa,Davidon,McKennon ’99]: instead of 4 collinear points
use 2 points and 2 dual points — quadra-bracket

z = (x , p), z ′ = (x ′, p′) ∈ M ⊂ Pn−1 × Pn−1

(z ; z ′) = (z ′; z) = (u, x ′; u′, x)



Cross-ratio manifold

for z ≈ z ′

(z ; z ′) = g(z ′ − z , z ′ − z) + O(||z ′ − z ||3)

defines a pseudo-Riemannian metric of neutral signature on M

involution of tangent space J : TM → TM
J : u = (ux , up) 7→ (ux ,−up)

define ω(X ,Y ) = g(JX ,Y )

Theorem [H., 2011] ω is a symplectic form (closed,
skew-symmetric, non-degenerated) which is compatible with g
(parallel with respect to the Levi-Civita connection D of g :
Dω = 0).

M becomes a homogeneous para-Kähler manifold



Lagrangian submanifolds

Definition A (n − 1)-dimensional submanifold M ⊂ M is called
Lagrangian if ω|M = 0.

Theorem [H., 2011] Up to homothety, there is a 1-to-1
correspondence between the Lagrangian submanifolds of M and
the centro-affine immersions in Rn.

Theorem [H., 2011] The projection of the Levi-Civita connection
D of g on a Lagrangian submanifold M ⊂ M along ker(dπ) and
ker(dπ∗) defines two projectively flat affine connections ∇, ∇̄ on
M. (∇, g |M) and (∇̄, g |M) are dual Codazzi structures. The cubic
form C = ∇(g |M) can be expressed by the second fundamental
form II of M by

C (X ,Y ,Z ) = −2ω(II (X ,Y ),Z )



Two-dimensional case



Geometric characterisation

a self-concordant barrier for K (and K ∗) is determined by a
submanifold M satisfying

I Lagrangian: ω|M = 0
I ∂M = ∆

I concavity: g |M ≺ 0
I self-concordance: C = ∇g = −2ωII uniformly bounded



Local approximation

The second fundamental form II of a submanifold M of a
Riemannian manifold at a point x̂ ∈ M measures the deviation of
M from the tangent geodesic submanifold at M.

Theorem [H., 2011] Lagrangian geodesic submanifolds of M are
totally geodesic.

At a given point x̂ ∈ M the tangent totally geodesic submanifold
defines the barrier of an approximating Lorentz cone to K (and K ∗).

The projective self-concordance parameter γ = ν−2√
ν−1 measures the

2nd order deviation of M from this barrier.



Dikin ellipsoids
pass to coordinate system where approximating Lorentz cone is
centered
inner and outer approximations of a cone K n are equal to the
approximating Lorentz cone scaled by

√
ν − 1



Bounds on the barrier

on the section x = (1, x̃T )T

F (x) ∈ [−(ν − 1) log(
√
ν − 1 ± ||x̃ ||)− log(1 ∓

√
ν − 1||x̃ ||)]



Distance function

Theorem [H., 2011] D(z , z ′) =
√

−(z ; z ′) real, symmetric,
nonnegative, compatible with −g |M , D(z , z ′) = 0 ⇔ z = z ′,
limz ′→∂M D(z , z ′) = +∞.

can be used to
I measure the distance to the projective central path of a

primal-dual feasible pair
I measure the progress of one iteration from a primal-dual

feasible pair to the next one

not a real distance — violates triangle inequality

D(z1, z2) ≥ D(z1, z0)
√

1 + D2(z2, z0) + D(z2, z0)
√

1 + D2(z1, z0)

for z1, z0, z2 collinear in primal or dual projection



Universal barrier

[Nesterov and Nemirovski, 1994]

F (x) = const · Vol(K ∗(x))

K ∗(x) = {p ∈ (Rn)∗ | ⟨p, y − x⟩ ≤ 1 ∀ y ∈ K}

F (x) self-concordant with parameter ν = O(n)

does not behave well with respect to product operator and duality



Affine spheres

Theorem [Calabi], [An-Li] ≈ 1980 Let K ⊂ Rn be a regular convex
cone. Then there exists, up to homothety, a unique concave
centro-affine hypersurface immersion which is asymptotic to K s.t.
Tk = g ijCijk = 0.

Affine hypersphere, can be computed by solving the
Monge-Ampère equation det u′′ = (−u)−(n+1) on a compact
section Ω of K with boundary condition u|∂Ω = 0.

corresponds to the minimal Lagrangian submanifold M ⊂ M with
∂M = ∆



Affine sphere barrier

properties of the barrier function corresponding to the affine sphere
I self-concordant with ν = O(n2) (conservative — from results

on PDEs)
I ν log detF ′′ = 2nF + const — characterizing equation
I dual barrier also affine sphere barrier

I FKn×Km =
(

n
νn

FKn + m
νm

FKm

)
· max

{
νn
n , νm

m

}
classical barriers for Ln,Rn

+, S+(n),H+(n) are affine sphere barriers



Example: power cone

p ∈ [2,∞), 1
p + 1

q = 1

Pp = {(x , y , z)T | x1/py1/q ≥ |z |} ⊂ R3

self-dual convex cone

[Nesterov, 2006]

F (x , y , z) = − log(x2/py2/q − z2)− log x − log y

self-concordant with parameter ν = 4

[Chares and Glineur, 2009]

F (x , y , z) = − log(x2/py2/q − z2)− 1
q

log x − 1
p

log y

self-concordant with parameter ν = 3



Power cone cont’d

[Chares and Glineur, 2009]

F (x , y , z) = − log(x2/py2/q − z2)−
(

1 − 2
p

)
log x

conjectured to be self-concordant with parameter ν = 3 − 2
p

Affine hypersphere
given by the orbit of the curve
{(x , y , z)T | px2 − p+1

3 = qy2 − q+1
3 = z2} under the action of the

group generated by the Lie algebra element
diag(2p + q,−p − 2q, q − p)

self-concordant with parameter ν = 3p
p+1



Power cone cont’d
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Outlook

What is done
I projective formulation of conic programming
I reduction to Lagrangian submanifolds of the cross-ratio

manifold
I bounds on the divergence of the Lagrangian submanifold from

totally geodesic approximation

What is to do
I fully projective interior-point methods
I additional structure when cone is symmetric

R. Hildebrand. Barriers on projective convex sets. To appear in
AIMS Proceedings, Sept. 2011.


