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Conic optimization
Convex programs

Conic programs

Optimization problems

minimize objective function with respect to constraints

Xm€|>r(1 f(x)

in convex optimization problems, f and X are assumed convex

X C R" is called the feasible set
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Conic optimization

Linear objective function

Convex programs
Conic programs

{ tx) | t=1fx)}

Roland Hildebrand

f(x) can be assumed
linear

otherwise minimize t
over the epigraph
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Conic optimization
Convex programs

Conic programs

Definition of barriers

Definition
Let X € R" be a regular convex set. A barrier for X is a smooth
function F : X° — R such that

@ F”(x) > 0 (convexity)

@ limy_ 9x F(X) = 400 (boundary behaviour)

F’ defines a Hessian metric on X°
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Conic optimization
Convex programs

Conic programs

Interior-point methods using barriers

min {c, X
xeX<’ >

constrained convex program
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Conic optimization
Convex programs

Conic programs

Interior-point methods using barriers

min {c, X
xeX<’ >

constrained convex program
let F(x) = +oo for all x ¢ X°

mxin 7(C,X) + F(x)

unconstrained program, 7 > 0 a parameter
by convexity and boundary behaviour of F this program is
convex

Roland Hildebrand Hessian potentials with parallel derivatives



Conic optimization
Convex programs

Conic programs

Interior-point methods using barriers

min {c, X
X6X<,>

constrained convex program
let F(x) = +oo for all x ¢ X°
mxin 7(C,X) + F(x)

unconstrained program, 7 > 0 a parameter
by convexity and boundary behaviour of F this program is
convex

the minimizer x* of the unconstrained program tends to the
minimizer x* of the constrained program as 7 — +o0
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Conic optimization

Convex programs
Conic programs

=110 =10

plots of 7(c,x) + F(x) for
X ={x e R*|[|x|If <1}, (c,x) =x1, F(x) = —log(1 — Ix][3)
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Convex programs

Conic programs
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Conic optimization o
Convex programs

Conic programs

Conic programs

Definition

A regular convex cone K C R" is a closed convex cone having
nonempty interior and containing no lines.

Definition

A conic program over a regular convex cone K C R" is an
optimization problem of the form

min(c,x): Ax =Dh.
xeK
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Conic optimization

Geometric interpretation

Convex programs
Conic programs

Roland Hildebrand

the feasible set is the
intersection of K with an
affine subspace
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Conic optimization o
Convex programs

Conic programs

Symmetric cones

example: conic programs over K = R

feasible set is a convex polyhedron — linear program (LP)
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Conic optimization R
Convex programs

Conic programs

Symmetric cones

example: conic programs over K = R
feasible set is a convex polyhedron — linear program (LP)

N is self-dual: (R} )* =R

and homogeneous: Aut(R'}) acts transitively on R} |

Definition

A self-dual, homogeneous convex cone is called symmetric.

theory of IP methods most advanced over symmetric cones
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Conic optimization o
Convex programs

Conic programs

Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product
of a finite number of the following irreducible symmetric cones:

@ Lorentz (or second order) cone
Ly, = {(xo,...,xn_l)\xo > xf +---+x§_1}

@ matrix cones S (n), H(n), Q(n) of real, complex, or
guaternionic hermitian positive semi-definite matrices

@ Albert cone O, (3) of octonionic hermitian positive
semi-definite 3 x 3 matrices
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Conic optimization o
Convex programs

Conic programs

Canonical barriers

barriers on irreducible symmetric cones

@ Lorentz cone Ly: F(x) = —log(xg —x2 — -+ —x2_,)
@ matrix cones: F(X) = —logdet X

barriers on reducible symmetric cones
weighted sums of the barriers on the irreducible components

example: K =R, F(x) = — > "¢_; log Xk
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Conic optimization o
Convex programs

Conic programs

Programs over symmetric cones

conic programs over symmetric cones are efficiently solvable
by interior-point methods [Nesterov, Nemirovski, 1994]

@ linear programs (LP) over R} ~ 10° variables
@ conic quadratic programs (CQP) over L, ~ 10* variables
@ semi-definite programs (SDP) over S (n) ~ 10? variables

structure can greatly increase tractable sizes

free (CLP, LIPS, SDPT3, SeDuM,i, ...) and commercial (CPLEX,
MOSEK, ...) solvers available

increasingly used in engineering sciences and industry
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Conic optimization

Convex programs
Conic programs

What is so special about symmetric cones?

How to characterize the canonical barriers
on symmetric cones?

Is there a local characterization of these
barriers?

Roland Hildebrand Hessian potentials with parallel derivatives



Jordan algebras

Jordan algebras and symmetric cones
Symmetric cones

Outline

e Jordan algebras and symmetric cones
@ Jordan algebras
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Jordan algebras
Symmetric cones

Jordan algebras and symmetric cones

Jordan algebras

an algebra A is a vector space V (dimV < oo) equipped with a
bilinear operatione : V xV — V

Definition

An algebra J is a Jordan algebra if

@ xey =yexforall x,y € J (commutativity)
o x2e(xey)=xe(x2ey)forallx,y € J (Jordan identity)
where x2 = x e X.

Definition

A Jordan algebra is formally real or Euclidean if > ; xk2 =0
implies xx = O for all k, m.
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Unital and simple Jordan algebras

Definition
A Jordan algebra is called unital if it possesses a unit element
e, satisfyinguee =u forallu € J.

Definition

A Jordan algebra is called simple if it is not nil and has no
non-trivial ideal.

Definition

A Jordan algebra is called semi-simple if it is a direct product of
simple Jordan algebras.
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Power associativity

let L, be the operator of multiplication with u

then the Jordan identity is equivalent to [Ly, L 2] =0

define u™?! = yeu™

Theorem (Jordan, von Neumann, Wigner 1934)

Let J be a Jordan algebra. Then foreveryu € J, u" eus = u"*s
forallr,s > 1.

the subspace spanned by the powers u,u?,... is an
associative subalgebra
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Examples of Jordan algebras

let Q be a real symmetric matrix and e € R" such that
eTQe=1

the quadratic factor J»(Q) is the space R" equipped with the
multiplication

Xey=e'Qx-y+e'Qy-x—x'Qy-e
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Examples of Jordan algebras

let Q be a real symmetric matrix and e € R" such that
eTQe=1

the quadratic factor J»(Q) is the space R" equipped with the
multiplication

Xey=e'Qx-y+e'Qy-x—x'Qy-e

let H be an algebra of Hermitian matrices over a real
coordinate algebra (R, C, H, O; for O of size < 3)

then the corresponding Hermitian Jordan algebra is the vector
space underlying H equipped with the multiplication

AB + BA

AeB —
* 2
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Euclidean Jordan algebras

Theorem (Jordan, von Neumann, Wigner 1934)

Every Euclidean Jordan algebra is a direct product of simple
Jordan algebras of the following types:

quadratic factor with matrix Q of signature + — - - - —
real symmetric matrices

complex Hermitian matrices

guaternionic Hermitian matrices

octonionic Hermitian 3 x 3 matrices
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Trace forms

Definition
Let J be a Jordan algebra. A symmetric bilinear form ~ on J is
called trace form if y(u,v ew) = y(u e v,w) for all u,v,w € J.
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Trace forms

Let J be a Jordan algebra. A symmetric bilinear form ~ on J is
called trace form if v(u,v ew) = y(uev,w) for all u,v,w € J.

Theorem (Kocher)

Let J be a unital Jordan algebra. The symmetric bilinear form

T(U,V) = tr Lu.v

is a trace form, called the generic bilinear trace form.

Theorem (Kocher)

A Jordan algebra J is semi-simple if and only if its generic
b|||near trace form is non-degenerate.
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Jordan algebras

Jordan algebras and symmetric cones ;
Symmetric cones

Generic minimum polynomial

for every u in a unital Jordan algebra there exists m such that
o u% ul ... ,u™1 arelinearly independent (u° := e)
o UM =cgu™t — UM 4 — (=1)Mopu®

Pu(A) = A" — gAML 4o (—1)Mo, is the minimum
polynomial of u

Theorem (Jacobson, 1963)

There exists a unique minimal polynomial

P(A) = A" — o (U)A™ L 4. 4 (=1)Mop (u), the generic
minimum polynomial, such that py|p for all u. The coefficient
ok (u) is homogeneous of degree k in u. The coefficient

t(u) = o1(u) is called generic trace and the coefficient

n(u) = om(u) the generic norm.
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Outline

e Jordan algebras and symmetric cones

@ Symmetric cones
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Symmetric cones and Euclidean Jordan algebras

Theorem (Vinberg, 1960; Koecher, 1962)

The symmetric cones are exactly the cones of squares of
Euclidean Jordan algebras, K = {x?|x € J}.

by %LXZ = 2L4 the boundary of K is composed of elements
satisfying detLy =0
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Barriers on symmetric cones

on irreducible symmetric cones the canonical barrier is
proportional to
F(x) = —logn(x)

on reducible symmetric cones K = K; x --- x K; the canonical
barriers are given by

F(x) == axlogng(x)
k=1

with x, the components of x and ng the generic norm of the
algebra corresponding to Ky
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Jordan algebras
Symmetric cones

Jordan algebras and symmetric cones

Exponential map

define the exponential map

Theorem (Kocher)

Let J be a Euclidean Jordan algebra and K its cone of squares.
Then the exponential map is injective and its image is the
interior of K,

exp[J] = K°.
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Logarithm

let J be a Euclidean Jordan algebra with cone of squares K

then we can define the logarithm
log : K° —J

as the inverse of the exponential map
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Logarithm

let J be a Euclidean Jordan algebra with cone of squares K

then we can define the logarithm
log : K° —J
as the inverse of the exponential map
for Euclidean Jordan algebras with cone of squares K we have
logn(x) =t(logx) = 7(e,logx)

for all x € K°
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Barriers on reducible cones

let K = K; x --- x K; be a symmetric cone corresponding to an
algebra J

the canonical barriers on K have the form

F(x) = =) axlogn(x)
k=1

r
= =) oxni(ex. log xy)
k=1
= 7(z,logx)

with z = — >} _; axex a central element of J
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Jordan algebras
Symmetric cones

Central elements and trace forms

Theorem (Kocher)

Let J be a semi-simple Euclidean Jordan algebra. Then every
trace form ~ on J has the form

Jordan algebras and symmetric cones

y(u,v) =7(z eu,v)

with z some central element of J.
The trace form ~ is non-degenerate if and only if z is invertible.

-

for a Euclidean Jordan algebra J every central element is of the
formz =371 _; ckex

@ z invertible if and only if all oyc # 0
@ ~ positive definite if and only if all o < O
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Jordan algebras

Jordan algebras and symmetric cones :
Symmetric cones

Barriers and trace forms

Corollary

Let K be a symmetric cone and J the corresponding Euclidean
Jordan algebra. Then every canonical barrier on K can be
expressed as

F(x) = ~(e,logx)

with ~ a positive definite trace form.
On the other hand, for every positive definite trace form ~ the
function F (x) is a canonical barrier on K.
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Notation for derivatives

let F : U — R be a smooth function on U C A", where A" is the
n-dimensional affine real space

2
we note 5 = F o, 5255 = F o €tc.

note F-*? for the inverse of the Hessian

we adopt the Einstein summation convention over repeating
indices, e.g.,

n
F%F g, = Z F%F g, = 05
B=1
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Hessian metrics

Definition

Let U C A" be a domain equipped with a pseudo-metric h.
Then h is called Hessian if there locally exists a smooth function
F such that h = F”. The function F is called Hessian potential.

for every x € U, h defines a symmetric bilinear form

hy : TxUxTxU — R, hy : (U,V) = he(u,v) = 9,6 F = F ,5uv?
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Geodesics

for every curve o : [0, T] — U, the length is given by

)—/ Vo0, 5(0) o

Definition

A stationary point of the length functional £ with respect to
variations vanishing at the endpoints is called geodesic.
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Parallel transport
Parallel first derivative

Hessian metrics Parallel third derivative

G
"
G +ev
stationary point means
dLe() +=v()|  _,
de e=0

for all vector fields v(t) along the curve ¢ satisfying
v(0)=v(T)=0
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Christoffel symbols

the Euler-Lagrange equation for the length functional is

d?0c 1 b dof do?

az T2 BTG dt
the coefficients at the first derivatives ¢ are the Christoffel
symbols

1
By =5F" °F 525
the geodesic equation becomes

d?20* _, dofdo?

a2 AT
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Parallel vector transport

leto: [0,T] be acurve andv € T, U a tangent vector at the
starting point

the parallel transport of the vector v along the curve o is
defined by the ODE
dv® pda?

b !
a AV g

=0
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Parallel vector transport

leto: [0,T] be acurve andv € T, U a tangent vector at the
starting point

the parallel transport of the vector v along the curve o is
defined by the ODE

dve _, zdo?

dt =0

with w® = daLta the geodesic equation becomes

dw¢ do?
re wh—
a Y g
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Parallel transport of forms

let Ci : To)U x - x TyhU — R be a multilinear form along a
curve o

the form C is parallel along o if for all parallel vector fields
Ut,...,V; along o the value Ci(ut, ..., V) is constant

this leads to the ODE

. do?
al = Zraw ar.Bear g = 0

where (5 takes the place of the index ay
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Parallel vector fields and forms

a vector field u® is parallel if it is parallel along every curve

this is equivalent to the PDE

v +Tg v’ =0
aform C,,. ., is parallel if it is parallel along every curve

r
Cal...ar,ﬂ - Z rlkﬁcal...’y...ar =0
k=1

parallel vector fields may not exist on a given Riemannian
manifold
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Metric tensor

the metric of a pseudo-Riemannian manifold is always parallel

hence the second derivative F” of a Hessian potential is always
parallel

What does parallelism of other derivatives imply?
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

the first derivative of a Hessian potential is parallel if
F rN.F.,=F L aoE sF, =0
7O‘ﬁ - Ozﬁ Y T 7015 - E 70156 Y T

equivalently
ZF”(-, ) — F”/(-, . (F//)—lF/)
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Solution

with 7 = —F ;F 79 the equation becomes
2F o5 = —F o55€°
then
el, = —F osF 7" — FF ;067 = —6) + 2F°F ,, = 81
this integrates to e = x + const with x the position vector field
shift the coordinate system in A" such thatx = e
Fs+F X7 =(F,x")s=0
= F,x7 =const =v
= F(ax)=vloga+F(x), a>0

F is logarithmically homogeneous

reverse implication holds too if detF” # 0
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Parallel transport
Parallel first derivative

Hessian metrics Parallel third derivative

Theorem (H., 2012)

Let F : U — R be a C2 function defined on some domain
U c A". Suppose that F has a non-degenerate Hessian.
Then the first derivative F’ is parallel with respect to the
Hessian metric F” if and only if F is logarithmically
homogeneous with respect to some central point.
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

the third derivative of a Hessian potential is parallel if
F.agys — FZJF,pB“f - rgaF,am - r«pﬂsF,aﬁp =0

equivalently we obtain the 4-th order quasi-linear PDE

1
F@/D’W - EF’W (F705PF7’Y5U + FLavpF 860 + F,aépF,Bw)
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Integrability condition

differentiating with respect to x” and substituting the fourth
order derivatives by the right-hand side, we get

1
FLapyon = ZFMFMV (F mF apuF o0 + FanuF o5 F 560

+ FonFapuF sso + FanuF pF gse + F7/377VF7"/PHF70¢50
+  FomuF p8uF aso + F g F spuF ave + FonuF psuF aye
+  FomFapuF gro +FanuF povF gyo + FonF youF ase
+  FoanuF 00 F ago)

anti-commuting 4, n gives the integrability condition

FP7E M (F s F souF one + FanuF povF pro + F anuF psvF apo
—F ssvF npuF ave — F,aéuF,pnvF,ﬁw - F,véuF,pnvF,ab’a) =0.
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Parallel transport
Parallel first derivative
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Simplification with Christoffel symbols

multiplying the integrability condition with (F”)~* we get

B P n B[P
rguréprm + F/BMF&pFQ7 + FZ“F(SPFOZﬁ
— TasToul 5y = TasTpulay — MaTpulos =0

this is satisfied if and only if

N e P 198170 — T P 1By 0
Foul sl g, utuiuIve =T 0 g utuulv

for all tangent vectors u, v
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Algebra defined by F

define a multiplication on the tangent space by uev = '(u,v),
(Uev)® =5 uv?

this defines a commutative algebra J

the integrability condition becomes
F(r(r(u,u),v),u) =T(r(u,v),(u,u))

or

(U2ev)eu=(uev)eu?

it is equivalent to the Jordan identity
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Parallel first derivative
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Hessian metric as trace form

the Hessian metric F” satisfies
1
F/(uev,w) =F 4 uvPw? = EF,57F75PUF’06U6VPW7

1 1
- EF,(;mu‘sva7 = EF,ﬁgu‘;FmaF"’ﬁva“f

= Foau’lo vPw? = F"(u,v e w).

hence F” is a trace form
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Parallel transport

Parallel first derivative
Hessian metrics Parallel third derivative

Theorem (H., 2012)

Let F : U — R be a C® function defined on some domain

U c A", Suppose that F has a non-degenerate Hessian.

If the third derivative of F is parallel with respect to the Hessian
metric, then the Christoffel symbols s, of the Hessian metric
define the structure tensor of a Jordan algebra, and the metric
F” is a trace form of this algebra.
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Characterization of solutions

every pair (J,) of a Jordan algebra J and a non-degenerate
trace form ~ on J define

@ a domain (of quasi-invertibility) U C J

@ aclosed 1-form ¢ on U x R up to a constant additive term

@ the local potentials ¢ of ¢ are graphs of Hessian potentials
F with parallel 3rd derivative

@ every such potential F can be obtained in this way
@ the transformation F <> (J,~) is invertible
@ the Hessian metric F” turns U into a symmetric space
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Parallel first derivative
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Parallel first and third derivative

Theorem (H., 2012)

Let F : U — R be a Hessian potential with parallel 3rd
derivative.

Then the Jordan algebra J is unital if and only if F is
log-homogeneous, i.e., if the first derivative of F is parallel.

in this case

@ U is a domain of invertibility

@ the value of v = F” on the unit element e is the
log-homogeneity parameter

@ F is locally a potential of the closed 1-form & () = v(-,x 1)
@ near e we have F(x) = ~y(e,logx) + const
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Parallel transport
Parallel first derivative
Hessian metrics Parallel third derivative

Convexity

if in addition F” = 0 then

@ Jis a Euclidean Jordan algebra
@ U is a symmetric cone
@ F = y(e,logx) + const is globally defined on U
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Parallel transport
Parallel first derivative
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Characterization of barriers

Theorem (H., 2012)

Let U C A" be adomainand F : U — R" a C® function.
Then U is a symmetric cone and F a canonical barrier on it if
and only if the following conditions hold simultaneously:

@ F” is a positive-definite Hessian metric on U

@ the corresponding Riemannian space is complete

@ the 1st derivative F’ is parallel with respect to the metric
@ the 3rd derivative F”” is parallel with respect to the metric

-

self-concordance is a trivial consequence of these conditions
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Thank you
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