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Conic programs

Definition

A regular convex cone K C R™ is a closed convex cone having nonempty interior and containing no lines.

The dual cone
K*={y€eRp|(z,y) >0 Vz €K}

of a regular convex cone K is also regular.

Definition

A conic program over a regular convex cone K C R™ is an optimization problem of the form

min {(c,z) : Az =b.
Te K

every convex optimization problem can be written as a conic program
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Geometric interpretation

the feasible set is the intersection of K
with an affine subspace

min(c’,z): Az +b € K
x

explicit parametrization
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Logarithmically homogeneous barriers . "Cff’g

Definition (Nesterov, Nemirovski 1994)

Let K C R™ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is
a smooth function F' : K° — R on the interior of K such that

B F(az) = —vloga + F(z) (logarithmic homogeneity)

B F'(x) = 0 (convexity)

B lim, ,9x F(x) = +oo (boundary behaviour)

u |F'"(z)[h, h, h]| < 2(F" (x)[h, h])3/? (self-concordance)

for all tangent vectors h at x.
The homogeneity parameter v is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)

Let K C R™ be a regular convex cone and F' : K° — R a barrier on K with parameter v. Then the
Legendre transform F™* is a barrier on — K™ with parameter v

B the map xz — F”(x) takes the level surfaces of F' to the level surfaces of F'™*

B the map z — —F’/(x) is an isometry between K © and (K *)© with respect to the Hessian metrics
defined by F"’, (F*)"
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Interior-point methods

let K C R™ be a regular convex cone
let F' : K° — R be abarrier on K

consider the conic program

min {c,z) : Az =0b
e K

for 7 > 0, solve instead the unconstrained problem

min 7(c,z) + F(z): Az =10

zER™

B unique minimizer z*(7) € K° forevery T > 0
W solution depends continuously on 7 (central path)

B z*(T) > z*asT — o0

path-following methods:
alternate Newton steps and increments of 7
the smaller the barrier parameter v, the faster we can increase T safely
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Second fundamental form

let M C M be a submanifold of a (pseudo-)Riemannian space

choose a point x € M and a tangent vector h € T M

consider the geodesics Yas, YA¢ in M and in M through x with velocity h
there is a second-order deviation
d2

i (®) =0 = ( 3

t2
- Liow
Y (vm 'YM)) 5+ (t*)

whose main term depends quadratically on h

the acceleration is called the second fundamental form I of M

Il : ToM x TuM — (Tu M)+
T M tangent subspace, (T3 M )~ normal subspace
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the second fundamental form measures the deviation of M from a geodesic submanifold

it is also called the exirinsic curvature
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Para-Kéhler space

consider the product E2, = R™ X Ry, = {u = (z,p) |z € R™, p € Ry}
for a vector space, we may identify the space with the tangent spaces at its points
FEs,, carries natural structures:

B ||u||? = (z,p) is a flat pseudo-Riemannian metric G with neutral signature

B dz A dpis a symplectic form w, w(u1,u2) = %((wl,p2> — (z2,p1))

| (w, p) — (z, —p) is an involution J whose eigenspaces define completely integrable distributions

these structures are compatible:
B Vw=0 (@ is the parallel transport of 3)
B Jg=w

FEo,, is a (the) flat para-Kahler space form
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Barriers as Lagrangian submanifolds xﬁ’g

duality K CR"™ +» K* CRy,z +» p=—F'(x)

to a barrier F' on a cone K associate the submanifold

M = {(z,p) € Ean |z € K° p=—F'(z)}

the structures defined by F' on K © have a natural explanation in terms of the structures defined by E2,,
on its submanifold M

B the metric g = F’/ on K° is v times the submanifold metricon M, g = v - G|
B M is a non-degenerate definite Lagrangian submanifold, w|ys = 0

W J is a bijection between the tangent and the normal subspaces to M

mF =w-II=Jg-II

The self-concordance condition on F’ is equivalent to the boundedness of the extrinsic curvature of M .
The barrier parameter v measures the supremum of the norm of the extrinsic curvature.

the barrier parameter determines how close M is to a totally geodesic submanifold of E2,,
the latter correspond to the usual hyperbolic barriers on Lorentz cones
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Symmetric cones %
A self-dual, homogeneous convex cone is called symmetric.

B self-dual: K = K*

B homogeneous: Aut K acts transitively on K°

conic programs over symmetric cones are efficiently solvable by interior-point methods due to the existence
of self-scaled barriers [Nesterov, Nemirovski, 1994]

B linear programs (LP) over R} ~ 109 variables
B conic quadratic programs (CQP) over Ly, ~ 10* variables

B semi-definite programs (SDP) over S (n) ~ 102 variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuM,, ...) and commercial (CPLEX, MOSEK,; ...) solvers available
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Self-scaled barriers on symmetric cones . %

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product of a finite number of the following irreducible
symmetric cones:

B Lorentz (or second order) cone Ly, = {(zo, sy Tn—1) |@o >y JTE A+ + m%il}

B matrix cones S+ (n), Hy (n), Q+(n) of real, complex, or quaternionic hermitian positive
semi-definite matrices

B Albert cone O (3) of octonionic hermitian positive semi-definite 3 X 3 matrices

barriers on irreducible symmetric cones

W Lorentz cone Ly: F(z) = —log(zd — 22 —--- —22_))

B matrix cones: F'(X) = — logdet X

barriers on reducible symmetric cones
weighted sums of the barriers on the irreducible components

example: K = R}, F(z) = — > b1 arlogzy, ap > 1

Barriers on Symmetric Cones - CORE@50 Bridging Gaps, Louvain-la-Neuve, May 23rd, 2016 - Page I\
12 (16) AS



Main result : mé

Let K C R™ be a regular convex cone, and let F' : K° — R™ be a convex, logarithmically
homogeneous function such that lim,,_, 5 F(x) = +-00. Then the following are equivalent:

B K is a symmetric cone and F’ a self-scaled barrier,
B the extrinsic curvature of the submanifold M C Es,, is parallel with respectto g = F"/,

B the derivative F""" is parallel with respect to the geodesic flow on K°, V""" = 0.

a barrier is self-scaled if and only if the acceleration of the geodesics on M is invariant with respect to the
geodesic flow on M

the barrier F' behaves in some sense as a 3rd order polynomial

the condition is a local one
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Explicit equation

we note 5= _Fa, agcaawﬁ = F ,p etc.
note F»*P for the inverse of the Hessian
we adopt the Einstein summation convention over repeating indices, e.g.,
n
af — a3 — 5o
F F,Bw-*ZF F,vi‘sv

B=1

then VF'" = 0 is equivalent to the 4-th order quasi-linear PDE
1o
Fagys = 5F77 (FappFrso + FaveF pso + FaspF o)

F is self-scaled if and only if it is a solution to this PDE

a solution can be recovered from the values of F, F/, F'/| F'"" at a single point
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Idea of proof

differentiating with respect to =" and substituting the fourth order derivatives by the right-hand side, we get

F,aBWW = iF,pch,;w (FyﬁnVF,aquywa + EaWF.pBVFm?G
+ F,WVFAPMF,MU + FanuF oy Fgso + F»anFﬁqu,aéa
+ FwnuF,pﬂVF,aéa + F,anF,équwaW + F»MMF,PBVF»CWU
+ F,énVF,aquﬁ'w + FyomuF,péuF,B'w + F,MUEWPMF,&BU
+ FonuFpsuFapo)
anti-commuting d, 1) gives the integrability condition
FPT R A(F 0y F s ppFrane + FanuF psu F gye + FomuF psu Flape
—FgsvEnpuF.ave = FasuF onFpye — F“/MprnVF,aBG) =0.

define a multiplication on the tangent space by
(ueov)® = %F’O“sF,wwuﬂv'y
this defines a commutative algebra satisfying the Jordan identity
(u? o v) e u = (uewv)eu?

connection between Jordan algebras and symmetric cones is long known
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Thank you
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