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Conic programs

Definition

A regular convex coneK ⊂ Rn is a closed convex cone having nonempty interior and containing no lines.

The dual cone
K∗ = {y ∈ Rn | 〈x, y〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.

Definition

A conic program over a regular convex cone K ⊂ Rn is an optimization problem of the form

min
x∈K

〈c, x〉 : Ax = b.

every convex optimization problem can be written as a conic program
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Geometric interpretation

the feasible set is the intersection of K
with an affine subspace

min
x
〈c′, x〉 : A′x+ b′ ∈ K

explicit parametrization
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Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is
a smooth function F : Ko → R on the interior of K such that

� F (αx) = −ν logα+ F (x) (logarithmic homogeneity)

� F ′′(x) � 0 (convexity)

� limx→∂K F (x) = +∞ (boundary behaviour)

� |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)

for all tangent vectors h at x.
The homogeneity parameter ν is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone and F : Ko → R a barrier on K with parameter ν. Then the
Legendre transform F ∗ is a barrier on−K∗ with parameter ν.

� the map x 7→ F ′(x) takes the level surfaces of F to the level surfaces of F ∗

� the map x 7→ −F ′(x) is an isometry between Ko and (K∗)o with respect to the Hessian metrics
defined by F ′′, (F ∗)′′
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Interior-point methods

let K ⊂ Rn be a regular convex cone
let F : Ko → R be a barrier on K
consider the conic program

min
x∈K

〈c, x〉 : Ax = b

for τ > 0, solve instead the unconstrained problem

min
x∈Rn

τ〈c, x〉+ F (x) : Ax = b

� unique minimizer x∗(τ) ∈ Ko for every τ > 0

� solution depends continuously on τ (central path)

� x∗(τ)→ x∗ as τ →∞

path-following methods:
alternate Newton steps and increments of τ
the smaller the barrier parameter ν, the faster we can increase τ safely
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Second fundamental form

let M ⊂M be a submanifold of a (pseudo-)Riemannian space

choose a point x ∈M and a tangent vector h ∈ TxM

consider the geodesics γM , γM in M and inM through x with velocity h

there is a second-order deviation

γM (t)− γM(t) =

(
d2

dt2

∣∣∣∣
t=0

(γM − γM)

)
·
t2

2
+O(t3)

whose main term depends quadratically on h

the acceleration is called the second fundamental form II of M

IIx : TxM × TxM → (TxM)⊥

TxM tangent subspace, (TxM)⊥ normal subspace
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the second fundamental form measures the deviation of M from a geodesic submanifold

it is also called the extrinsic curvature
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Para-Kähler space

consider the product E2n = Rn × Rn = {u = (x, p) |x ∈ Rn, p ∈ Rn}

for a vector space, we may identify the space with the tangent spaces at its points

E2n carries natural structures:

� ||u||2 = 〈x, p〉 is a flat pseudo-Riemannian metric G with neutral signature

� dx ∧ dp is a symplectic form ω, ω(u1, u2) =
1
2
(〈x1, p2〉 − 〈x2, p1〉)

� (x, p) 7→ (x,−p) is an involution J whose eigenspaces define completely integrable distributions

these structures are compatible:

� ∇̂ω = 0 (∇̂ is the parallel transport of G)

� Jg = ω

E2n is a (the) flat para-Kähler space form
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Barriers as Lagrangian submanifolds

duality K ⊂ Rn ↔ K∗ ⊂ Rn, x ↔ p = −F ′(x)

to a barrier F on a cone K associate the submanifold

M = {(x, p) ∈ E2n |x ∈ Ko, p = −F ′(x)}

the structures defined by F on Ko have a natural explanation in terms of the structures defined by E2n

on its submanifold M

� the metric g = F ′′ on Ko is ν times the submanifold metric on M , g = ν ·G|M
� M is a non-degenerate definite Lagrangian submanifold, ω|M = 0

� J is a bijection between the tangent and the normal subspaces to M

� F ′′′ = ω · II = Jg · II

Theorem

The self-concordance condition on F is equivalent to the boundedness of the extrinsic curvature of M .
The barrier parameter ν measures the supremum of the norm of the extrinsic curvature.

the barrier parameter determines how close M is to a totally geodesic submanifold of E2n

the latter correspond to the usual hyperbolic barriers on Lorentz cones
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Symmetric cones

Definition

A self-dual, homogeneous convex cone is called symmetric.

� self-dual: K = K∗

� homogeneous: AutK acts transitively on Ko

conic programs over symmetric cones are efficiently solvable by interior-point methods due to the existence
of self-scaled barriers [Nesterov, Nemirovski, 1994]

� linear programs (LP) over Rn+ ∼ 106 variables

� conic quadratic programs (CQP) over Ln ∼ 104 variables

� semi-definite programs (SDP) over S+(n)∼ 102 variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuMi, ...) and commercial (CPLEX, MOSEK, ...) solvers available
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Self-scaled barriers on symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product of a finite number of the following irreducible
symmetric cones:

� Lorentz (or second order) cone Ln =
{
(x0, . . . , xn−1) |x0 ≥

√
x21 + · · ·+ x2n−1

}
� matrix cones S+(n), H+(n), Q+(n) of real, complex, or quaternionic hermitian positive

semi-definite matrices

� Albert cone O+(3) of octonionic hermitian positive semi-definite 3× 3 matrices

barriers on irreducible symmetric cones

� Lorentz cone Ln: F (x) = − log(x20 − x21 − · · · − x2n−1)

� matrix cones: F (X) = − log detX

barriers on reducible symmetric cones
weighted sums of the barriers on the irreducible components

example: K = Rn+, F (x) = −
∑n
k=1 αk log xk , αk ≥ 1
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Main result

Theorem

Let K ⊂ Rn be a regular convex cone, and let F : Ko → Rn be a convex, logarithmically
homogeneous function such that limx→∂K F (x) = +∞. Then the following are equivalent:

� K is a symmetric cone and F a self-scaled barrier,

� the extrinsic curvature of the submanifold M ⊂ E2n is parallel with respect to g = F ′′,

� the derivative F ′′′ is parallel with respect to the geodesic flow on Ko, ∇̂F ′′′ = 0.

a barrier is self-scaled if and only if the acceleration of the geodesics on M is invariant with respect to the
geodesic flow on M

the barrier F behaves in some sense as a 3rd order polynomial

the condition is a local one
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Explicit equation

we note ∂F
∂xα

= F,α, ∂2F
∂xα∂xβ

= F,αβ etc.

note F ,αβ for the inverse of the Hessian

we adopt the Einstein summation convention over repeating indices, e.g.,

F ,αβF,βγ :=
n∑
β=1

F ,αβF,βγ = δαγ

then ∇̂F ′′′ = 0 is equivalent to the 4-th order quasi-linear PDE

F,αβγδ =
1

2
F ,ρσ

(
F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ

)
F is self-scaled if and only if it is a solution to this PDE

a solution can be recovered from the values of F, F ′, F ′′, F ′′′ at a single point

Barriers on Symmetric Cones · CORE@50 Bridging Gaps, Louvain-la-Neuve, May 23rd, 2016 · Page
14 (16)



Idea of proof

differentiating with respect to xη and substituting the fourth order derivatives by the right-hand side, we get

F,αβγδη =
1

4
F ,ρσF ,µν

(
F,βηνF,αρµF,γδσ + F,αηµF,ρβνF,γδσ

+ F,γηνF,αρµF,βδσ + F,αηµF,ργνF,βδσ + F,βηνF,γρµF,αδσ

+ F,γηµF,ρβνF,αδσ + F,βηνF,δρµF,αγσ + F,δηµF,ρβνF,αγσ

+ F,δηνF,αρµF,βγσ + F,αηµF,ρδνF,βγσ + F,δηνF,γρµF,αβσ

+ F,γηµF,ρδνF,αβσ
)

anti-commuting δ, η gives the integrability condition

F ,ρσF ,µν
(
F,βηνF,δρµF,αγσ + F,αηµF,ρδνF,βγσ + F,γηµF,ρδνF,αβσ

−F,βδνF,ηρµF,αγσ − F,αδµF,ρηνF,βγσ − F,γδµF,ρηνF,αβσ
)
= 0.

define a multiplication on the tangent space by

(u • v)α =
1

2
F ,αδF,δβγu

βvγ

this defines a commutative algebra satisfying the Jordan identity

(u2 • v) • u = (u • v) • u2

connection between Jordan algebras and symmetric cones is long known
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Thank you
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