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Newton method

iterative method minimizing local quadratic approximation of
cost function F

xk+1 = xk − (F ′′(xk ))
−1F ′(xk ) = arg min

x
qk (x),

where

qk (x) = F (xk ) + 〈F ′(xk ), x − xk 〉+
1
2
〈F ′′(xk )(x − xk ), x − xk 〉

current iterate characterized by Newton decrement

ρk = ||F ′(xk )||k =
√

2(qk (xk )− qk (xk+1)) = ||xk+1 − xk ||k

here || · ||k is the local metric defined by F ′′(xk )
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Motivation of self-concordance

Newton method will work well if the quadratic approximation qk
is still reasonably good at the new point xk+1

qk+1 should not be too far away from qk :

||qk+1 − qk ||
||xk+1 − xk ||

≤ L

||qk+1 − qk || ∼ rate of change F ′′′

||xk+1 − xk || measured in local metric || · ||k ∼ F ′′
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Self-concordant functions

Definition

Let D ⊂ Rn be a convex domain and F : D → R a convex C3

function. The function F is called self-concordant if for all x ∈ D
and all u ∈ TxD we have

|F ′′′(x)[u,u,u]| ≤ 2(F ′′(x)[u,u])3/2,

and self-concordant barrier if in addition limx→∂D F (x) = +∞.

power 3
2 in order to homogenize inequality with respect to u
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Newton method and self-concordance

let F : D → R be a self-concordant barrier

apply the Newton method to minimize F on D

self-concordance guarantees that
if ρk < 1, then xk+1 ∈ D

ρk+1 ≤
(

ρk
1−ρk

)2

quadratic convergence in the vicinity of the minimum

used in interior-point methods for convex programming
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Barrier parameter

let F : D → R be a self-concordant barrier

the quantity
ν = sup

x∈D
ρ2 = sup

x∈D
||F ′(x)||2F ′′(x)

is called the barrier parameter of F

the smaller the parameter ν, the larger the steps of the
optimization method and the faster the convergence

number of iterations scales like ν1/2
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Problem

For given D ⊂ R, find the barrier F with the lowest
parameter ν on D.

we study the convexity properties of this problem
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convex combinations of self-concordant functions are not
necessarily self-concordant
convex hull of possible pairs (F ′′(x)[u,u],F ′′′(x)[u,u,u]) is the
whole right half-plane
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Example

consider the domain D = R++ and the self-concordant
functions

F1(x) =


− log x + 5

2 − 2x , x ≤ 1
2 ,

log 2 + 2(1− x) + 2(1− x)2, 1
2 < x ≤ 1,

− log(x − 1
2), x > 1,

F2(x) =


− log x + 5

2 − x , x ≤ 1,
(2− x) + (2−x)2

2 , 1 < x ≤ 2,
− log(x − 1), x > 2,

set F = 2
3F1 +

1
3F2
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F1,F2 are self-concordant
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F = 2
3F1 +

1
3F2 is not self-concordant
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Cones and conic programs

Definition
A regular convex cone K ⊂ Rn is a closed convex cone having
nonempty interior and containing no lines.

Definition
A conic program over a regular convex cone K ⊂ Rn is an
optimization problem of the form

min
x∈K
〈c, x〉 : Ax = b.

every convex optimization problem can be cast in this form
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Interior-point methods

iterative methods generating a sequence of interior points

essential ingredient : self-concordant barrier on K
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Examples

common efficiently solvable classes of conic programs
linear programs (LP)
second-order cone programs (SOCP)
semi-definite programs (SDP)

LP: linear inequality constraints, K = Rn
+

SOCP: convex quadratic constraints, K =
∏

j Lmj ,

Lm = {(x0, . . . , xm−1)
T | x0 ≥

√
x2

1 + · · ·+ x2
m−1}

SDP : linear matrix inequalities, K = {A ∈ Sn×n |A � 0}

for these cones barriers with the smallest possible parameter
are available
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Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone. A (self-concordant
logarithmically homogeneous) barrier on K is a smooth function
F : K o → R on the interior of K such that

F (αx) = −ν logα+ F (x) (logarithmic homogeneity)
F ′′(x) � 0 (convexity)
limx→∂K F (x) = +∞ (boundary behaviour)
|F ′′′(x)[u,u,u]| ≤ 2(F ′′(x)[u,u])3/2 (self-concordance)

for all tangent vectors u at every x ∈ K o.

ν is the parameter: F ′′(x)x = −F ′(x), 〈F ′(x), x〉 = −ν
⇒ 〈(F ′′(x))−1F ′(x),F ′(x)〉 = ν
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Generalized self-concordance

a more natural definition of self-concordance

Definition

Let K be a regular convex cone. We call a C2 function
F : K o → R a logarithmically homogeneous self-concordant
barrier in the generalized sense on K with parameter ν if

F (αx) = −ν logα+ F (x)
F ′′(x) � 0
limx→∂K F (x) = +∞
lim supε→0

|F ′′(x+εh)[h,h]−F ′′(x)[h,h]|
ε ≤ 2(F ′′(x)[h,h])3/2

for all tangent vectors h and x ∈ K o.
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Compatibility with convexity

• F (αx) = −ν logα+ F (x) (logarithmic homogeneity)
• F ′′(x) � 0 (convexity)
• limx→∂K F (x) = +∞ (boundary behaviour)
• |F ′′′(x)[u,u,u]| ≤ 2(F ′′(x)[u,u])3/2 (self-concordance)

cost function linear but feasible set not convex

but:
the feasible set is mapped into itself by multiplication by
constants ≥ 1
the cost function increases under multiplication by
constants ≥ 1
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Scaling

by multiplying the function F by a constant α we achieve the
transformation

(ν,F ′′,F ′′′) 7→ (αν, αF ′′, αF ′′′)

hence we may replace the objective ν by the homogeneous
function

sup
x∈D,u∈Tx D

ν(F ′′′(x)[u,u,u])2

4(F ′′(x)[u,u])3

and consider only the slice ν = 1
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Transfer of non-convexity

the feasible set becomes convex, the cost function non-convex
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Problem formulation

How much do we lose by convexification of the cost
function?

in other words:

Given a convex combination F of barriers on K with parameter
ν, what is the minimal value c > 1 such that c · F is guaranteed
to be self-concordant?
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How large ist the performance loss when using a minimum of
the convexified cost function instead of a minimum of the
original non-convex cost?
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Level set

let K ⊂ Rn be a regular convex cone
let ν > 0 be fixed

let F : K o → R in the sub-level set corresponding to ν
F (αx) = − logα+ F (x), α > 0, x ∈ K o

F ′′(x) � 0, x ∈ K o

limx→∂K F (x) = +∞
|F ′′′(x)[u,u,u]| ≤ 2

√
ν(F ′′(x)[u,u])3/2

setting u = x we get ν ≥ 1
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Reduction to dimension 2

let x ∈ K o be an interior point
let x 6 ‖ u ∈ TxK o be a tangent vector
let L be the span of x ,u

then F ′′(x)[u,u], F ′′′(x)[u,u,u] depend only on restriction of F
to K̃ o = (K ∩ L)o
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Normalization

normalize coordinate system such that
K = L2 = {(x0, x1) | x0 ≥ |x1|}, x = (1,0), u = (τ,1), then

F ′′′(x)[·, ·,e0] = −2
(

1 a
a b

)
, F ′′′(x)[·, ·,e1] = −2

(
a b
b c

)

F ′′(x) =
(

1 a
a b

)
, F ′(x) = −

(
1
a

)

|τ3 + 3aτ2 + 3bτ + c| ≤
√
ν(τ2 + 2aτ + b)3/2 ∀ τ ∈ R
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Positivity condition

replace τ by τ − a, then we get

(τ3 + 3(b − a2)τ + c − 3ab + 2a3)2 ≤ ν(τ2 + b − a2)3 ∀ τ

this can be rewritten as

|c − 3ab + 2a3| ≤ ν − 2√
ν − 1

(b − a2)3/2 (⇒ ν ≥ 2)

the expressions b − a2, c − 3ab + 2a3 encode the affine metric
and the cubic form of the level curve of F
they are projectively invariant and hence the above inequality is
valid for any
(a,b, c) = (−F ′(x)[u],F ′′(x)[u,u],−1

2F ′′′(x)[u,u,u])
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Controlled system

set f (t) = F (1, t), t ∈ (−1,1), then

f ′′ > (f ′)2, lim
t→±1

f (t) = +∞

1
2

f ′′′ − 3f ′f ′′ + 2(f ′)3 =
ν − 2√
ν − 1

u(f ′′ − (f ′)2)3/2, u ∈ [−1,1]

reachability problem: for which initial conditions

f ′(0) = −a, f ′′(0) = b, f ′′′(0) = −2c

the problem has a solution?
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Feasible set for a,b, c

Theorem
The preceding problem has a solution if and only if

√
b − a2
√
ν − 1

≤ 1− a ≤
√
ν − 1

√
b − a2,

√
b − a2
√
ν − 1

≤ 1 + a ≤
√
ν − 1

√
b − a2,

|c − 3ab + 2a3| ≤ ν − 2√
ν − 1

(b − a2)3/2.

denote the corresponding non-convex body in R3 by Cν
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Bodies Cν

properties of Cν

Cν compact
Cν′ ⊂ Cν for ν ′ ≤ ν
C2 = {(0,1,0)}⋃
ν≥2 Cν = {(a,b, c) |b > 0}

for every ν there exists ν̃ ≥ ν such that Cν̃ contains the
convex hull of Cν

there exists a minimal such ν̃
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Bodies Cν
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Main result

Theorem
Let K ⊂ Rn be a regular convex cone, and let ν ≥ 2.

Let ν̃ ≥ 2 be such that Cν̃ contains the convex hull of Cν .
Then every convex combination of barriers with parameter
ν on K yields a barrier in the generalized sense with
parameter ν̃ on K when multiplied by ν̃

ν .
Let ν̃ be such that Cν̃ does not contain the convex hull of
Cν . Then there exists a convex combination of barriers
with parameter ν on K which cannot be scaled into a
barrier with parameter ν̃ on K .
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Convex hull

for fixed a the expressions ±(b − a2)3/2 are convex (concave)
in b
hence the convex hull of Cν equals the convex hull of the
edges, which are rational curve segments
⇒ convex hull is semi-definite representable

convex hull can be analytically computed
qualitatively different for different ν
structural changes at ν =
3.9718553726,4.8473221018,5.2360679774,5.3770889307,
5.4716822838,5.8892812008,6.2802453362
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Convex hull of Cν
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Convex hull of Cν
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ν̃ = ν +
3
8
(ν − 2)2 + O((ν − 2)3)

piece-wise algebraic function of ν
for large ν we get ν̃ ∼ ν3
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Thank you
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