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Monge-Ampeére equation
Definition
A regular convex cone K C R" is a closed convex cone with
nonempty interior and containing no lines.

Theorem
Let K C R" be a regular convex cone. Then the PDE

det F" = &, Flok = +o0

has a unique convex solution on the interior of K.
The level surfaces of F are affine spheres which are asymptotic to
0K and form a homothetic family.

the solution F is invariant under unimodular automorphisms of K,
and logarithmically homogeneous

F(tx) = F(x) —logt, t>0, x€ K°



Metric splitting

interior K° is diffeomorphic to a direct product of a level surface
and a radial ray

Theorem (Loftin 2002)

Under the above diffeomorphism the Riemannian metric defined on
K® by the Hessian F" splits into a direct product g = h & s, where
h is the Blaschke metric of the level surface and s the trivial
1-dimensional metric on the ray.



Blaschke metric and cubic form

the Blaschke metric h, i.e. the restriction of F” to a level surface,
is a complete Riemannian metric

it is projectively invariant if we identify the surface with a proper
convex domain in RP"~!

the restriction of F” to the surface is the cubic form C

given h and C the level surfaces of F and the cone K can be
recovered up to an unimodular linear isomorphism in SL(n, R)

not every pair (h, C) corresponds to an affine sphere
a necessary condition is that C is trace-less with respect to h,

hiCyj = 0



Riemann surfaces

for 3-dimensional cones K the level surfaces M of F are
2-dimensional
hence M is a non-compact simply connected Riemann surface

Uniformization theorem: Every simply connected Riemann
surface is conformally equivalent to either the unit disc D, or the
complex plane C, or the Riemann sphere S, equipped with either
the hyperbolic metric, or the flat (parabolic) metric, or the
spherical (elliptic) metric, respectively.

due to Klein, Riemann, Schwarz, Koebe, Poincaré, Hilbert, Weyl,
Radé ... 1880-1920

only D and C are non-compact



Riemann surfaces

global chart with values in D or C exists and is unique up to
automorphisms such that h = e|dz|?
here z = x + iy, |dz|> = dx? + dy?

u defines the conformal factor eV

may use other simply connected domains which are conformally
isomorphic (in case of D)

if there is a symmetry group acting on the domain, we may use the
(not simply connected) factor domain



Cubic differential

consider a conformal chart on M such that h = e“(dx? + dy?)

the trace-less cubic form
_ u - U —U;
=25, ) (o w)
has two independent components and can be represented by a
cubic differential U = U; + iUs: C = 2Re(U(z)dz%)
under bi-holomorphic coordinate changes u, U transform like

dz
dw

U(w) = U(2) (jvzv>3, u(w) = u(z) + 2log




Wang's equation

compatibility requirements on u, U [C.-P. Wang 1991]:

ou
0z
1 1 1
2 3u 2u 3u
=~ = = (1 4+ K
|U| 7€ 7€ Au 5€ ( )

=0,

o) 1[0 o) o _1(0 o) _ 9?2
here 77 = (ax IBy)’ E_§($+'W)'A 4 pz0z
Ke [—1,0] is the Gaussian curvature
the function U is hence holomorphic
it is called holomorphic cubic differential

» for given U, the equation is an elliptic PDE on u

> if (u, U) is a solution, then (u, e’?U) is also a solution for all
constant ¢



Relation between cones and solutions (u, U)

Theorem: (follows from [Simon, Wang 1993])

> Let K C R? be a regular convex cone. Then the solution F of
the Monge-Ampére PDE on K© defines a solution (u, U) on a
simply-connected domain M C C with complete Riemannian
metric h = e"|dz|? up to bi-holomorphic isomorphisms of the
domain.

» Every simply connected non-compact Riemann surface M with
complete metric h = e"|dz|? and holomorphic cubic differential
U satisfying Wang's equation corresponds to a regular convex
cone K C R®, up to unimodular linear isomorphisms.

complete solutions (u, U) up to bi-holomorphisms
~
regular convex cones up to unimodular isomorphisms



Recovery of the cone K

let (u, U) be a complete solution on M C C

construct a surface immersion f : M — R3 by integrating

1 _
frz = u,f, — Ue_uf27 frz = Eeufa fzz = —Ue "', + uzf;

with arbitrary non-degenerate initial condition (£, f,, f)
the surface f[M] will be asymptotic to a cone K C R3

different initial conditions lead to isomorphic cones



Frame equations

equivalently, integrate

—e YRe U %—I—e*“/mU eu/2
F,=F —%—i—e‘”lmU e “RelU 0

el!/? 0 0
e “ImU —>+e“RelU 0

F,=F %—i—ef”ReU —e “ImU eu/?
0 el!/2 0

with unimodular initial F = (e%/?f,,e~"/?f,, f) € SL(3,R)

the unimodular matrix function F(z) is called moving frame



Associated family and duality

for given u, the form U is determined up to a constant factor e’?

this yields an associated family of (isomorphism classes of ) cones
K Cc R?

Definition
Let K C R" be a regular convex cone. The dual cone of K is
defined as

K*={y e (R")"|(x,y) >0V x € K}.

if the moving frame F(z) defines a surface asymptotic to JK, then
F~T defines a surface asymptotic to OK*

the matrix function F~T satisfies the same moving frame equations
as F but with U replaced by —U

if (u, U) corresponds to K, then (u, —U) corresponds to K*



Associated family and duality

K* K

K'*

the associated family permits to define "fractional" dual cones



Conditions on U

existence and uniqueness results for u given U

>

>

>

Wang 1997; Loftin 2001; Labourie 2007: for a holomorphic
function on a compact Riemann surface of genus g > 2 there
exists a unique solution (extends to universal cover)

Benoist, Hulin 2014: let U be holomorphic on D such that
|U|?/3|dz|? is bounded with respect to the uniformizing
hyperbolic metric, then there exists a unique complete solution
u such that |u — log W| is bounded

Dumas, Wolf 2015: let U be a polynomial on C, then there
exists a unique complete solution u

Wan, Au 1994; Q. Li 2019: let U be holomorphic on D, then
there exists a unique complete solution u

Q. Li 2019: let U # 0 be holomorphic on C, then there exists
a unique complete solution u

there is no solution for U =0 on C



Structure of the solution

if U #£ 0, then a solution is given by
el — 21/3‘U’2/3
this corresponds to a flat metric
however, even if U # 0 everywhere, this solution may be incomplete
the Blaschke metric is flat if and only if U = const # 0 and M =C

this case yields the cone Ri

if U=0, then K= —1 and e“|dz|? is the metric of hyperbolic
space, this yields the cone K = L3

generally, e ~ |U|?/3 where |U| is large and the metric is close to
hyperbolic where |U| is small



Main problem

holomorphic functions U on domains M C C (except U =0 on C)
up to bi-holomorphisms

-
regular convex cones K C R3 up to unimodular isomorphisms

for non-simply-connected Riemann surfaces, pass to the universal
cover

interior points of M correspond one-to-one to interior rays of K
boundary points of M (including the infinitely far point) correspond
to the boundary rays of K, but not one-to-one

Problem: study this relationship in more detail

in particular: which cones correspond to M = C



Known results

Dumas, Wolf 2015: polynomials U of degree k on C correspond to
polyhedral cones K with k + 3 extreme rays
U = z¥ corresponds to the cone over the regular (k + 3)-gon

Wang 1997; Loftin 2001; Labourie 2007:
holomorphic functions on a compact Riemann
surface of genus g > 2 correspond to cones K
such that 9K is C!, but in general nowhere C?

Benoist, Hulin 2014: the following are equivalent:
> supy K <0
> R3 is not in the closure of the orbit of K under SL(3,R)

» M is conformally equivalent to D and U is bounded in the
hyperbolic metric

» 0K is C! and quasi-symmetric



Quasi-symmetric convex sets

the curve (a(h), b(h)) has to be enclosed in a sector bounded away
form the coordinate axes, for every point x of the boundary



Examples

Ay <=x <= (1y)"° 1y <= x <= (1 AR ()P <=x <= (1)

supK<0 supK=0 sup K<0

the || - ||, unit ball is quasi-symmetric convex even if one half is
linearly scaled
combining different p-norms leads to loss of quasi-symmetry



Local results

let M be a Riemann surface with a puncture zy, and let the
holomorphic function U on M have a pole of order k at z
let M:R3\ {0} — RP? be the natural projection

the boundary portion of the universal cover of M at z corresponds
in M[K] to
> a piece with finite Hilbert volume if kK < 2 [Benoist, Hulin
2013]

> a piece of either a straight line segment or a corner if k =3
[Loftin 2004, 2019]

» a polyhedral piece with k — 3 vertices if k > 4 [Nie 2018
preprint]



Representation of cones

SL(3,R)-orbits of sufficiently smooth regular convex cones can be
represented by 3-rd order linear ODEs

y +2ay+(a+B)y =0
a(t), B(t) are 2m-periodic functions, y : R — R3

K is obtained as the convex conic hull of the solution curve
different initial values lead to isomorphic cones

reparametrizations of the time parameter:
> a(t) = const < § can be achieved [H. 2020]
» [(t) transforms as cubic differential [Halphen, Wilczynski, ...]

» splitting o/ corresponds to symmetric and skew-symmetric
part of differential operator [Ovsienko, Tabachnikov]

ODE can in some cases be obtained from U



can be used also to represent smooth pieces of conic boundaries



Example: constant coefficients

vector-valued solution y(t) = (et et e3t), 1 > o > c3

setp=9-2, =98, 14 1=1p,qe(l,+x)
the solution then satisfies y, = yll/py31/q and lies on the boundary

of the power cone

Ko = {(x,y,2) | [z] <x"Py'9, x,y > 0}
special case p = 2: ¢; equidistant, K, ~ L3
if 1 > ¢ = c3, then with 7 = (¢ — o)t

y = (eqta eCZta (Cl - C2)teC2t) = eCZt(eTv 177_)

curve lies on the boundary of the exponential cone

Kexp = {(x,y,z) ‘ )//22 ex/z’ z> 0}



Semi-homogeneous cones

Definition
A regular convex cone K C R3 is called semi-homogeneous if it has
a non-trivial continuous automorphism group.

classification in [H. 2014]
U has to be constant on orbits, hence U = const

M U = const K

D 0 L3

C 1 R3
|Rez| < % el® asymmetric power cone
Rez>0 | €%, |p| <3 half power cone
Rez >0 +i exponential cone
Rez>0 | e, |p| > 5 | dual of half power cone

solution u given by Weierstrass o functions [Z. Lin, E. Wang 2016]
representing ODE ¥ + 2ay + By = 0 has constant coefficients



Lorentz cone

R

M=D,U=0

D with the Klein model is isometric to the circular section



Orthant

M=C, U=1
the surface xyz = 1 over the triangle is mapped to C by

(x,y,z) +— (logx,logy,logz)



N4

primal dual

only geodesics with angles "3—“ tend to interior points of the primal
and dual edges

these critical directions divide the plane into sectors with similar
convergence behaviour at co (Stokes’ phenomenon)



A

primal dual
M
in RP? x (RP?)* the boundary OM is a hexagon

the differential U dz> increases its argument by 7 per vertex of the
hexagon



Power cone

M section of K

M={z||Rez| < i}, U=¢"¥
K ={(x,y,2) | —ax'/Pyt/q < z < ox}/Pyl/a, x,y > 0}

> U=41: p=2

» U = +i: symmetric power cone (¢ = )

«O> «F>r «=>»

« =)

DA



Half-power cone

M directions vary with ¢ section of K

M={z|Rez>0}, U=¢e"¥ RelU>0
K ={(x,y,z) | —ex!/Pyl/a < 7 <0, x,y >0}

> U=1 p=2
> U — +it p— 400

«4O0>» «Fr» «E)>» «E>»

DA



Exponential cone

.

M section of K

M={z|Rez>0},U=i

¢ = 5 directions rotate by —% to keep argument of U dz®
constant

the second corner disappeared because the critical direction points
along OM



Dual of half-power cone

section of K

directions vary with ¢
M

M={z|Rez>0}, U=¢e"¥ ReU<0
K={(xy,2) | —ex!/Pyl /9 < z, x,y > 0}

> U=-1.p=2
> U— +it p— 400

A40>» «Fr» «=)>r» «

DA



Self-associated cones

Definition
A regular convex cone K C R? is called self-associated if it is
linearly isomorphic to all its associated cones.

classification in [H. 2022]
|U| has to be constant on orbits, phase changes

type ‘ M ‘ parameter ‘ U
elliptic |z| < R R € (0, 40o0] zx
parabolic Rez < b b € (—o0, +o0] e?
hyperbolic | a<Rez< b | —co<a<b< +oo | €°

type defined by spectrum of generator of automorphism group of K

solution u given by degenerate Painlevé Il (D7) transcendents

representing ODE y" + 2ay + B -sint-y =0, «, 8 = const



Elliptic type: compact sections
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Parabolic type: compact sections

M = {z | Rez < b}, U = €*, uniform grid in M
b=-2,-1,0,1 (b= +o0 or M = C: oo-gonal cone)
the whole boundary 9K corresponds to Rez = b



oo-gonal cone
M=C, U=¢€*
corresponding cone K is the convex conic hull of the set
{(t,n.n?) [ neZ}

compact section has infinitely many edges and vertices with a single
accumulation point

» non-trivial automorphisms of K are isomorphic to the
automorphisms of Z and form the infinite dihedral group D

> K is self-dual

» lines 2kmi + R tend to interior points of edges in K
» lines (2k + 1)mi 4+ R tend to interior points of edges in K*



Hyperbolic type: compact sections

M ={z|a< Rez < b}, U= ¢€*, uniform grid in M
(a, b) = (—3,2);(—1,0);(1,2); (—4,-2); (—2,0);(0,2)
0K consists of two analytic pieces corresponding to Rez = a, b



Hyperbolic type: compact sections

M= {z|a< Rez < b}, U= €*, uniform grid in M
(aa b) = (_6a 2); (_47 0), (_27 2); (_127 _4); (_6a 2); (_147 2)
b = +oo: polyhedral boundary piece



Cantor cone

let M=C\{-1,+1}, U= ceC

C = 2Re (U dz®) is invariant with respect to the symmetry group
D5 of the domain, generated by

z—3

z—1

Zv —z, Z+—>

|U| is invariant with respect to complex conjugation

at the punctures U has poles of order 3
each puncture corresponds to an edge or a vertex in 9K
(dependent on the phase of ¢)

the union of edges and vertices is dense in 0K
the symmetries determine the cone up to SL(3,RR) action and two
parameters (corresponding to the choice of ¢)

universal cover of M is D



Cantor cone Dual Cantor cone

0.8 ) 0.8 /

06 < 06

08 T 08 S

compact affine section of Cantor cone: set of extreme rays has
measure zero

» the cone can be computed by drawing an arbitrary edge and
then acting by the symmetry group on it

> since the union of edges is dense, all other boundary rays
appear in the limit

» extreme boundary rays are determined by the homotopy type
of the path leading to the boundary point



Fat Cantor cone

Dual fat Cantor cone
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compact affine section of fat Cantor cone: set of extreme rays has

positive measure



Qualitative behaviour for "small" U

let M =D, and let U be sufficiently regular at T = 0D
Wang's equation reads

e Au = 2e3 — 4|UP?

let ug = log ﬁ correspond to the hyperbolic metric
set v = u — up, v bounded [Benoist, Hulin 2014]

we propose the following approach:
Wang's equation can be written

—eTOAY 420 =4e V30 Y2 —2(e¥ —v—1) = f

operator on left-hand side has an explicit Green's function



f=d4e 20302 —2(e" —v—1)

)(1+ 1) — 4rrg e (r*;o))lhﬁzilm N 470
/ / (1—7r2)(1— /0) = (l,,.g)z

drodpg

v(z) :/Df(zo)k(d(zzo))|dzo|

for r — 1 we get as the main term

2T Ars(1 — 2
/ / f Z() ro( r) drod(po
" 6 —2rgcos(p — o) + 1)2

1—r)2

v bounded = f bounded = v < (1 —r)?2 =
FS@-r°lUP+@a-n)t



by considering the asymptotics of the frame equations we get that
along T ~ oM
Bdt® = Re(U dz%)

in particular, the smoothness of the cone boundary depends locally
on the smoothness of U on T

the coefficient o depends non-locally on U



Open problems

» characterize those cones which correspond to M = C (this
would yield also a new description of entire functions)

» detail the connection between smoothness of U and 0K

» connection to loop group methods

generalization to n > 37



Thank you!



