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Setup
Problem formulation

System setup

identify a MIMO LTI system with a PE method in closed loop

y = G0(q)u + H0(q)e, u = −K (q)y + r

r external input signal, K controller, u input, y output

both external input r and controller K are design variables
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Assumptions

u, r are of dimension l1, and e, y are of dimension l2

G0,H0 stable and H0 inversely stable, e with power
spectrum λ0I

r quasi-stationary with power spectrum Φr

G0(z),H0(z) embedded in a model structure
G(z; θ),H(z; θ) with true parameter value θ0,
G0(z) = G(z; θ0), H0(z) = H(z; θ0)

asymptotic in the number of data parameter covariance
formulas are assumed

constraints and cost function depend on frequency
weighted input and/or output with real-rational weightings

information matrix M is of this form
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Model uncertainty

parametric PE identification provides a parameter estimate
θ̂ together with an ellipsoidal uncertainty region

E = {θ | (θ − θ̂)T P−1(θ − θ̂) ≤ γ},

P covariance matrix

estimate θ̂ is applied as if it were the true parameter value
θ0

θ̂ is distributed around θ0, but covariance depends on
experimental conditions

distribution of the performance of the intended application
depends on P and hence on r ,K
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Problem formulation

Problem

How to optimally choose the design variables r ,K in order to
minimize a given criterion measuring the (expected)
performance of the model in the application, while satisfying
given constraints on the input and output?
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Change of design variables

replace design variables r ,K by the equivalent joint signal
spectrum

Φχ0 =

(

Φu Φue

Φ∗
ue λ0I

)

Φu, Φue are related to the design variables r ,K by

Φu(ω) = λ0(I + KG0)
−1KH0H∗

0K ∗(I + KG0)
−∗

+(I + KG0)
−1Φr (ω)(I + KG0)

−∗,

Φue(ω) = −λ0(I + KG0)
−1KH0,

advantage: constraints and cost function usually become
convex or even linear in Φχ0
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Moments

partial correlation approach:
replace infinite-dimensional design variables Φu,Φue by
finite-dimensional projection to the generalized (matrix-valued)
moments

mk =
1

2π

∫ +π

−π

1
|d(ejω)|2

Φχ0(ω)e
jkω dω = mT

−k , k = 0, . . . ,n

n and d chosen such that

both cost function and constraints can be written as convex
functions in the finite number of moments m0, . . . ,mn

the polynomial d(z) =
∑m

l=0 dlz l has all roots outside of
the closed unit disk

dl real and d0 6= 0, dm 6= 0, n ≥ m
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Solution strategy

1 solve the optimization problem on the moments m0, . . . ,mn
2 recover power spectrum Φχ0 producing these moments
3 construct external input r and the controller K from Φu,Φue

set of moments which can be produced by a valid power
spectrum Φχ0 is semi-definite representable [Hildebrand,
Gevers, Solari 2010]
Carathéodory theorem not applicable because Φχ0 is structured
(SE corner of Φχ0 is λ0 I; NE corner is stable)

Φr = (I + KG0)(Φu − λ−1
0 ΦueΦ

∗
ue)(I + KG0)

∗,

K = −Φue(λ0H0 + G0Φue)
−1.
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Block-Toeplitz moment matrix

by the Carathéodory theorem, the block-Toeplitz matrix

Tn =

















m0 mT
1

. . . mT
n−1 mT

n

m1 m0
. . . mT

n−2 mT
n−1

. . . . . . . . . . . . . . .

mn mn−1
. . . m1 m0

















is positive semi-definite

Assumption: Tn is positive definite
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Central extension

set [Delsarte, Genin, Kamp 1978]

U(z) =
(

znI zn−1I · · · I
)

,

A(z) = Un(z)T−1
n UT

n (0),

Φ(ω) = A(ejω)−∗A(0)A(ejω)−1

Φ is a rational matrix-valued function of order n

we have

mk =
1

2π

∫ +π

−π

Φ(ω)ejkωdω

for every k = 0, . . . ,n

the moment sequence produced by Φ is called central
extension of the finite sequence m0, . . . ,mn
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Main result

Theorem

Let (m0, . . . ,mn) be a feasible finite moment sequence, and Φ
be the spectrum generating the central extension of
(m0, . . . ,mn). Then the spectrum Φχ0(ω) = Φ(ω)|d(ejω)|2

satisfies

Φχ0 rational of order n

Φχ0(−ω) = Φχ0(ω)
T

Φχ0 reproduces the moments m0, . . . ,mn

Φχ0 =

(

Φu Φue

Φ∗
ue λ0I

)

with Φue stable

Φχ0 is explicitly given by the moments m0, . . . ,mn
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Problem setup

consider an ARX model structure

G =
θ1z−1

1 + θ2z−1 , H =
1

1 + θ2z−1

with true parameters θ10, θ20, |θ20| < 1

output power constraint Ey2 ≤ c, c > λ0

maximize determinant of the information matrix M
(D-optimality)
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Cost and constraints as function of moments

set n = m = 1, d(z) = 1 + θ20z, then

M11 = λ−1
0 ((1 + θ2

20)m0,11 + 2θ20m1,11)

M12 = λ−1
0 (−θ10m1,11 − (1 − θ2

20)m0,12 − θ10θ20m0,11)

M22 = λ−1
0 (−2θ10θ20m0,12 +

λ0

1 − θ2
20

+ θ2
10m0,11)

Ey2 = −2θ10θ20m0,12 +
λ0

1 − θ2
20

+ θ2
10m0,11
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Optimal moments

maximize det M subject to Ey2 ≤ c

m0,12 =
λ0θ20(2c − λ0)

θ10(1 − θ2
20)(c + (c − λ0)θ

2
20)

m0,22 =
λ0

1 − θ2
20

, m1,22 = −
λ0θ20

1 − θ2
20

, m1,21 = −θ20m0,12

m0,11 =
(c(1 − θ2

20) + λ0θ
2
20)(cθ

2
20 + c − λ0)

θ2
10(1 − θ2

20)(c + (c − λ0)θ
2
20)

m1,11 = −
λ0θ20(cθ2

20 + c − λ0)

θ2
10(1 − θ2

20)(c + (c − λ0)θ
2
20)

m1,12 = −∆−1m0,12θ20(∆ + (c − λ0)λ0(1 − θ2
20)

2)

with ∆ = c2(1 + θ2
20)

2 − cλ0(2θ4
20 + θ2

20 + 1) + λ2
0θ

4
20
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Explicit solution

the central extension of (m0,m1) yields

K = −
θ20(2c − λ0)(cθ2

20 + c − λ0)(1 + θ20z−1)

θ10(∆ + θ20(2c(c − λ0)(1 + θ2
20) + λ2

0θ
2
20)z

−1)
,

Φr =
(c − λ0)(cθ2

20 + c − λ0)(c + (c − λ0)θ
2
20)∆|ejω + θ20|

2

θ2
10|∆ejω + θ20(2c(c − λ0)(1 + θ2

20) + λ2
0θ

2
20)|

2
.
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Comparison with optimal open-loop experiment

for c < λ0 no experiment feasible

for λ0 ≤ c < λ0
(1−θ2

20)
only closed-loop experiments feasible

for λ0
(1−θ2

20)
≤ c <

λ0
1−|θ20|

the optimal closed-loop experiment

beats the optimal open-loop experiment

for λ0
1−|θ20|

≤ c both give the same information matrix
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Simulation

set λ0 = 1, c = 1.4, θ10 = 0.5, θ20 = 0.4

first identify in open-loop with white noise with variance
σ2 = 1

from the identified parameters two experimental
configurations are computed: the optimal open-loop input,
and the optimal closed-loop input-controller pair

an optimal open-loop and an optimal closed-loop
experiment are performed and the parameter vector
identified

500 runs, data length in each of the experiments is N = 1000

empirical covariance matrices have determinant:
0.49736N−2 for open loop
0.38796N−2 for closed-loop
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Simulation cont’d

identified parameter vectors for optimal open-loop (left) and
closed-loop (right) experiments
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Thank you!
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