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Problem description

The subject of investigation are copositive forms, i.e., real symmetric matrices A such that xTAx ≥ 0
for every vector x with nonnegative entries. The set of copositive matrices of size n× n forms a closed
convex cone Cn in the space of all real symmetric matrices of size n× n. The goal is to determine the
extreme rays of Cn. A copositive matrix A lies on an extreme ray if it cannot be decomposed as a sum
A = B +C of two other, linearly independent, copositive matrices. The extreme rays of Cn are known
for n ≤ 5. Here we consider the case n = 6.

A real symmetric matrix P such that xTPx ≥ 0 for all vectors x is called positive semi-definite.
The set of n× n positive semi-definite matrices forms also a closed convex cone Sn

+. A real symmetric
matrix N is called nonnegative if all its entries are nonnegative numbers. The set of n×n nonnegative
matrices forms a closed convex cone Nn. Clearly every positive semi-definite and every nonnegative
matrix are also copositive. This means that the inclusion Sn

+ + Nn ⊂ Cn holds for all n. Diananda
has found [3] that this inclusion is an equality for n ≤ 4, and Prof. Alfred Horn has constructed a
copositive matrix in C5 which is not in S5

+ +N 5, the Horn form

H =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

Thus the inclusion is strict for n ≥ 5.
The extreme rays of Cn which are in Sn

+ +Nn have been described by Hall and Newman [6]. We
shall hence concentrate on the exceptional matrices in C6, i.e., those which lie on an extreme ray and
which are not in S6

+ +N 6. We also assume that the diagonal elements of such a matrix are positive,
as otherwise it is effectively a copositive form on a space of lower dimension.

The approach proposed here to study copositive matrices A ∈ Cn is based on a consideration of
those nonnegative vectors x which satisfy xTAx = 0. A nonzero such vector x is called a zero of A.
The set of indices i ∈ {1, . . . , n} such that the i-th entry xi of x is positive is called the support of the
zero x and is denoted by suppx. A zero x of A is called minimal if there exists no zero y of A such
that supp y ⊂ suppx strictly. For example, the Horn form has zeros with supports

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}.

Of these, only the supports consisting of two indices correspond to minimal zeros. We shall call the set
of all supports of minimal zeros of A the minimal zero support set. The minimal zero support set of
an exceptional copositive matrix is subject to restrictions [9]. For n = 6, these restrictions lead to 44
possible different equivalence classes of minimal zero support sets1. Here two such sets are considered
to be equivalent if there exists a permutation of the indices 1, . . . , 6 which induces a map taking one
set to the other. In the table on the site, one representative of each equivalence class is listed.

Solution strategy

We shall describe here how copositive matrices with a given minimal zero support set can be analyzed.

1In an earlier version, the number of equivalence classes was 80 (see http://arxiv.org/abs/1401.0134). We have
adapted the table of equivalence classes to comply with the table in the published version [9].
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Restrictions on the elements of A

By the transformation A 7→ DAD, where D is a diagonal matrix with positive diagonal elements, the
diagonal elements of A can be normalized to 1. We shall hence assume that Aii = 1 for i = 1, . . . , 6.
There are 15 off-diagonal elements Aij , 1 ≤ i < j ≤ 6, to determine. By a result of Hall and Newman
[6], we may assume that Aij ∈ [−1, 1] for all i, j.

The analysis proceeds using equality and inequality relations generated by the minimal zeros corre-
sponding to the given supports. If u is a zero of A, then the matrix-vector product Au has nonnegative
entries. Moreover, since uTAu = 0 is a scalar product of two nonnegative vectors, the i-th entry of Au
is zero whenever ui > 0, and vice versa.

There are minimal zeros with supports consisting of 2,3, and 4 indices. We shall now consider the
restrictions imposed by these zeros.

Zeros with two positive elements: Suppose A has a minimal zero u with support {i, j}. We thus
have ui > 0, uj > 0, and uk = 0 for k ̸= i, j. Since Aii = Ajj = 1 and Aiiu

2
i + 2Aijuiuj + Ajju

2
j = 0,

we obtain that ui = uj and Aij = −1. Thus each minimal zero with two positive entries determines
one off-diagonal element of A. Moreover, if Aij = Ajk = −1 are determined in such a way, then
Aik = 1. This follows from the condition vTAv ≥ 0, where v is a vector defined by vi = vk = 1, vj = 2,
and vl = 0 for l ̸= i, j, k. Therefore, if several minimal zeros with two positive elements are present,
additional off-diagonal elements may be determined. If all elements of A are determined this way, it
can be told by the criteria of Haynsworth and Hoffman [7] whether A is copositive or extremal, see
also [2].

Zeros with three positive elements: Suppose A has a minimal zero u with support {i, j, k}. Then
there exist angles φij , φik, φjk > 0 such that φij + φik + φjk = π, Aij = − cosφij , Aik = − cosφik,
Ajk = − cosφjk, and the zero u can be normalized such that ui = sinφjk, uj = sinφik, uk = sinφij .
A derivation of this condition can be found in [5], which is also available at
http://www.optimization-online.org/DB HTML/2012/03/3383.html.

Zeros with four positive elements: Suppose A has a minimal zero u with support {i, j, k, l}. Then
the determinant of the submatrix 

1 Aij Aik Ail

Aij 1 Ajk Ajl

Aik Ajk 1 Akl

Ail Ajl Akl 1


vanishes, it has a kernel vector whose entries are all positive, and every proper principal submatrix
of this submatrix is positive definite. The last condition can be rewritten as follows. If we set Aij =
− cosφij , . . . , Akl = − cosφkl, then the angles φij , . . . , φkl are contained in the open interval (0, π) and
satisfy the inequalities φij + φik + φjk > π, φij − φik − φjk > −π and all similar inequalities which
can be obtained by permuting the indices i, j, k or substituting another triple of indices chosen of the
set {i, j, k, l}.

T-matrices: The conditions imposed by the presence of minimal zeros with supports consisting of
2 or 3 elements may lead to the presence of a principal submatrix of order 5 which can be brought by
a permutation of rows and columns to the form

T (ϕ) =


1 − cosϕ4 cos(ϕ4 + ϕ5) cos(ϕ2 + ϕ3) − cosϕ3

− cosϕ4 1 − cosϕ5 cos(ϕ1 + ϕ5) cos(ϕ3 + ϕ4)
cos(ϕ4 + ϕ5) − cosϕ5 1 − cosϕ1 cos(ϕ1 + ϕ2)
cos(ϕ2 + ϕ3) cos(ϕ1 + ϕ5) − cosϕ1 1 − cosϕ2

− cosϕ3 cos(ϕ3 + ϕ4) cos(ϕ1 + ϕ2) − cosϕ2 1


with ϕk ∈ [0, π]. Copositivity of the submatrix is equivalent to the condition

∑5
k=1 ϕk ≤ π [8, 5]. If∑5

k=1 ϕk = π, then T (ϕ) is positive semi-definite and hence A cannot be exceptional [5]. Thus we

obtain the restriction
∑5

k=1 ϕk < π.
Suppose there exist indices i, j such that there is no minimal zero u with uiuj > 0. Then there

must exist a zero u with support consisting of either two or three indices such that ui + uj > 0, and
both the i-th and the j-th entry of Au is zero. For a derivation see [5].
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Checking copositivity

Once the values of the off-diagonal elements Aij have been found, possibly containing some free param-
eters, it must be checked whether the corresponding matrices A are indeed copositive. In principle, this
can be accomplished by checking whether there exists a principal submatrix of A which has a single
negative eigenvalue such that the corresponding eigenvector has only positive elements. Copositivity of
a matrix is equivalent to the absence of such a principal submatrix. However, in practice this approach
may not always be easy to implement.

Hoffman and Pereira [10] have established that for a matrix A with unit diagonal elements, it is
sufficient to check only those principal submatrices which do not contain off-diagonal entries equal to
1.

Convexity of the cone Cn can also be employed. If A can be represented as a sum of matrices which
are known to be copositive, then A is also copositive.

If a principal submatrix is copositive, and A is obtained from this submatrix by repeating a row
and the corresponding column, then A is also copositive.

Checking extremality

Given a copositive matrix A, it can be determined whether it is extremal by computing the face of A
in the cone Cn. The face of A is the intersection of Cn with the linear subspace spanned by all real
symmetric n× n matrices ∆ such that there exists ε > 0 satisfying A± ε∆ ∈ Cn.

Let u be a zero of A and B a matrix in the face of A. Then u has to be also a zero of B, i.e.,
uTBu = 0, and the i-th element of the matrix-vector product Bu is zero whenever the i-th element
of Au is zero. Every zero u gives rise to linear conditions on B in this way. If the solution space of
the corresponding linear system of equations is 1-dimensional (and then necessarily generated by A),
then A is extremal. In [4, Theorem 17] it has been shown that this is also a necessary condition for
extremality.

If a principal submatrix is extremal, and A is obtained from this submatrix by repeating a row and
the corresponding column, then A is also extremal by a criterion of Baumert [1, Theorem 3.8].

On the other hand, if there exists a real symmetric matrix ∆ which is linear independent of A, and
A± ε∆ ∈ Cn for some ε > 0, then A is not extremal.
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