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Abstract

In this article, we introduce a new method of certifying any copositive matrix
to be copositive. This is done through the use of a theorem by Hadeler and
the Farkas Lemma. For a given copositive matrix this certificate is constructed
by solving finitely many linear systems, and can be subsequently checked by
checking finitely many linear inequalities. In some cases, this certificate can be
relatively small, even when the matrix generates an extreme ray of the copositive
cone which is not positive semidefinite plus nonnegative. This certificate can also
be used to generate the set of minimal zeros of a copositive matrix. In the final
section of this paper we introduce a set of newly discovered extremal copositive
matrices.
Keywords: Copositive Matrix; NP-hard; Certificate; Minimal zeros; Extreme
ray
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1 Introduction

A symmetric matrix X ∈ Sn is copositive if vTXv ≥ 0 for all entrywise nonnegative
vectors v. The set of copositive matrices of order n then forms a proper cone which is
referred to as the copositive cone, denoted COPn, which is of interest for example in
combinatorial optimisation [5, 7, 11, 18].

Checking copositivity is a co-NP-complete problem [32], i.e. checking copositivity
is NP-hard, but if the matrix, X, being checked is not copositive then there is a cer-
tificate for this which can be checked in polynomial time. This certificate is generally
in the form of a rational nonnegative vector v such that vTXv < 0. The fact that
checking copositivity is a co-NP-complete problem means that, in general, there can-
not be a certificate which can certify a matrix to be copositive in polynomial time,
unless co-NP = NP, which would contradict the conjecture that “co-NP 6= NP” [26,
Chapter 11]1.

This does not mean that certificates for copositivity do not exist, it purely means
that we should not expect them in general to be of polynomial size. As an example, it
is a well known result that the sum of the positive semidefinite cone, PSDn, and the
cone of nonnegative symmetric matrices, N n, is contained in the copositive cone, with
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1This is a stronger conjecture than its more famous cousin that “P 6= NP”, i.e. if co-NP 6= NP
then this would imply that P 6= NP, but it may be possible that both co-NP = NP and P 6= NP.
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it being shown in [9, 30] that PSDn +N n = COPn if and only if n ≤ 4. If we have a
matrix X ∈ PSDn +N n then we could certify this by finding matrices A ∈ Rn×n and
B ∈ N n such that X = AAT +B. An alternative way of certifying copositivity would be
that if for m ∈ N and X ∈ Sn we have that (1T

nv)mvTXv is a polynomial in v with all it
coefficients nonnegative then this would also certify that X is copositive (and if X is in
the interior of COPn then such a certificate always exists) [21, Section 2.24]. There are
also plenty of other possible certificates of copositivity through for example moment
matrices, sums-of-squares and simplicial partitions. We are unable to enumerate them
all here and instead we direct the interested reader to [3, 6, 12, 14, 16, 17, 28, 33, 34]
and [11, Part III].

These certificates are all limited in that they either do not work for all copositive
matrices or they are difficult to construct and check.

The main result of this paper will be to give a new relatively simple certificate
for copositivity, along with a method for finding such a certificate. This certificate
works for all copositive matrices. It is constructed by (approximately) solving systems
of linear equalities, and can be checked to confirm copositivity by checking linear
inequalities. Due to the fact that checking copositivity is a co-NP-complete problem,
in general this method would take exponential time to run and would produce an
exponentially large certicate. For this reason we have not implemented the method,
and instead we see this as a method for confirming special particular matrices of interest
to be copositive.

2 Notation

We let N be the set of strictly positive integers, and for n ∈ N define [1:n] := {1, . . . , n}
and P[n] := {I ⊆ [1:n] : I 6= ∅}, e.g.

[1:3] = {1, 2, 3}, P[3] =
{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

Note that the collection P[n] is the power set of [1:n] excluding the empty set, and we
have |P[n]| = 2n − 1.

We denote vectors in lower case bold, e.g. x, and matrices in upper case, e.g. X.
We denote the ith entry of x by xi, and the (i, j) entry of X by xij. For n ∈ N define
the vector and matrix sets:

Rn = the set of real n-vectors,

Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i ∈ [1:n]},

Rn
++ = {x ∈ Rn : xi > 0 ∀i ∈ [1:n]},
Sn = {X ∈ Rn×n : X = XT},

COPn = {X ∈ Sn : vTXv ≥ 0 ∀v ∈ Rn
+},

PSDn = {X ∈ Sn : vTXv ≥ 0 ∀v ∈ Rn} = {AAT : A ∈ Rn×n},
N n = Sn ∩ Rn×n

+ ,

SPN n = PSDn +N n.

For n ∈ N we define 1n ∈ Rn (resp. 0n ∈ Rn) to be the all ones (resp. all zeros)
vector of order n, and for i ∈ [1 :n] we define ei ∈ Rn to be the unit vector with ith
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entry equal to one and all other entries equal to zero (with the value of n apparent
from the context).

For n ∈ N and y ∈ Rn we define

supp(y) := {i ∈ [1:n] : yi 6= 0}, supp≥0(y) := {i ∈ [1:n] : yi ≥ 0},

e.g. for y =
(
−3 2 0

)T
we have supp(y) = {1, 2} and supp≥0(y) = {2, 3}.

For a symmetric matrix X ∈ Rn×n, a vector v ∈ Rn and a set of indices I ∈ P[n] we
define XI ∈ S |I| to be the principal submatrix of X corresponding to I, and we define
vI ∈ R|I| to be the subvector of v corresponding to I. For simplicity the numbering
of the indices is preserved, e.g. for

X =

1 6 3
6 9 2
3 2 8

 , v =

4
0
7

 , I = {2, 3},

we have

XI =

(
9 2
2 8

)
, vI =

(
0
7

)
,

and we say that 0 is the 2nd entry of vI and 2 is the (2, 3) entry of XI .
Note that if X ∈ Sn and u,v ∈ Rn and I ∈ P[n] with supp(u) ∪ supp(v) ⊆ I then

(Xv)I = XIvI and uTXv = uT
I (Xv)I = (Xu)TIvI = uT

IXIvI . From this observation we
get the well known result that if a matrix is copositive then all its principal submatrices
must also be copositive.

Finally, for I ∈ P[n] and u ∈ R|I| (indexed by I) we let u−I ∈ Rn be such that

(u−I)i =

{
0 if i /∈ I
ui if i ∈ I

.

3 Certifying Noncopositivity

Given a matrix X ∈ Sn \ COPn, a natural certificate that X is not copositive would
be a vector v ∈ Rn

+ such that vTXv < 0. But how do we find such a vector? This is
a major problem in copositivity research and a number of different methods exist for
doing this. We will focus on a method derived from the following result.

Theorem 3.1 ([20, Theorem 2]). Let X ∈ Sn such that either n = 1 or X[1:n]\{i} ∈ COPn−1

for all i ∈ [1:n]. Then X /∈ COPn if and only if X is nonsingular with −X−1 ∈ N n.

This theorem can be used to prove the following results:

Lemma 3.2. Let X ∈ Sn such that either n = 1 or X[1:n]\{i} ∈ COPn−1 for all i ∈ [1:n].
Then the following are equivalent:

1. X /∈ COPn;

2. X is nonsingular and −X−1 ∈ N n;

3. ∀b ∈ Rn
+, ∃u ∈ Rn

+ with Xu = −b,
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4. ∃u ∈ Rn
+ such that Xu = −1n.

5. ∃u ∈ Rn
+ such that −Xu ∈ Rn

++.

Proof. We trivially have 2⇒3⇒4⇒5, and from Theorem 3.1 we have 1⇒2. We com-
plete the proof by noting that if 5 holds then u ∈ Rn

+\{0n} and uTXu = −uT(−Xu) < 0,
and thus 5⇒1.

Theorem 3.3. For X ∈ Sn the following are equivalent:

1. X /∈ COPn,

2. ∃I ∈ P[n] and u ∈ R|I|+ such that XIu = −1|I|.

3. ∃I ∈ P[n] and u ∈ R|I|+ such that −XIu ∈ R|I|++.

This means that we can check whether a matrix X is copositive by going through
all the principal submatrices XI of it and attempting to solve XIu = −1|I|. Note that
we do not in fact need to solve XIu = −1|I| exactly as it is sufficient to find a solution

to −XIu ∈ R|I|++, or to establish that XI is singular.
The problem with this method is that there are exponentially many principal sub-

matrices to check, as |P[n]| = 2n − 1. However for each principal submatrix we need
only solve a linear system, making it simpler than an alternative well known method of
checking the eigenvectors and eigenvalues of all the principal submatrices, as introduced
in [27] and recalled below:

Theorem 3.4 ([27, Theorem 2]). For X ∈ Sn we have that X /∈ COPn if and only if

∃I ∈ P[n] with an eigenvector v ∈ R|I|++ and corresponding eigenvalue λ < 0.

Another problem with the method introduced in this section is that if a matrix is
copositive, then no simple certificate for this is produced. We shall discuss this further
in the following section.

4 Certifying Copositivity

In this section, we will present a new method for certifying a matrix to be copositive.
This new certificate will be derived from Theorem 3.3, and in order to do this, we
first need to recall the well known Farkas’ lemma. In this lemma and the subsequent
results we say that two systems are alternative systems if exactly one of them must
hold (e.g. for x ∈ R, the systems “x > 0” and “x ≤ 0” would be alternative systems).

Lemma 4.1 ([19]). For A ∈ Rm×n and b ∈ Rm the following are alternative systems:

1. ∃x ∈ Rn
+ such that Ax = b,

2. ∃y ∈ Rm such that ATy ∈ Rn
+ and bTy < 0.

We will need the following two corollaries of this result.

Corollary 4.2. For X ∈ Sn and b ∈ Rn the following are alternative systems:

1. ∃u ∈ Rn
+ such that Xu = −b,
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2. ∃w ∈ Rn such that Xw ∈ Rn
+ and bTw = 1.

Proof. From Lemma 4.1 we have that an alternative statement to statement 1 of this
corollary is that ∃y ∈ Rn such that XTy ∈ Rm

+ and (−b)Ty < 0, which is equivalent to
statement 2 of this corollary.

Corollary 4.3. For X ∈ Sn the following are alternative systems:

1. ∃u ∈ Rn
+ such that −Xu ∈ Rn

++,

2. ∃z ∈ Rn
+ \ {0n} such that Xz ∈ Rn

+.

Proof. These statements are equivalent respectively to the following two statements,
which by Lemma 4.1 are alternative systems:

1. ∃
(

u
v

)
∈ R2n

+ such that
(
X In

)(u
v

)
= −1n,

2. ∃z ∈ Rn such that

(
X
In

)
z ∈ R2n

+ and (−1n)Tz < 0.

By considering the alternative systems for the statements in Lemma 3.2 and then
simplifying, we now get the following results:

Lemma 4.4. Let X ∈ Sn such that either n = 1 or X[1:n]\{i} ∈ COPn−1 for all i ∈ [1:n].
Then the following are equivalent:

1. X ∈ COPn,

2. Either X is singular or X is nonsingular and −X−1 /∈ N n,

3. ∃y ∈ Rn \ (−Rn
+) 2 such that Xy ∈ Rn

+,

4. ∃y ∈ Rn such that Xy ∈ Rn
+ and 1T

ny = 1,

5. ∃y ∈ Rn
+ \ {0n} such that Xy ∈ Rn

+.

Proof. It is trivial to see that 1 and 2 make alternative systems with their corresponding
statements in Lemma 3.2.

We will now show that 3 also makes an alternative system with its correspond-
ing statement in Lemma 3.2. To do this, we show that the following statements are
equivalent:

(a) ¬
(
∀b ∈ Rn

+, ∃u ∈ Rn
+ with Xu = −b

)
;

(b) ∃b ∈ Rn
+, ¬

(
∃u ∈ Rn

+ with Xu = −b
)
;

(c) ∃b ∈ Rn
+, ∃y ∈ Rn with Xy ∈ Rn

+ and bTy = 1;

(d) ∃y ∈ Rn \ (−Rn
+) such that Xy ∈ Rn

+.

2In other words y ∈ Rn has at least one strictly positive entry.
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Trivially (a) and (b) are equivalent, and the equivalence of (b) and (c) follows from
Corollary 4.2.

If (c) holds then trivially (d) holds.
Conversely, if (d) holds then there exists i ∈ [1 : n] such that yi > 0, and letting

b = 1
yi

ei ∈ Rn
+ we get bTy = 1, and thus (c) holds.

A similar proof, using Corollaries 4.2 and 4.3, can be used to show that 4 and 5
also make alternative systems with their corresponding statements in Lemma 3.2.

example 4.5. Consider the so-called Horn matrix, which was originally constructed by
Prof. Alfred Horn [9]:

H =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

This has been shown to be copositive using multiple methods (e.g. [4, 6, 8, 22, 33, 36]),
and we now add yet another method to the mix.

For all i ∈ [1:5] we have that H[1:5]\{i} is equivalent after permutations to

H[1:4] = (e1 − e2 + e3 − e4)(e1 − e2 + e3 − e4)
T + 2(e1e

T
4 + e4e

T
1 ) ∈ SPN 4 = COP4.

We also have H15 = 15 ∈ R5
+, and thus by Lemma 4.4 we have H ∈ COP5.

Now, we are ready to present the main result of this paper, which follows from
Lemma 4.4.

Theorem 4.6. For X ∈ Sn we have that X ∈ COPn if and only if there exists
U ⊆ Rn \ (−Rn

+) such that ∀I ∈ P[n], ∃u ∈ U with supp(u) ⊆ I ⊆ supp≥0(Xu).

Proof. We will first show that if X is copositive then such a set U must exist. Consid-
ering an arbitrary I ∈ P[n], by Lemma 4.4, there exists y ∈ R|I| \ (−R|I|+ ) such that

XIy ∈ R|I|+ . Letting u = y−I , we then have u ∈ Rn \ (−Rn
+) with supp(u) ⊆ I and

(Xu)I = XIy ∈ R|I|+ .
We will now complete the proof by showing that if X is not copositive then such a

set U can not exist. Suppose for the sake of contradiction that X /∈ COPn but such
a set U does exist. As X /∈ COPn, there exists I ∈ P[n] such that XI /∈ COP |I| and
either |I| = 1 or XI\{i} ∈ COP |I|−1 for all i ∈ I. From the requirements on U , there
exists u ∈ U ⊆ Rn \ (−Rn

+) with supp(u) ⊆ I ⊆ supp≥0(Xu). Letting y = uI we then

have y ∈ R|I| \ (−R|I|+ ) and XIy = (Xu)I ∈ R|I|+ . By Lemma 4.4 this then gives the
contradiction that XI ∈ COP |I|.

Remark 4.7. Note that by Lemma 4.4, in Theorem 4.6 we could have in fact had the
more restrictive requirement that U ⊆ Rn

+ \ {0n}, and for all of the examples in this
paper we do indeed have that U ⊆ Rn

+ \ {0n}. We have however decided to leave the
Theorem in its more general form.

example 4.8. Consider the matrix

X =


1 −1 1 0 0
−1 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 −1
0 0 1 −1 1

 .
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From [25, 37] we have that X ∈ COP5 \ SPN 5. We can certify that this matrix
is copositive by considering the following U , which conforms to the requirements of
Theorem 4.6: U = { ei : i ∈ [1:5] } ∪ { ei + ei+1 : i ∈ [1:4] } . This is shown in
Table 1, where for all I ∈ P[5] we give a u ∈ U such that supp(u) ⊆ I ⊆ supp≥0(Xu).

I u I u I u I u
{1} e1 {1, 5} e1 {1, 2, 4} e4 {3, 4, 5} e3 + e4

{2} e2 {2, 3} e2 + e3 {1, 2, 5} e5 {1, 2, 3, 4} e1 + e2

{3} e3 {2, 4} e2 {1, 3, 4} e1 {1, 2, 3, 5} e1 + e2

{4} e4 {2, 5} e2 {1, 3, 5} e1 {1, 2, 4, 5} e1 + e2

{5} e5 {3, 4} e3 + e4 {1, 4, 5} e1 {1, 3, 4, 5} e3 + e4

{1, 2} e1 + e2 {3, 5} e3 {2, 3, 4} e2 + e3 {2, 3, 4, 5} e2 + e3

{1, 3} e1 {4, 5} e4 + e5 {2, 3, 5} e5 {1, 2, 3, 4, 5} e1 + e2

{1, 4} e1 {1, 2, 3} e1 + e2 {2, 4, 5} e2

Table 1: Enumerating how U certifies X to be copositive in Example 4.8.

A basic sketch of how to find such a certificate is provided by Algorithms 1 and 2.

Algorithm 1 Generating certificates to confirm whether a matrix is copositive or not.

Input: X ∈ Sn.
Output: Either:

i. v ∈ Rn
+ such that vTXv < 0 (certifying that X /∈ COPn), or

ii. U ⊆ Rn such that X and U conform to the requirements of Theorem 4.6
(certifying that X ∈ COPn).

1: U := ∅.
2: for I ∈ P[n] s. t. @u ∈ U with supp(u) ⊆ I ⊆ supp≥0(Xu) do

3: Input XI into Algorithm 2 and let w ∈ R|I| be the output.
4: if −w ∈ R|I|+ then
5: Output v = −w−I ∈ Rn

+ and exit.
6: else
7: Let u = w−I ∈ Rn \ (−Rn

+) and let U ← U ∪ {u}.
8: end if
9: end for

Algorithm 2 Generating vectors necessary in checking copositivity through (approx-
imately) solving linear systems

Input: X ∈ Sm.
Output: w ∈ Rm such that Xw ∈ Rm

++ ∪ {0m} and (Xw,−w) /∈ {0m} × Rm
+ .

1: Attempt to (approximately) solve Xw = 1m to find w ∈ Rm s. t. Xw ∈ Rm
++.

2: If unable to (approximately) solve Xw = 1m, as X is singular, then find a
w ∈ Rm \ (−Rm

+ ) in the null space of X.

If Algorithm 1 ends at a step 5 then we have v ∈ Rn
+ and vTXv = wTXIw < 0,

and thus the algorithm stops with output i..
If Algorithm 1 never ends at a step 5, then for each I considered, step 7 is carried

out. In this case we add to U a vector u ∈ Rn \ (−Rn
+) such that supp(u) ⊆ I
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and (Xu)I = XIw ∈ R|I|++ ∪ {0|I|}. Therefore, upon completion of the algorithm, we
have a set U ⊆ Rn \ (−Rn

+) such that for all I ∈ P[n] there exists a u ∈ U with
supp(u) ⊆ I ⊆ supp≥0(Xu), and thus the algorithm stops with output ii..

We thus see that the algorithm will complete in finite time, and for whichever
conclusion the algorithm reaches (copositive or not) there is a certificate to confirm
this result. We also note that throughout the algorithm we only need to solve linear
systems, and thus the individual steps of the alogorithm are relatively simple.

Note that in step 1 of Algorithm 2, we can replace 1m with any vector in Rm
++ and

the algorithm would still complete as before, although with a different vector w ∈ Rm.
In fact from this observation we see that this algorithm allows for small numerical
errors, as we try to solve XIw = 1|I|, but only require XIw ∈ R|I|++.

A final advantage of Algorithm 1 is that although we still have to deal with lots of
principal submatrices, we do not necessarily have to solve a linear system for each of
them. This is demonstrated by reconsidering Example 4.8, where we see that producing
this certificate would not require solving any linear systems corresponding to |I| ≥ 3.
The main difficulty in implementing this algorithm would be to find an efficient way
to go through the principal submatrices.

We finish this section by observing that using our new method even copositive
matrices which are not in SPN n may have very small certificates of copositivity. In
Example 4.8 we considered a matrix of order five which was copositive but not positive
semidefinite plus nonnegative whose certificate was of cardinality 9 (in comparison to
|P[5]| = 25− 1 = 31). We now consider a more general set of examples as an extension
of the results from [25, 37].

Lemma 4.9. Consider X ∈ Sn such that xii = 1 and xij ∈ {−1} ∪R+ for all i, j, and
let G be a graph on n vertices with an edge between vertices i, j if and only if xij = −1.
Then we have

1. X ∈ SPN n if and only if G is bipartite and xij ≥ 1 whenever there is an even
length path between i and j in G.

2. X ∈ COPn if and only if xij ≥ 1 whenever there is a path of length 2 between
i and j in G (and thus G is triangle free). Furthermore, a certificate certifying
such matrices to be copositive with cardinality at most n+ bn2/4c is given by

U = {ei : i ∈ [1:n]} ∪ {ei + ej : xij = −1, i < j} .

Proof. The condition for X ∈ SPN n comes directly from [37, Lemma 3.5].
We now consider the condition for X ∈ COPn. From Mantel’s theorem [29] we have

that if G is triangle free then it has at most bn2/4c edges, and thus |U| ≤ n+ bn2/4c.
We will now complete the proof by showing that the following statements are equivalent
for X as given in the lemma:

(a) X ∈ COPn;
(b) xij ≥ 1 whenever xik = xjk = −1 for some k;
(c) For U as given have ∀I ∈ P[n], ∃u ∈ U such that supp(u) ⊆ I ⊆ supp≥0(Xu).

As U ⊆ Rn
+, from Theorem 4.6 we have that statement (c) implies statement (a).

To show that statement (a) implies statement (b) we assume for the sake of con-
tradiction that X ∈ COPn and ∃i, j, k such that xij < 1 = −xik = −xjk. Then for
v = (ei + ej + 2ek) ∈ Rn

+ we get the contradiction vTXv = 2(xij − 1) < 0.
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We are now left to show that statement (b) implies statement (c). Consider an
arbitrary I ∈ P[n].

If xij ≥ 0 for all i, j ∈ I, then for arbitrary i ∈ I letting u = ei ∈ U we have
supp(u) = {i} ⊆ I and I ⊆ {j : xij ≥ 0} = supp≥0(Xu).

If on the other hand xij = −1 for some i, j ∈ I, then letting u := (ei + ej) ∈ U we
have supp(u) = {i, j} ⊆ I. For k ∈ [1 :n], if −1 ∈ {xik, xjk} then by statement (b)
we have max{xik, xjk} ≥ 1 and xik + xjk ≥ 0. Alternatively, if −1 /∈ {xik, xjk} then
xik, xjk ≥ 0 and xik + xjk ≥ 0. Therefore (Xu)k = xik + xjk ≥ 0 for all k ∈ [1 :n] and
I ⊆ [1:n] = supp≥0(Xu).

We thus have a set of matrices which are copositive but not positive semidefinite
plus nonnegative, whose certificates of copositivity grow at most quadratically with n
(whilst |P[n]| = 2n−1 grows exponentially). From [22, 25] this includes some extremal
copositive matrices which are not positive semidefinite plus nonnegative.

In Lemma 5.2 we will see that the certificate U given in Lemma 4.9 is in fact a
certificate of minimal cardinality.

5 Minimal Zeros

In this short section we will briefly look at how this new certificate is related to the
so-called set of zeros of a matrix [9, 23].

Definition 5.1. For X ∈ COPn we define its set of zeros, VX := {u ∈ Rn
+\{0n} : uTXu = 0},

and its set of minimal zeros, VX
min := {v ∈ VX : @u ∈ VX s. t. supp(u) $ supp(v)}.

In [23] it was shown that for a copositive matrix the set of minimal zeros is always
a finite set (up to multiplication by a positive scalar). We will now see that VX

min is
also contained in a certificate of copositivity for it.

Lemma 5.2. Let X ∈ COPn and U ⊆ Rn \ (−Rn
+) such that ∀I ∈ P[n], ∃u ∈ U with

supp(u) ⊆ I ⊆ supp≥0(Xu). Then for all v ∈ VX
min we have λv ∈ U for some λ > 0.

Proof. Consider an arbitrary v ∈ VX
min and let I = supp(v). There exists u ∈ U such

that supp(u) ⊆ I ⊆ supp≥0(Xu). From [13, Lemma 2.5] we have (Xv)I = 0|I| and

thus 0 = uT
I0|I| = uT

I (Xv)I = uTXv = vT
I (Xu)I . As vI ∈ R|I|++ and (Xu)I ∈ R|I|+ ,

this implies that 0|I| = (Xu)I = XIuI . From [23, Lemma 3.7] we then have that there
exists λ ∈ R such that uI = λvI . Noting that supp(u) ⊆ I = supp(v), u ∈ Rn\(−Rn

+)
and v ∈ Rn

+ we get that u = λv with λ > 0, completing the proof.

Applying this result to Lemma 4.9, it can be seen that the certificate U given in
this example is the smallest possible (by cardinality).

This lemma is useful in two further ways. Firstly it means that if we find such a
certificate as introduced in this paper for a matrix to be copositive then we will get
the complete set of minimal zeros for free, as shown in the corollary below. The set
of minimal zeros is useful in analysing the matrix, for example when considering the
facial structure of the copositive cone [15].

Corollary 5.3. Let X ∈ COPn and U ⊆ Rn \ (−Rn
+) such that ∀I ∈ P[n], ∃u ∈ U with

supp(u) ⊆ I ⊆ supp≥0(Xu). Now let V̂ = {µu : u ∈ U ∩ Rn
+, µ ∈ R++, uTXu = 0}.

Then VX
min ⊆ V̂ ⊆ VX and VX

min =
{

u ∈ V̂ : @w ∈ V̂ with supp(w) $ supp(u)
}
.
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Another advantage is that for a (minimal) zero u of X we have supp≥0(Xu) = [1:n]
and thus all sets I ∈ P[n] with supp(u) ⊆ I are covered by supp≥0(Xu) when forming
the certificates.

6 Negative Off-diagonal Entries

In this section we will focus on matrices in Sn whose off-diagonal entries are all nonpos-
itive. Such matrices are referred to in the literature as symmetric Z-matrices, whilst
such matrices which are copositive are referred to as symmetric M-matrices [2, 35].
We will see that considering such matrices provides both a problem to our current
certificates and an extension to them.

For A ∈ Sn we will define GA to be the simple graph on the vertices [1:n] such that
there is an edge between distinct vertices i, j if and only if aij 6= 0. We then have the
following results, the first two of which are well known, with proofs being included in
Appendix A for the sake of completeness:

Lemma 6.1. Let A ∈ Sn be a Z-matrix with GA is connected. Then A has an eigen-
vector v ∈ Rn

++ whose corresponding eigenvalue λ is of geometric multiplicity one and
is strictly less than all other eigenvalues of A. We then have A ∈ COPn if and only if
λ ≥ 0.

Lemma 6.2. For a Z-matrix A ∈ Sn the following are equivalent:

1. A is copositive;

2. A is positive semidefinite;

3. ∃x ∈ Rn
++ such that Ax ∈ Rn

+.

Lemma 6.3. For a Z-matrix A ∈ Sn such that GA is connected, let u ∈ Rn be such
that Au ∈ Rn

+ and (Au,−u) /∈ {0n} × Rn
+. Then u /∈ Rn

+ \ Rn
++ and

1. A ∈ COPn if and only if u ∈ Rn
++;

2. If Au ∈ Rn
++ and u ∈ Rn \ Rn

+, then letting y ∈ Rn
+ such that yj = max{0,−uj}

for all j ∈ [1:n], we have yTAy < 0.

Proof. We consider four cases:

1. u ∈ Rn
+ \ Rn

++: From the requirements on u we have u 6= 0n, and thus, as GA

is connected, ∃i, j ∈ [1 :n] such that ui = 0 < uj and aij < 0. We then get the
following contradiction, implying that this case cannot occur:

0 ≤ (Au)i =
∑

k∈supp(u)

aik︸︷︷︸
≤0

uk︸︷︷︸
>0

≤ aij︸︷︷︸
<0

uj︸︷︷︸
>0

< 0.

2. u ∈ Rn
++: Then by Lemma 6.2 we have A ∈ COPn.

3. u ∈ Rn \ Rn
+ and Au = 0n: Then by the assumptions we additionally have

−u /∈ Rn
+. We then have that u is an eigenvector of A with corresponding

eigenvalue equal to zero. By Lemma 6.1, there exists another eigenvalue of A
which is strictly negative and A /∈ COPn.
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4. u ∈ Rn \ Rn
+ and Au ∈ Rn

+ \ {0n}: If A is nonsingular, then from the results
of [2, Chapter 6], in particular case (N39), we have that A /∈ PSDn, and thus by
Lemma 6.2 we have A /∈ COPn. Conversely, if A is singular, suppose for the sake
of contradiction that A ∈ COPn. Then by Lemma 6.1, there exists v ∈ Rn

++ such
that Av = 0n and we have the contradiction 0 < vT(Au) = uT(Av) = 0.

We now complete the proof by supposing that Au ∈ Rn
++ and u ∈ Rn \ Rn

+. Letting
I = supp≥0(u), J = [1:n] \ I 6= ∅ and y = (−uJ )−J ∈ Rn

+, we have

yTAy = −yTAu + yTA(u + y) = − yT
J︸︷︷︸

∈R|J |
++

(Au)J︸ ︷︷ ︸
∈R|J |

++

− uT
I︸︷︷︸

∈R|I|
+

(−Ay)I︸ ︷︷ ︸
∈R|I|

+

< 0.

Corollary 6.4. Consider a Z-matrix A ∈ COPn and let U be as in Theorem 4.6. Then
for all u ∈ U with supp(u) ⊆ supp≥0(Au) we have supp(u) = supp≥0(Au), and thus
|U| ≥ |P[n]| = 2n − 1.

Although this result is disappointing, Lemmas 6.1 to 6.3 also give us some possible
solutions to the problem at hand.

Given a matrix A ∈ Sn with all off-diagonal entries nonpositive, from Lemma 6.2
we see that we can check if it is copositive by checking if it is positive semidefinite,
which can be done very efficiently, for example using the Cholesky algorithm if the
matrix is nonsingular. The certificate for being copositive or not, would however be in
quite a different form to the certificates considered in the rest of this paper.

An alternative method is given by Algorithm 3, which we can trivially see gives the
claimed output by considering Lemmas 6.1 to 6.3.

Algorithm 3 Generating certificates to confirm whether or not a matrix with all
off-diagonal entries nonpositive is copositive.

Input: X ∈ Sn such that aij ≤ 0 for all i 6= j.
Output: Either:

i. v ∈ Rn
+ such that vTXv < 0 (certifying that A /∈ COPn), or

ii. u ∈ Rn
++ such that Xu ∈ Rn

+ (certifying that X ∈ COPn).
1: Let u = 0n and let I1, . . . , Im ⊆ [1:n] be the connected components of GX.
2: for i ∈ [1:m] do
3: Input XI into Algorithm 2 and let w ∈ R|I| be the output.
4: if w ∈ R|Ii|++ then
5: u← u + w−Ii
6: else if AIiw ∈ R|Ii|++ then
7: Let v ∈ Rn

+ such that vi = max{0,−(w−Ii)i} for all i and exit.
8: else
9: Let y ∈ R|Ii|++ be an eigenvector of X|Ii|, let v = y−Ii and exit.

10: end if
11: end for

This second method can be extended to more general matrices using the following
result, which has a constructive proof for generating such certificates.

Theorem 6.5. For X ∈ Sn we have that X ∈ COPn if and only if there exist sets
U ⊆ Rn \ (−Rn

+) and W ⊆ Rn
+ such that
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i. ∀u ∈ U ∪W we have supp(u) ⊆ supp≥0(Xu).
ii. ∀u ∈ W and all i, j ∈ supp(u) with i 6= j we have xij ≤ 0.

iii. ∀I ∈ P[n] s.t. XI is a Z-matrix, ∃u ∈ W with I ⊆ supp(u).
iv. ∀I ∈ P[n] s.t. XI is not a Z-matrix, ∃u ∈ (W∪U) with supp(u) ⊆ I ⊆ supp≥0(Xu).

Proof. Consider an arbitrary I ∈ P[n].
First suppose that XI is not a Z-matrix. If X ∈ COPn then by Lemma 4.4,

∃y ∈ RI \ (−R|I|+ ) such that XIy ∈ R|I|+ (which we can find using Algorithm 2),
and letting u = y−I ∈ Rn \ (−Rn

+) we have supp(u) ⊆ I ⊆ supp≥0(Xu). If on the
other hand ∃u ∈ Rn\(−Rn

+) such that supp(u) ⊆ I ⊆ supp≥0(Xu) then by considering

uI , from Lemma 4.4 we see that either XI ∈ COP |I| or |I| ≥ 2 and ∃i ∈ I such that
XI\{i} /∈ COP |I|.

Now suppose that XI is a Z-matrix. If X ∈ COPn, then letting J be a maximal
set such that I ⊆ J ⊆ [1 :n] and XJ is a Z-matrix, by Lemma 6.2, ∃y ∈ R|J |++ such

that XJy ∈ R|J |++ (which we can find using Algorithm 3) and letting u = y−J ∈ Rn
+,

we have I ⊆ supp(u) ⊆ supp≥0(Xu). If on the other hand ∃u ∈ Rn
+ such that

I ⊆ supp(u) =: J , XJ is a Z-matrix and XJuJ = (Xu)J ∈ R|J |+ , then by Lemma 6.2,
we have XJ ∈ COP |J |, and thus also XI ∈ COP |I|.

We thus see that if X ∈ COPn then such sets U ,W exist. Conversely, if such
sets U ,W exist then @I ∈ P[n] such that XI /∈ COP |I| and either |I| = 1 or
XI\{i} ∈ COP |I|−1 for all i ∈ I, and thus X ∈ COPn.

Note that as before, checking such a certificate only involves matrix multiplication,
checking inequality relations and checking inclusion relations.

example 6.6. Consider the matrix

X =


3 −1 −1 −1 −1
−1 3 −1 −1 −1
−1 −1 3 −1 3
−1 −1 −1 3 3
−1 −1 3 3 3


A minimal certificate for X being copositive in the form from Theorem 4.6 is as

follows, where we have |U| = 19:

U =

{∑
i∈I

ei : ∅ 6= I ⊆ [1:4]

}
∪

{
e5 +

∑
i∈I

ei : I ⊆ [1:2]

}
.

A certificate for X being copositive in the form from Theorem 6.5 is as follows,
where we have |U| = 2, |W| = 2 and |U|+ |W| = 4:

U = {e5 − e3, e5 − e4} , W = {e1 + e2 + e3 + e4, e1 + e2 + e5} .

This type of certificate could however still result in an exponentially sized certificate,
as we will see in the next example.

example 6.7. This example is an adaptation of the result for the maximum number of
maximal cliques possible in a simple graph from [31].
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For n ∈ 3N such that n > 3, let Ik = {3k − 2, 3k − 1, 3k} for k ∈ [1:n/3], and let
X ∈ Sn be such that

xij =

{
n/3− 1 > 0 if i, j ∈ Ik for some k ∈ [1:n/3],

−1 < 0 otherwise.

A certificate for X being copositive in the form from Theorem 4.6 is given by the set
U =

{∑
i∈J ei : |J ∩ Ik| ≤ 1 for all k ∈ [1:n/3]

}
\{0n}, for which we have |U| = 4n/3−1.

For a subset J ⊆ [1:n] we have that XJ is a maximal principal submatrix of X with
all off diagonal entries negative if and only if |J ∩ Ik| = 1 for all k ∈ [1 :n/3]. There
are 3n/3 such principal submatrices, implying that if U ,W certifies X to be copositive
then |U|+ |W| ≥ 3n/3.

We saw in Lemma 5.2 that considering the certificate U from Theorem 4.6, we have
VX
min ⊆ R++U . However in the following example we see that for our new certificate

from Theorem 6.5, in general we have VX
min * R++(U ∪W).

example 6.8. Consider the matrix

X =

 1 −1 0
−1 1 0
0 0 1

 .

A certificate for X being copositive in the form from Theorem 6.5 is given byW = {13}
and U = ∅. However we have VX

min = R++{e1 + e2}.
We can instead recover VX

min through the following result:

Theorem 6.9. Consider X ∈ COPn and U ,W as in Theorem 6.5. Now let

V̂ =

µu :

u ∈ U ∩ Rn
+,

µ ∈ R++ and

uTXu = 0

∪
µ(wI)−I :

w ∈ W , I is a conected

component of GXsupp(w)
,

(Xw)I = 0|I| and µ ∈ R++

 .

Then VX
min ⊆ V̂ ⊆ VX and VX

min =
{

u ∈ V̂ : @w ∈ V̂ with supp(w) $ supp(u)
}
.

Proof. It is trivial to see that V̂ ⊆ VX, and we will now show that VX
min ⊆ V̂ . From

this the characterisation of VX
min directly follows.

Consider an arbitrary v ∈ VX
min and let I = supp(v). We have vI ∈ R|I|++ and from

[13, Lemmas 2.3 and 2.5] we have Xv ∈ Rn
+ and (Xv)I = 0|I|. If XI is not a Z-matrix,

then similarly to in the proof of Lemma 5.2, we can show that there exists a u ∈ U∩Rn
+

such that uTXu = 0 and v ∈ R++{u}. From now on suppose that XI is a Z-matrix.

We then have that ∃w ∈ W such that I ⊆ supp(w) =: J and XJwJ = (Xw)J ∈ R|J |+

and XJ is also a Z-matrix.
We will first show that I is a connected component of GXJ . Suppose for the sake

of contradiction that I is not a connected component of GXJ . This is equivalent to at
least one of the following two cases holding, and for both cases we get a contradiction:

1. ∃(i, j) ∈ I × (J \ I) such that xij < 0: Then we get the contradiction

0 ≤ (Xv)j =
∑
k∈I

xjk︸︷︷︸
≤0

vk︸︷︷︸
>0

≤ xji︸︷︷︸
<0

vi︸︷︷︸
>0

< 0.
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2. ∃Î ∈ P[n] such that Î $ I and xij = 0 for all (i, j) ∈ Î × (I \ Î): Then letting
v̂ = (vÎ)−Î ∈ Rn

+ \ {0n} we have that v − v̂ ∈ Rn
+ and

0 ≤ v̂TXv̂ = vTXv︸ ︷︷ ︸
=0

− (v − v̂)TX(v − v̂)︸ ︷︷ ︸
≥0

−2vTX(v − v̂) ≤ −2
∑
i∈Î

j∈I\Î

xij︸︷︷︸
=0

vivj = 0.

Therefore (v − v̂) ∈ VX, contradicting the claim that v ∈ VX
min

The following then implies that (Xw)I = 0|I|:

0 = wT
I (Xv)I = wTXv −wT

J\I (Xv)J\I︸ ︷︷ ︸
=0|J\I|

≥ vT
I︸︷︷︸

∈R|I|
++

(Xw)I︸ ︷︷ ︸
∈R|I|

+

≥ 0.

Now letting ŵ = (wI)−I ∈ Rn
+ \ {0n}, we have supp(ŵ) = I and

0 = (Xw)i =
∑
j∈I

xijwj +
∑

j∈J\I

xij︸︷︷︸
=0

wj = (XIwI)i = (XIŵI)i for all i ∈ I.

Therefore XIŵI = 0|I|, and by [23, Lemma 3.7] this implies that ŵI ∈ R++{vI}.
Therefore ŵ ∈ R++{v}, completing the proof.

7 Some Extremal Copositive matrices of Order 6

We will now demonstrate the combined power of the results of this paper together with
those from [15], using the results of these papers to give what as far as we are aware
is a newly discovered set of extremal copositive matrices of order 6. In particular
we will consider copositive matrices corresponding to case 9 of Hildebrand’s list of
possible minimal zero patterns for extremal elements of COP6 [24]. After permuting
the indices and multiplying the matrix before and after by a positive definite diagonal
matrix (see e.g. [10, Theorems 4.3(iv) and 4.6(iv)]), this is equivalent to considering
matrices X ∈ COP6 with xii = 1 for all i such that

{supp(v) : v ∈ VX
min} =

2⋃
i=1

{
{i, i+ 4}

}
∪

4⋃
i=1

{
{i, i+ 1, i+ 2}

}

Using the results of [13] it can be seen that there exists θ ∈ R5 and ψ ∈ R4 such
that

X =


1 − cos θ1 cos(θ1 + θ2) cosψ1 −1 cosψ4

− cos θ1 1 − cos θ2 cos(θ2 + θ3) cosψ2 −1
cos(θ1 + θ2) − cos θ2 1 − cos θ3 cos(θ3 + θ4) cosψ3

cosψ1 cos(θ2 + θ3) − cos θ3 1 − cos θ4 cos(θ4 + θ5)
−1 cosψ2 cos(θ3 + θ4) − cos θ4 1 − cos θ5

cosψ4 −1 cosψ3 cos(θ4 + θ5) − cos θ5 1

 ,

0 < θi for all i ∈ [1:5], θi + θi+1 < π for all i ∈ [1:4], 0 ≤ ψi < π for all i ∈ [1:4].

14



We will first show that, given these restrictions on θ,ψ, we have that X ∈ COP6 if
and only if

θ ∈ R5
++, ψ ∈ R4

+,

ψ1 ≤ θ4, ψ3 ≤ θ2, max{ψ2, ψ4} ≤ min{θ1, θ5},
θ1 + θ2 + θ3 + θ4 ≤ π, θ2 + θ3 + θ4 + θ5 ≤ π.

 (1)

We will then show that X is an extremal copositive matrix (i.e. X ∈ COPn and if
A,B ∈ COPn with X = A + B then A,B ∈ R+{X}) if and only if

θ ∈ R5
++, ψ ∈ R4, θ1 + θ5 6= π,

ψ1 = θ4, ψ3 = θ2, ψ2 = ψ4 = min{θ1, θ5},
θ1 + θ2 + θ3 + θ4 < π, θ2 + θ3 + θ4 + θ5 < π.

 (2)

All the calculations of this paper can be checked using a matlab code available
at http://dickinson.website.

7.1 Necessary for copositivity

First we will show that the conditions (1) are necessary for X to be copositive. If
X ∈ COP6 then for i ∈ [1 : 2] it can be seen that (ei + ei+4) ∈ VX and thus from [1,
p.200] we have X(ei + ei+1) ∈ R6

+ for all i ∈ [1 : 2]. We then have that (1) follows
directly from these inequalities and the requirements on θ,ψ (using well known results
on the sine and cosine functions).

7.2 Sufficient for copositivity

We will now use the results of this paper to show that (1) holding implies that
X ∈ COP6. To do this we let

vi = sin θi+1ei + sin(θi + θi+1)ei+1 + sin θiei+2 ∈ R6
+ for i ∈ [1:4],

U =
⋃

i,j∈[1:6]:
i<j

{ei + ej} ∪
4⋃

i=1

{vi}.

Note that U ⊆ R6
+ \ {06} when (1) holds, and that |U| = 25 < 63 = 26 − 1.

Using well known results for the sine and cosine functions, for all θ,ψ satisfying (1)
we have Xvi ∈ R6

+ and (Xvi){i,i+1,i+2} = 03 for all i ∈ [1:4]. In Table 2 we will consider
some related properties for the (ei + ej)’s.

Using these results and Theorem 4.6, it then directly follows that X ∈ COP6 for
all θ,ψ satisfying (1). To aid in seeing this, in Table 3, for each index set I ∈ P[6] we
give a u ∈ U such that supp(u) ⊆ I ⊆ supp≥0(Xu).

7.3 Extremal Matrix

Consider θ,ψ satisfying (1) and X as defined at the start of this section. Without loss
of generality (due to symmetry) we will assume that θ1 ≤ θ5.

First suppose that either ψ1 < θ4 or ψ3 < θ2 or min{ψ2, ψ4} < θ1 = min{θ1, θ5}.
Then we can strictly increase at least one of the elements of ψ such that (1) still holds

15
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i ∈ . . . j ⊆ supp≥0(X(ei + ej)) (ei + ej)
TX(ei + ej)

[1:6] i {i} 4 > 0
[1:5] i+ 1 {i− 2, i, i+ 1, i+ 3} ∩ [1:6] 2(1− cos θi) > 0
[1:4] i+ 2 {i− 3, i, i+ 2, i+ 5} ∩ [1:6] 2(1 + cos(θi + θi+1)) > 0
[1:3] i+ 3 {i, i+ 3} 2(1 + cosψi) > 0
[1:2] i+ 4 [1:6] 0
{1} 6 {1, 6} 2(1 + cosψ4) > 0

Table 2: Some properties for the (ei + ej)’s which we will use to show copositivity of
X in Section 7. The set of indices that must be contained in the nonnegative support
of X(ei + ej) (i.e. the column “⊆ supp≥0(X(ei + ej))”) follow directly from (1), along
with well known results for the sine and cosine functions.

I u
I = {i} for i ∈ [1:6] 2ei

I = {i, j} for i, j ∈ [1:6], i < j ei + ej

{i, i+ 4} ⊆ I ⊆ [1:6] for i ∈ [1:2] ei + ei+4

{i, i+ 1, i+ 2} ⊆ I ⊆ [1:6] for i ∈ [1:4] vi

I = {i, i+ 1, i+ 3} for i ∈ [1:3] ei + ei+1

I = {i, i+ 2, i+ 3} for i ∈ [1:3] ei+2 + ei+3

I = {1, 3, 6} e1 + e3

I = {1, 4, 6} e4 + e6

I = {1, 3, 4, 6} e3 + e4

Table 3: This table summarises the index sets I ∈ P[6] and a corresponding u ∈ U
such that we have supp(u) ⊆ I ⊆ supp≥0(Xu) for the matrix X in Section 7, where
θ,ψ satisfy (1).

to give a new matrix X̂ ∈ COP6 with X − X̂ ∈ N 6 \ (R{X}), and thus X can not be
extremal in this case.

From now on we assume that (1) holds with all of the ψi’s at their maximum possible
values (and θ1 ≤ θ5). In other words, we will assume that

θ ∈ R5
++, ψ ∈ R4, ψ1 = θ4, ψ3 = θ2,

ψ2 = ψ4 = θ1 ≤ θ5, θ2 + θ3 + θ4 + θ5 ≤ π.

}
(3)

From the results in [15], in particular Theorem 17, we have the following result.

Lemma 7.1. Consider a matrix X ∈ COP6 such that xjk 6= 0 for some (j, k) ∈ [1:6]2.
Then X is extremal if and only if @B ∈ Sn \ {O} with bjk = 0 and (Bv)i = 0 for all
v ∈ VX

min, i ∈ [1:6] with (Xv)i = 0.

Consider an arbitrary B ∈ S6 such that b11 = 0 and (Bv)i = 0 for all v ∈ VX
min,

i ∈ [1:6] with (Xv)i = 0. We will show that provided (3) holds, there exists a nonzero
solution B to this if and only if (2) holds, completing the proof that X is extremal if
and only if (2) holds.

From the discussions so far in this section, and using Lemma 5.2, along with well
known results on the sine and cosine functions, provided that (3) holds, we have

VX
min = {µ(ei + ei+4) : i ∈ [1:2], µ > 0} ∪ {µvi : i ∈ [1:4], µ > 0},
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(Xvi)j = 0 for i ∈ [1:4], j ∈ {i, i+ 1, i+ 2}, (Xv1)6 = 0,

(X(e1 + e5))i = 0 for i ∈ {1, 2, 4, 5}, (X(e2 + e6))i = 0 for i ∈ {1, 2, 3, 6},

(Xv2)6/ sin θ2 = (X(e2 + e6))4 = cos(θ2 + θ3) + cos(θ4 + θ5) ≥ 0

with equality iff θ2 + θ3 + θ4 + θ5 = π,

(Xv3)6 = (Xv4)3 = sin θ4 (cos θ2 + cos(θ3 + θ4 + θ5)) ≥ 0

with equality iff θ2 + θ3 + θ4 + θ5 = π,

(Xv4)1/ sin θ4 = (X(e1 + e5))6 = (X(e2 + e6))5 = cos θ1 − cos θ5 ≥ 0

with equality iff θ1 = θ5,

(Xv4)2 = sin θ5 (cos(θ2 + θ3) + cos(θ4 + θ5)) + sin(θ4 + θ5)(cos θ1 − cos θ5) ≥ 0

with equality iff θ1 = θ5 = π − θ2 − θ3 − θ4,

(Xv1)4 = (Xv2)1 = sin θ2 (cos(θ1 + θ2 + θ3) + cos θ4) ≥ 0

with equality iff θ1 = θ5 = π − θ2 − θ3 − θ4,

(Xv1)5/ sin θ1 = (Xv3)1/ sin θ4 = (X(e1 + e5))3 = cos(θ1 + θ2) + cos(θ3 + θ4) ≥ 0

with equality iff θ1 = θ5 = π − θ2 − θ3 − θ4,

(Xv2)5 = (Xv3)2 = sin θ3 (cos θ1 + cos(θ2 + θ3 + θ4)) ≥ 0

with equality iff θ1 = θ5 = π − θ2 − θ3 − θ4.

By considering the following requirements on B we get that each element of B can
be given as a unique linear function of b12 and b22:

B ∈ S6, b11 = 0,

(Bvi)j = 0 for all ∈ [1:4], j ∈ {i, i+ 1, i+ 2},

(B(e1 + e5))i = 0 for all i ∈ {1, 2, 4},

(B(e2 + e6))i = 0 for all i ∈ {1, 2, 3}.


(4)

In particular we have

b15 = 0, b26 = −b22,

b55 =
sin
(∑4

j=1 θj

)
sin2 θ1

(
2b12 sin

(
4∑

j=2

θj

)
+ b22 sin

(
4∑

j=1

θj

))
,

b66 =
sin
(∑5

j=1 θj

)
sin2 θ1

(
2b12 sin

(
5∑

j=2

θj

)
+ b22 sin

(
5∑

j=1

θj

))
.

Combining this with the requirements that (B(e1 + e5))5 = 0 = (B(e2 + e6))6 we get
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that M

(
2b12
b22

)
= 02 where

M =

sin
(∑4

j=1 θj

)
sin
(∑4

j=2 θj

)
sin2

(∑4
j=1 θj

)
sin
(∑5

j=1 θj

)
sin
(∑5

j=2 θj

)
sin2

(∑5
j=1 θj

)
− sin2 θ1

 ,

detM = − sin(θ1) sin(θ1 + θ5) sin

(
4∑

j=1

θj

)
sin

(
5∑

j=2

θj

)
.

We now finish by considering 3 cases:

1. If (3) holds with θ1 = θ5 = π − θ2 − θ3 − θ4, then letting b12 = 0 and b22 = 1,
and letting the other elements of B be given by the equations (4) it can be shown
that Bv = 06 for all v ∈ VX

min, and thus X is not extremal in this case.

2. If (3) holds with θ1 < π − θ2 − θ3 − θ4 and (π − θ5) ∈ {θ1, θ2 + θ3 + θ4}, then

letting b12 = sin
(∑4

j=1 θj

)
6= 0 and b22 = −2 sin

(∑4
j=2 θj

)
6= 0, and letting the

other elements of B be given by the equations (4) it can be shown that (Bv)i = 0
for all v ∈ VX

min and i ∈ [1:6] with (Xvi) = 0, and thus X is also not extremal in
this case.

3. If (3) holds with θ1 + θ5 6= π and θ1 ≤ θ5 < π − θ2 − θ3 − θ4 then we have
detM 6= 0, and thus b12 = b22 = 0. Therefore B = O in this case. This completes
the proof that X is extremal if and only if (2) holds.

8 Conclusion

In this article, we introduced a new way of certifying a matrix to be copositive. This
certificate is constructed through solving finitely many linear systems, and is checked by
checking finitely many linear inequalities. In some cases this certificate can be relatively
small, even when the matrix generates an extreme ray of the copositive cone which is
not positive semidefinite plus nonnegative. Unfortunately, in general the certificate can
be exponentially large, however this is only to be expected as the problem of checking
copositivity is a co-NP-complete problem. This certificate is useful not only in proving
the matrix to be copositive, but also in generating its set of minimal zeros which can
then be used to analyse properties of this copositive matrix.
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A Proofs for Section 6

Proof of Lemma 6.1. Let µ = max{aii : i ∈ [1:n]} and let B = µIn − A. We have that
B ∈ N n and GB = GA is connected. Therefore, by the Perron-Frobenius theorem [2,
Theorems 2.1.1 and 2.1.4], there exists an eigenvector w ∈ Rn

++ of B with corresponding
eigenvalue ν > 0 of geometric multiplicity one such that all the other eigenvalues of
B are between −ν and ν. Therefore w is an eigenvector of A with corresponding
eigenvalue λ := µ − ν of geometric multiplicity one, with all other eigenvalues of A
being between λ and λ+ 2ν.

If λ ≥ 0 then we have A ∈ PSDn ⊆ COPn. Conversely, if λ < 0 then w ∈ Rn
++

and wTAw = λ‖w‖22 < 0, implying that A /∈ COPn.

Proof of Lemma 6.2. It was shown in [35, Theorem 4] that 2 implies 1.
Now suppose that 3 holds. Then for all ε > 0 we have that (A + εI) has all off-

diagonal entries nonpositive and (A + εI)x ∈ Rn
++. By the results of [2, Chapter 6], in

particular case (I27), we thus have that A + εI is a positive definite matrix. As the set
of positive semidefinite matrices is closed, this implies that 2 holds.

Finally suppose that 1 holds. Let I1, . . . , Im be the connected components of GA.
For all i ∈ [1 : m] we have AIi ∈ COP |Ii|, and thus by Lemma 6.1 there exists an

eigenvector of AIi given by yi ∈ R|Ii|++ with corresponding eigenvalue λi ≥ 0. From
the definition of Ii, we thus have supp(Ayi

−Ii) ⊆ Ii and thus Ayi
−Ii ∈ Rn

+. Letting
x =

∑m
i=1 yi

−SIi ∈ Rn
++, we then have Ax =

∑m
i=1 Ayi

−SIi ∈ Rn
+.
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