Case 43

Roland Hildebrand

March 2, 2014
After the permutation (125634) of the indices the minimal zero support set becomes $\{1,2,5\},\{1,2,3\}$, $\{2,3,4\},\{3,4,5\},\{1,4,5\},\{3,4,6\},\{1,2,6\},\{1,4,6\}$. By possibly exchanging the indices 5,6 we may assume that $A_{16} \geq A_{15}$. The principal submatrices $A_{\{12345\}}$ and $A_{\{12346\}}$ are T-matrices, and there exist angles $\phi_{1}, \ldots, \phi_{5}, \xi_{1}, \ldots, \xi_{5}>0$ such that $\sum_{i=1}^{5} \phi_{i}<\pi$ and

$$
A=\left(\begin{array}{cccccc}
1 & -\cos \phi_{4} & \cos \left(\phi_{4}+\phi_{5}\right) & \cos \left(\phi_{2}+\phi_{3}\right) & -\cos \phi_{3} & -\cos \xi_{1} \\
-\cos \phi_{4} & 1 & -\cos \phi_{5} & \cos \left(\phi_{1}+\phi_{5}\right) & \cos \left(\phi_{3}+\phi_{4}\right) & -\cos \xi_{2} \\
\cos \left(\phi_{4}+\phi_{5}\right) & -\cos \phi_{5} & 1 & -\cos \phi_{1} & \cos \left(\phi_{1}+\phi_{2}\right) & -\cos \xi_{3} \\
\cos \left(\phi_{2}+\phi_{3}\right) & \cos \left(\phi_{1}+\phi_{5}\right) & -\cos \phi_{1} & 1 & -\cos \phi_{2} & -\cos \xi_{4} \\
-\cos \phi_{3} & \cos \left(\phi_{3}+\phi_{4}\right) & \cos \left(\phi_{1}+\phi_{2}\right) & -\cos \phi_{2} & 1 & -\cos \xi_{5} \\
-\cos \xi_{1} & -\cos \xi_{2} & -\cos \xi_{3} & -\cos \xi_{4} & -\cos \xi_{5} & 1
\end{array}\right) .
$$

The zeros with support $\{3,4,6\},\{1,2,6\},\{1,4,6\}$ lead to the conditions

$$
\phi_{1}+\xi_{3}+\xi_{4}=\phi_{4}+\xi_{1}+\xi_{2}=\pi-\phi_{2}-\phi_{3}+\xi_{1}+\xi_{4}=\pi .
$$

Resolving with respect to ξ_{1}, \ldots, ξ_{4}, we obtain

$$
\xi_{1}=\phi_{3}+\xi, \xi_{2}=\pi-\phi_{3}-\phi_{4}-\xi, \xi_{3}=\pi-\phi_{1}-\phi_{2}+\xi, \xi_{4}=\phi_{2}-\xi
$$

where $\xi \in\left[0, \phi_{2}\right)$ is another parameter.
Since A is irreducible with respect to E_{56}, there must exist a minimal zero u with support equal to one of the sets $\{3,4,5\},\{1,2,5\},\{1,4,5\},\{3,4,6\},\{1,2,6\},\{1,4,6\}$ such that $(A u)_{5}=(A u)_{6}=0$. Each of the relations leads to the same condition $\cos \xi+\cos \xi_{5}=0$. We hence obtain $\xi_{5}=\pi-\xi$. The submatrices $A_{\{1256\}}, A_{\{1456\}}, A_{\{3456\}}$ are then positive semi-definite.

Lemma 0.1. Let A be a real symmetric $n \times n$ matrix with the following properties. The principal submatrix $A_{\{1, \ldots, n-1\}}$ is positive semi-definite. There exists an index set $J \subset\{1, \ldots, n\}$ such that $n \in J$ and A_{J} is positive semi-definite. Moreover, for every index $i \notin J$, there exists a zero $u^{i} \in \mathbb{R}_{+}^{n}$ such that $u_{n}^{i}=0, \operatorname{supp} u^{i} \backslash J=\{i\}$, and such that $\left(u^{i}\right)^{T} A u^{i}=0,\left(A u^{i}\right)_{n} \geq 0$. Then $A \in S_{+}(n)+\mathcal{N}_{n}$.

Proof. Suppose without restriction of generality that there exists a vector $v \in \mathbb{R}_{+}^{n}$ with $v_{n}>0$ and $\operatorname{supp} v \subset J$ such that $v^{T} A v=0$. Otherwise we may subtract a positive number from the element $A_{n n}$ to enforce this condition.

Let B be a partial positive semi-definite matrix whose principal submatrices $B_{\{1, \ldots, n-1\}}, B_{J}$ coincide with those of A and whose other elements are undetermined. Then B has a positive semi-definite completion. This completion is unique and determined by the relation $B v=0$. Note that this relation can be resolved with respect to the undetermined elements due to the relation $v_{n} \neq 0$. We shall denote the positive semi-definite completion also by B.

Let now $i \notin J$. Then we have $\left(u^{i}\right)^{T} B u^{i}=\left(u^{i}\right)^{T} A u^{i}=0$, and hence $B u^{i}=0$. We have $0 \leq\left(A u^{i}\right)_{n}=$ $\left((A-B) u^{i}\right)_{n}=\left(A_{n i}-B_{n i}\right) u_{i}^{i}$, which in view of $u_{i}^{i}>0$ yields $A_{n i} \geq B_{n i}$. Hence the difference $A-B$ is a nonnegative matrix, which completes the proof of the lemma.

Consider now the submatrix A_{23456}. The principal submatrices A_{3456}, A_{234} are positive semidefinite, and there exist zeros $u^{345}, u^{346} \in \mathbb{R}_{+}^{6}$ of A with supports $\{345\},\{346\}$, respectively. Since A_{2345}, A_{2346} are copositive, we have $\left(A u^{345}\right)_{2} \geq 0,\left(A u^{346}\right)_{2} \geq 0$. Application of the lemma leads to $A_{23456} \in S_{+}(5)+\mathcal{N}_{5}$.

Consider now the submatrix A_{12356}. The principal submatrices A_{1256}, A_{123} are positive semidefinite, and there exist zeros $u^{125}, u^{126} \in \mathbb{R}_{+}^{6}$ of A with supports $\{125\},\{126\}$, respectively. Since A_{1235}, A_{1236} are copositive, we have $\left(A u^{125}\right)_{3} \geq 0,\left(A u^{126}\right)_{3} \geq 0$. Application of the lemma leads to $A_{12356} \in S_{+}(5)+\mathcal{N}_{5}$.

Consider now the submatrix A_{13456}. The principal submatrices A_{1456}, A_{345} are positive semidefinite, and there exist zeros $u^{145}, u^{146} \in \mathbb{R}_{+}^{6}$ of A with supports $\{145\},\{146\}$, respectively. Since
A_{1345}, A_{1346} are copositive, we have $\left(A u^{145}\right)_{3} \geq 0,\left(A u^{146}\right)_{3} \geq 0$. Application of the lemma leads to $A_{13456} \in S_{+}(5)+\mathcal{N}_{5}$.

Consider now the submatrix A_{12456}. The principal submatrices A_{1456}, A_{125} are positive semidefinite, and there exist zeros $u^{145}, u^{146} \in \mathbb{R}_{+}^{6}$ of A with supports $\{145\},\{146\}$, respectively. Since A_{1245}, A_{1246} are copositive, we have $\left(A u^{145}\right)_{2} \geq 0,\left(A u^{146}\right)_{2} \geq 0$. Application of the lemma leads to $A_{12456} \in S_{+}(5)+\mathcal{N}_{5}$.

Hence all principal 5×5 submatrices of A are copositive. If now A is not copositive, then the set $\left\{u \in \mathbb{R}_{+}^{n} \mid u^{T} A u<0\right\}$ must be confined to the interior of \mathbb{R}_{+}^{6}. This is possible only if A is of signature +++++- with the cones of elements $\left\{u \in \mathbb{R}^{6} \mid u^{T} A u \leq 0\right\}$ confined to $\pm \mathbb{R}_{+}^{6}$. Thus all 5×5 principal submatrices of A must be positive semi-definite. But then A_{12345} is positive semi-definite and $\sum_{i=1}^{5} \phi_{i}=\pi$, a contradiction. Hence $A \in \mathcal{C}_{6}$.

Finally, we shall show that A is extremal. The zeros of A are given by the columns of the matrix

$$
\left(\begin{array}{cccccccc}
\sin \phi_{5} & 0 & 0 & \sin \phi_{2} & \sin \left(\phi_{3}+\phi_{4}\right) & 0 & \sin \left(\phi_{2}-\xi\right) & \sin \left(\phi_{3}+\phi_{4}+\xi\right) \\
\sin \left(\phi_{4}+\phi_{5}\right) & \sin \phi_{1} & 0 & 0 & \sin \phi_{3} & 0 & 0 & \sin \left(\phi_{3}+\xi\right) \\
\sin \phi_{4} & \sin \left(\phi_{1}+\phi_{5}\right) & \sin \phi_{2} & 0 & 0 & \sin \left(\phi_{2}-\xi\right) & 0 & 0 \\
0 & \sin \phi_{5} & \sin \left(\phi_{1}+\phi_{2}\right) & \sin \phi_{3} & 0 & \sin \left(\phi_{1}+\phi_{2}-\xi\right) & \sin \left(\phi_{3}+\xi\right) & 0 \\
0 & 0 & \sin \phi_{1} & \sin \left(\phi_{2}+\phi_{3}\right) & \sin \phi_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sin \phi_{1} & \sin \left(\phi_{2}+\phi_{3}\right) & \sin \phi_{4}
\end{array}\right) .
$$

For these zeros u we have $(A u)_{J}=0$ for
$J=\{1,2,3\},\{2,3,4\},\{3,4,5,6\},\{1,4,5,6\},\{1,2,5,6\},\{3,4,5,6\},\{1,4,5,6\},\{1,2,5,6\}$, respectively. Let C be a copositive matrix having these zeros and satisfying this linear system. The first 5 zeros imply that C_{12345} is proportional to the T-matrix A_{12345}. The zeros $1,2,6,7,8$ imply that C_{12346} is proportional to the T-matrix A_{12346}. By multiplication of C with a positive constant we achieve that these submatrices of C are equal to the corresponding submatrices of A. Finally, if u is the third zero, then $(C u)_{6}=0$ implies $C_{56}=A_{56}$. Hence $C=A$ and A is extremal.

Note that if we assume $A_{16} \leq A_{15}$, then we obtain $\xi \in\left(-\phi_{3}, 0\right]$, the rest of the discussion being similar. Hence the variety of extremal exceptional copositive matrices corresponding to this case is given by

$$
\left(\begin{array}{cccccc}
1 & -\cos \phi_{4} & \cos \left(\phi_{4}+\phi_{5}\right) & \cos \left(\phi_{2}+\phi_{3}\right) & -\cos \phi_{3} & -\cos \left(\phi_{3}+\xi\right) \\
-\cos \phi_{4} & 1 & -\cos \phi_{5} & \cos \left(\phi_{1}+\phi_{5}\right) & \cos \left(\phi_{3}+\phi_{4}\right) & \cos \left(\phi_{3}+\phi_{4}+\xi\right) \\
\cos \left(\phi_{4}+\phi_{5}\right) & -\cos \phi_{5} & 1 & -\cos \phi_{1} & \cos \left(\phi_{1}+\phi_{2}\right) & \cos \left(\phi_{1}+\phi_{2}-\xi\right) \\
\cos \left(\phi_{2}+\phi_{3}\right) & \cos \left(\phi_{1}+\phi_{5}\right) & -\cos \phi_{1} & 1 & -\cos \phi_{2} & -\cos \left(\phi_{2}-\xi\right) \\
-\cos \phi_{3} & \cos \left(\phi_{3}+\phi_{4}\right) & \cos \left(\phi_{1}+\phi_{2}\right) & -\cos \phi_{2} & 1 & \cos \xi \\
-\cos \left(\phi_{3}+\xi\right) & \cos \left(\phi_{3}+\phi_{4}+\xi\right) & \cos \left(\phi_{1}+\phi_{2}-\xi\right) & -\cos \left(\phi_{2}-\xi\right) & \cos \xi & 1
\end{array}\right)
$$

with $\phi_{i}>0, \sum_{i=1}^{5} \phi_{i}<\pi, \xi \in\left(-\phi_{3}, \phi_{2}\right)$.

