Case 2

Roland Hildebrand
December 27, 2013
The supports of the minimal zeros are given by $\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{4,5,6\}$. This determines a number of off-diagonal elements, leading to matrices of the form

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & * \\
-1 & 1 & 1 & 1 & * & -1 \\
-1 & 1 & 1 & 1 & -\cos \phi_{1} & -\cos \phi_{2} \\
1 & -1 & * & -\cos \phi_{1} & 1 & -\cos \phi_{3} \\
1 & * & -1 & -\cos \phi_{2} & -\cos \phi_{3} & 1
\end{array}\right), \quad \phi_{1}+\phi_{2}+\phi_{3}=\pi
$$

The asterisk denotes still unknown elements. Here $\phi_{k}>0$, and the minimal zero with support $\{4,5,6\}$ is given by $\left(0,0,0, \sin \phi_{3}, \sin \phi_{2}, \sin \phi_{1}\right)^{T}$.

For the pairs $(i, j)=(3,5)$ and $(i, j)=(2,6)$ there does not exist a minimal zero such that $u_{i} u_{j}>0$. Hence there must exist a minimal zero such that $u_{i}+u_{j}>0$ and $(A u)_{i}=(A u)_{j}=0$. For $(i, j)=(3,5)$ this can be the zero with support $\{3,6\}$, in which case $A_{35}=\cos \phi_{3}$, or the zero with support $\{4,5,6\}$, in which case $A_{35}=\frac{\sin \phi_{1}-\sin \left(\phi_{1}+\phi_{2}\right)}{\sin \phi_{2}}$. For $(i, j)=(2,6)$ this can be the zero with support $\{2,5\}$, in which case $A_{26}=\cos \phi_{3}$, or the zero with support $\{4,5,6\}$, in which case $A_{26}=\frac{\sin \phi_{2}-\sin \left(\phi_{1}+\phi_{2}\right)}{\sin \phi_{1}}$. For the other zeros we would get $A_{i j}=-1$, which leads to an additional minimal zero with support $\{i, j\}$ and is hence not possible.

For angles $\xi, \zeta \geq 0, \xi+\zeta \leq \pi$ we have $(\sin \xi \cos \zeta+\cos \xi \sin \zeta)(\cos \zeta-1) \leq 0$ and hence $\sin \xi-$ $\sin (\xi+\zeta) \leq-\sin \zeta \cos (\xi+\zeta)$. It follows that

$$
\begin{aligned}
& A_{35}=\max \left(-\cos \left(\phi_{1}+\phi_{2}\right), \frac{\sin \phi_{1}-\sin \left(\phi_{1}+\phi_{2}\right)}{\sin \phi_{2}}\right)=-\cos \left(\phi_{1}+\phi_{2}\right), \\
& A_{26}=\max \left(-\cos \left(\phi_{1}+\phi_{2}\right), \frac{\sin \phi_{2}-\sin \left(\phi_{1}+\phi_{2}\right)}{\sin \phi_{1}}\right)=-\cos \left(\phi_{1}+\phi_{2}\right) .
\end{aligned}
$$

We obtain

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & \cos \phi_{3} \\
-1 & 1 & 1 & 1 & \cos \phi_{3} & -1 \\
-1 & 1 & 1 & 1 & -\cos \phi_{1} & -\cos \phi_{2} \\
1 & -1 & \cos \phi_{3} & -\cos \phi_{1} & 1 & -\cos \phi_{3} \\
1 & \cos \phi_{3} & -1 & -\cos \phi_{2} & -\cos \phi_{3} & 1
\end{array}\right), \quad \phi_{k}>0, \phi_{1}+\phi_{2}+\phi_{3}=\pi .
$$

All principal submatrices of A not containing an off-diagonal 1 are positive semi-definite. Hence A is copositive by the criterion of Hoffman and Pereira for all ϕ_{k}.

Let B be a matrix in the face of A. Then the zero with support $\{1,2\}$ yields $B_{1 i}+B_{2 i}=0$ for $i=1, \ldots, 5$. Similarly, the zero with support $\{1,3\}$ yields $B_{1 i}+B_{3 i}=0$ for $i=1,2,3,4,6$, the zero with support $\{1,4\}$ yields $B_{1 i}+B_{4 i}=0$ for $i=1,2,3,4$, the zero with support $\{2,5\}$ yields $B_{2 i}+B_{5 i}=0$ for $i=1,2,5,6$, the zero with support $\{3,6\}$ yields $B_{3 i}+B_{6 i}=0$ for $i=1,3,5,6$, and the zero $u=\left(0,0,0, \sin \phi_{3}, \sin \phi_{2}, \sin \phi_{1}\right)^{T}$ yields $(B u)_{i}=0$ for $i=4,5,6$. The only solution of this system of linear equations is A, up to multiplication by a constant. Hence A is also extremal for all $\phi_{k}>0$, $\phi_{1}+\phi_{2}+\phi_{3}=\pi$.

