Case 1

Roland Hildebrand

December 27, 2013
The supports of the minimal zeros are given by $\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{5,6\}$. This determines a number of off-diagonal elements, leading to matrices of the form

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & 1 \\
-1 & 1 & 1 & 1 & 1 & -1 \\
-1 & 1 & 1 & 1 & b_{1} & b_{2} \\
1 & -1 & 1 & b_{1} & 1 & -1 \\
1 & 1 & -1 & b_{2} & -1 & 1
\end{array}\right)
$$

where b_{i} denote still unknown elements. For the pairs $(i, j)=(4,5)$ and $(i, j)=(4,6)$ there does not exist a minimal zero such that $u_{i} u_{j}>0$. Hence there must exist a minimal zero such that $u_{i}+u_{j}>0$ and $(A u)_{i}=(A u)_{j}=0$. In both cases this minimal zero has to be the one with support $\{5,6\}$, otherwise $A_{i j}=-1$ and we would get a minimal zero with support $\{i, j\}$ which is not on the list. Hence $A_{45}+A_{46}=0$ and $A_{45}=-A_{46}=\lambda \in(-1,1)$.

Now note that by setting $\lambda= \pm 1$ we get matrices with ± 1 entries which are copositive by the criterion of Haynsworth and Hoffman. Hence their convex conic combinations are also copositive, and $A \in \mathcal{C}_{6}$ for all $\lambda \in(-1,1)$.

However, setting $\Delta=\frac{d A}{d \lambda}$, we also have $A \pm \varepsilon \Delta \in \mathcal{C}_{6}$ whenever $\lambda \pm \varepsilon \in[-1,1]$, and A is not extremal.

