## Case 4

## Peter J.C. Dickinson (peter.dickinson@cantab.net)

February 10, 2014

This is the case when we consider a matrix $A$ with minimal zero support set:

$$
\begin{equation*}
\{1,2\}, \quad\{1,3\}, \quad\{1,4\}, \quad\{2,5,6\}, \quad\{3,5,6\}, \quad\{4,5,6\} \tag{1}
\end{equation*}
$$

From [Toolbox, Corollary 2.10] without loss of generality we have $\mathcal{V}_{\min }^{A}=\mathbb{R}_{++} \mathcal{W}$, where $\mathcal{W}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}$ and

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1  \tag{2}\\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
0 \\
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right)
\end{array}\right), \quad \mathbf{v}_{5}=\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{0}+\theta_{2}\right)
\end{array}\right), \quad \mathbf{v}_{6}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{3}\right) \\
\sin \left(\theta_{0}+\theta_{3}\right)
\end{array}\right)
$$

and $0<\theta_{3} \leq \theta_{2} \leq \theta_{1}<\pi-\theta_{0}<\pi$.
From [Toolbox, Lemma 3.1], in order for the matrix $A$ to be irreducible with respect to $\mathcal{S}_{+}^{6}$, these vectors must be linearly independent. If $\theta_{1}=\theta_{2}$ then $\mathbf{0}=\sin \left(\theta_{0}\right) \mathbf{v}_{1}-\sin \left(\theta_{0}\right) \mathbf{v}_{2}-\mathbf{v}_{4}+\mathbf{v}_{5}$, and thus $A$ would be reducible with respect to $\mathcal{S}_{+}^{6}$. Similar if $\theta_{2}=\theta_{3}$ then $\mathbf{0}=\sin \left(\theta_{0}\right) \mathbf{v}_{2}-\sin \left(\theta_{0}\right) \mathbf{v}_{3}-\mathbf{v}_{5}+\mathbf{v}_{6}$, and thus $A$ would be reducible with respect to $\mathcal{S}_{+}^{6}$.

From now on we will consider when $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ and we shall also consider the following matrix:

$$
B=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & -\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{3}\right)  \tag{3}\\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{3}\right) & -\cos \left(\theta_{3}\right) \\
-\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{2}\right) & \cos \left(\theta_{0}+\theta_{3}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{3}\right) & -\cos \left(\theta_{1}\right) & -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{3}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) .
$$

We will begin by looking at the following technical results on the set of zeros of $B$.
Lemma 1. For $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ we have $\mathcal{V}_{\text {min }}^{B}=\mathbb{R}_{++} \mathcal{W}$.
Proof. There are trivially no zeros of $B$ with support of cardinality one.
From [Toolbox, Lemma 2.5], up to multiplication by a positive scalar, the zeros of $B$ with support of cardinality two are exactly those given in $\mathcal{W}$.

From [Toolbox, Lemma 2.4], if we wish to find minimal zeros of $B$ whose support have cardinality strictly greater than two, we need only consider the maximal principle submatrices of $B$ with no off-diagonal entries equal to plus or minus one. For $i=1,2,3$ these are the principle submatrices

$$
\begin{aligned}
B_{\{i+1,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{i}\right) & -\cos \left(\theta_{i}\right) \\
\cos \left(\theta_{0}+\theta_{i}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{i}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)^{\top} .
\end{aligned}
$$

and the principle submatrix

$$
\begin{aligned}
& B_{\{1,5,6\}}=\left(\begin{array}{ccc}
1 & -\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{3}\right) \\
-\cos \left(\theta_{0}+\theta_{1}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{3}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 \\
\cos \left(\theta_{0}+\theta_{1}\right) \\
-\cos \left(\theta_{1}\right)
\end{array}\right)\left(\begin{array}{c}
-1 \\
\cos \left(\theta_{0}+\theta_{1}\right) \\
-\cos \left(\theta_{1}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{1}\right) \\
-\sin \left(\theta_{1}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{1}\right) \\
-\sin \left(\theta_{1}\right)
\end{array}\right)^{\top}+\left(\begin{array}{ccc}
0 & 0 & \cos \left(\theta_{3}\right)-\cos \left(\theta_{1}\right) \\
0 & 0 & 0 \\
\cos \left(\theta_{3}\right)-\cos \left(\theta_{1}\right) & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Now noting that $\cos \left(\theta_{3}\right)>\cos \left(\theta_{1}\right)$, the required result immediately follows.
Lemma 2. For $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ we have

$$
\begin{array}{lll}
\operatorname{supp}\left(B \mathbf{v}_{1}\right)=\{6\}, & \operatorname{supp}\left(B \mathbf{v}_{2}\right)=\{5,6\}, & \operatorname{supp}\left(B \mathbf{v}_{3}\right)=\{5\} \\
\operatorname{supp}\left(B \mathbf{v}_{4}\right)=\{1,3,4\}, & \operatorname{supp}\left(B \mathbf{v}_{5}\right)=\{1,2,4\}, & \operatorname{supp}\left(B \mathbf{v}_{6}\right)=\{1,2,3\}
\end{array}
$$

Proof. Using basic trigonometric relations, this is trivial but tedious to show.
Lemma 3. For $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ we have

$$
\mathcal{V}^{B}=\mathbb{R}_{++}\left(\left\{\mathbf{v}_{4}\right\} \cup\left\{\mathbf{v}_{5}\right\} \cup\left\{\mathbf{v}_{6}\right\} \cup \operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)
$$

Proof. This follows immediately from Lemmas 1 and 2 and [Toolbox, Lemma 4.4].
We shall now consider matrices with such a set of zeros.
Lemma 4. For $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ and $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{n}$ and $\mathcal{W} \subseteq \mathcal{V}^{A}$,
2. For all $i, j=1, \ldots, n$ with $i \leq j$ we have

$$
\begin{array}{ll}
a_{i j}=b_{i j} & \text { if }(i, j) \neq(1,5),(1,6), \\
a_{i j} \geq b_{i j} & \text { if }(i, j)=(1,5),(1,6) .
\end{array}
$$

Furthermore for such an $A$ with these conditions holding we have:
a. $\mathcal{V}^{A}=\mathcal{V}^{B}$,
b. A does not give an exposed ray of the copositive cone,
c. if $A \neq B$ then $A$ is reducible with respect to $\mathcal{N}^{n}$ and thus does not give an extreme ray of the copositive cone.

Proof. The equivalence follows directly from [Toolbox, Lemmas 1.2, 2.5, 2.8 and 4.1].
Using the explicit description of $\mathcal{V}^{B}$ from Lemma 3 it can be seen that for all $\mathbf{v} \in \mathcal{V}^{B}$ we have $\mathbf{v}^{T} A \mathbf{v}=\mathbf{v}^{T} B \mathbf{v}=0$, and thus $\mathcal{V}^{B} \subseteq \mathcal{V}^{A}$. Furthermore, we have $A-B \in \mathcal{N}^{6}$ and thus $\mathcal{V}^{A} \subseteq \mathcal{V}^{B}$.

The statement on being an exposed ray follows from [Toolbox, Theorem 5.1].
The final statement on being reducible is trivial.
We have thus shown that the only candidate for giving an extreme ray in this case is $B$ (although it would not give an exposed ray). Now we shall now show that $B$ does indeed give an extreme of the copositive cone.

Theorem 5. If $0<\theta_{3}<\theta_{2}<\theta_{1}<\pi-\theta_{0}<\pi$ then $B$ gives an extreme ray of the copositive cone.
Proof. Suppose for the sake of contradiction that $B$ does not give an extreme ray of the copositive cone. From [Toolbox, Theorem 5.2], there exists $C \in \mathcal{C O} \mathcal{P}^{6} \backslash\{\alpha B \mid \alpha \in \mathbb{R}\}$ such that $\mathcal{V}_{\text {min }}^{C}=\mathcal{V}_{\text {min }}^{B}$ and $\operatorname{supp}(C \mathbf{v})=\operatorname{supp}(B \mathbf{v})$
for all $\mathbf{v} \in \mathcal{V}_{\min }^{B}$. Considering Lemma 1 we thus have $c_{i i}>0$ for all $i$, and without loss of generality $c_{11}=1$. Using Lemma 2 to consider the condition on the supports, we observe that there exist $a, b, c, d, e, f, g, h, i \in \mathbb{R}$ such that
$C=\left(\begin{array}{cccccc}1 & -1 & -1 & -1 & -a & -b \\ -1 & 1 & 1 & 1 & a & c \\ -1 & 1 & 1 & 1 & d & e \\ -1 & 1 & 1 & 1 & f & b \\ -a & a & d & f & g & h \\ -b & c & e & b & h & i\end{array}\right)$,
$\mathbf{0}=\left(\begin{array}{c}\sin \theta_{0} \\ 0 \\ 0 \\ \sin \theta_{0} \\ 0 \\ 0 \\ \sin \theta_{0} \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{cccccccc}\sin \theta_{1} & 0 & \sin \left(\theta_{0}+\theta_{1}\right) & 0 & 0 & 0 & 0 & 0 \\ \sin \theta_{0} & 0 & 0 & 0 & 0 & 0 & \sin \theta_{1} & \sin \left(\theta_{0}+\theta_{1}\right)\end{array} \begin{array}{c}0 \\ 0\end{array}\right.$

One solution to (4) would correspond to $C=B$. Therefore, in order to have $C \neq B$, we require

$$
\begin{aligned}
& 0=\left|\begin{array}{ccccccccc}
\sin \theta_{1} & 0 & \sin \left(\theta_{0}+\theta_{1}\right) & 0 & 0 & 0 & 0 & 0 & 0 \\
\sin \theta_{0} & 0 & 0 & 0 & 0 & 0 & \sin \theta_{1} & \sin \left(\theta_{0}+\theta_{1}\right) & 0 \\
0 & 0 & \sin \theta_{0} & 0 & 0 & 0 & 0 & \sin \theta_{1} & \sin \left(\theta_{0}+\theta_{1}\right) \\
0 & 0 & 0 & \sin \theta_{2} & \sin \left(\theta_{0}+\theta_{2}\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sin \theta_{0} & 0 & 0 & \sin \theta_{2} & \sin \left(\theta_{0}+\theta_{2}\right) & 0 \\
0 & 0 & 0 & 0 & \sin \theta_{0} & 0 & 0 & \sin \theta_{2} & \sin \left(\theta_{0}+\theta_{2}\right) \\
0 & \sin \left(\theta_{0}+\theta_{3}\right) & 0 & 0 & 0 & \sin \theta_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sin \theta_{0} & \sin \theta_{3} & \sin \left(\theta_{0}+\theta_{3}\right) & 0 \\
0 & \sin \theta_{0} & 0 & 0 & 0 & 0 & 0 & \sin \theta_{3} & \sin \left(\theta_{0}+\theta_{3}\right)
\end{array}\right| \\
& =2 \sin ^{3} \theta_{0}\left(\sin \theta_{1} \sin ^{2} \theta_{2} \sin \left(\theta_{0}+\theta_{1}\right) \sin ^{2}\left(\theta_{0}+\theta_{3}\right)+\sin \theta_{2} \sin ^{2} \theta_{3} \sin \left(\theta_{0}+\theta_{2}\right) \sin ^{2}\left(\theta_{0}+\theta_{1}\right)\right. \\
& +\sin \theta_{3} \sin ^{2} \theta_{1} \sin \left(\theta_{0}+\theta_{3}\right) \sin ^{2}\left(\theta_{0}+\theta_{2}\right)-\sin \theta_{1} \sin ^{2} \theta_{3} \sin \left(\theta_{0}+\theta_{1}\right) \sin ^{2}\left(\theta_{0}+\theta_{2}\right) \\
& \left.-\sin \theta_{2} \sin ^{2} \theta_{1} \sin \left(\theta_{0}+\theta_{2}\right) \sin ^{2}\left(\theta_{0}+\theta_{3}\right)-\sin \theta_{3} \sin ^{2} \theta_{2} \sin \left(\theta_{0}+\theta_{3}\right) \sin ^{2}\left(\theta_{0}+\theta_{1}\right)\right) \\
& =-2 \sin ^{6} \theta_{0} \sin \left(\theta_{1}-\theta_{2}\right) \sin \left(\theta_{1}-\theta_{3}\right) \sin \left(\theta_{2}-\theta_{3}\right) \\
& <0 \text {. }
\end{aligned}
$$

This is a contradiction, and thus completes the proof.

