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This is the case when we consider a matrix A with minimal zero support set:

(1,2}, {13}, {14}, {2,5)}, {3,5,6)}, {4,5,6). (1)

From [Toolbox, Corollary 2.10] without loss of generality we have V4 = R, ,W, where W =
{v1,v2,V3,v4,V5,v6} and

1 1 1 0 0 0

1 0 0 1 0 0

0 1 0 0 sin(fo) 0
Viziflo|l® V27 lol VBT |1l Y*T o] V5T 0 r Ve sin(f)

0 0 0 1 sin(6;) sin(fz)

0 0 0 0 Sin(90 + 91) sin(90 + 92)

(2)

and 0 < 01 <6y <7 — 0y <.

From [Toolbox, Lemma 3.1], in order for the matrix A to be irreducible with respect to Si these
vectors must be linearly independent. If §; = 65 then 0 = sin(6p) vo — sin(fy) v3 — vs + vg, and thus A
would be reducible with respect to S_?r.

From now on we will consider when 0 < 6; < 03 < m— 8y < 7 and we shall also consider the following
matrix:

1 -1 -1 -1 1 cos(6)
-1 1 1 1 -1 cos(6p)
B -1 1 1 1 cos(fg +61) —cos(6y)
o -1 1 1 1 cos(fy + 62) —cos(62)
1 -1 cos(bp + 61) cos(bp + 02) 1 —cos(6p)
cos(fy) cos(fp)  —cos(6y) — cos(f2) —cos(fo) 1

We will begin by looking at the following technical results on the set of zeros of B.

Lemma 1. We have VB, =R, .

min

Proof. There are trivially no zeros of B with support of cardinality one.

From [Toolbox, Lemma 2.5], up to multiplication by a positive scalar, the zeros of B with support of
cardinality two are exactly those given in W.

From [Toolbox, Lemma 2.4], if we wish to find minimal zeros of B whose support have cardinality
strictly greater than two, we need only consider the maximal principle submatrices of B of order strictly
greater than two and with no off-diagonal entries equal to plus or minus one. These are the principle
submatrices

1 cos(fp +601) —cos(6q)
Bz 56y = | cos(fo + 61) 1 —cos(fy) |,
—cos(fy) — cos(fo) 1
1 cos(fp + 63) — cos(62)
Biasey = | cos(bo + 62) 1 — cos(fp)
— cos(f2) —cos(bp) 1
The required result then immediately follows. O
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Lemma 2. For 0 <60, <60y <m— 0y <m we have

supp(Bv1) = {6}, supp(Bva) = {5}, supp(Bvs) = {5,6},
supp(Bvy) = {3,4}, supp(Bvs) = {1,2,4}, supp(Bvg) = {1, 2, 3}.
Proof. Using basic trigonometric relations, this is trivial but tedious to show. O

Lemma 3. For0< 60, <60y <m—0¢ <m we have
VB =R, ({vs} U {vs} Uconv{vy,vs} Uconv{vy,vs,v3}).
Proof. This follows immediately from Lemmas || and [2| and [Toolbox, Lemma 4.4]. O
We shall now consider matrices with such a set of zeros.
Lemma 4. For 0 <6y <0y <m— 0y <7 and A € 8 the following are equivalent:
1. Ae COPS with W C VA,
2. Foralli,j=1,...,n with i < j we have
aij =bi; i (4,5) # (1,6), (2,6)
aij = bi; if (i,7) = (1,6), (2,6)
Furthermore for such an A with these conditions holding we have:
a. VA =VE,
b. A does not give an exposed ray of the copositive cone,

c. if A # B then A is reducible with respect to N™ and thus does mot give an extreme ray of the
copositive cone.

Proof. The equivalence follows directly from [Toolbox, Lemmas 1.2, 1.5, 2.5 and 2.8], noting that we have
cos(6p) + cos(f1) > cos(y) + cos(m — 6p) = 0.

Using the explicit description of VB from Lemma [3| it can be seen that for all v € VB we have
vl Av = vI'Bv = 0, and thus VB C V4. Furthermore, we have A — B € N'® and thus V4 C V5.

The statement on being an exposed ray follows from [Toolbox, Theorem 5.1].

The final statement on being reducible is trivial. O

We have thus shown that the only candidate for giving an extreme ray in this case is B (although it
would not give an exposed ray). We shall now show that B does indeed give an extreme of the copositive
cone.

Theorem 5. If0 < 0y < 03 <7 — 0y < m then B gives an extreme ray of the copositive cone.

Proof. Suppose for the sake of contradiction that B does not give an extreme ray of the copositive cone.
From [Toolbox, Theorem 5.2], there exists C € COP®\ {aB | a € R} such that VS, = VB, and
supp(C'v) = supp(Bv) for all v € VB, . Considering Lemma [1f we thus have ¢;; > 0 for all i, and without
loss of generality ¢;; = 1. Using Lemma [2] to consider the condition on the supports, we observe that

there exist a,b, c,d, e, f € R such that

1 -1 -1 -1 1 —a

-1 1 1 1 -1 =b
-1 1 1 1 c a
¢= -1 1 1 1 d e |’
1 -1 ¢ d 1 b
—-a —-b a e b f
sin 6y sin(fp + 601) 0 sin 64 0 0 0 a
sin 04 0 sin(fg + 61) sinfy 0 0 0 b
0— 0 n sin O sin 0 0 0 0 sin(fp + 01) c 3)
sin Oy 0 0 0 sinfy sin(fy + 62) 0 d|-’
sin Oy 0 sin(6y + 02) 0  sinéy 0 0 e
0 0 sin 05 0 0 sin Oy sin(fp + 02) f



One solution to would correspond to C' = B. Therefore, in order to have C # B, we require

sin(fo + 61) 0 sin 0 0 0 0
0 sin(fp 4+ 61) sinfy 0 0 0
0= sin 6, sin 64 0 0 0 sin(fg + 61)
N 0 0 0 sin 65 sin(@o + 92) 0
0 sin(90 + 92) 0 sin 90 0 0
0 sin 6, 0 0 sin 0 sin(fp + 02)
= 281112 0o sin(90 + 91) sin(90 + 02)(sin 01 sin(00 + 92) — sin 65 Sin(ao + 91))
= —2sin® 0y sin(y + 0;) sin(fy + 62) sin(fy — 6,)
< 0.

This is a contradiction, and thus completes the proof.
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