Case 3

Peter J.C. Dickinson (peter.dickinson@cantab.net)

February 10, 2014

This is the case when we consider a matrix A with minimal zero support set:

$$
\begin{equation*}
\{1,2\}, \quad\{1,3\}, \quad\{1,4\}, \quad\{2,5\}, \quad\{3,5,6\}, \quad\{4,5,6\} . \tag{1}
\end{equation*}
$$

From [Toolbox, Corollary 2.10] without loss of generality we have $\mathcal{V}_{\text {min }}^{A}=\mathbb{R}_{++} \mathcal{W}$, where $\mathcal{W}=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}$ and

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \tag{2}\\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{v}_{5}=\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right)
\end{array}\right), \quad \mathbf{v}_{6}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{0}+\theta_{2}\right)
\end{array}\right)
$$

and $0<\theta_{1} \leq \theta_{2}<\pi-\theta_{0}<\pi$.
From [Toolbox, Lemma 3.1], in order for the matrix A to be irreducible with respect to \mathcal{S}_{+}^{6}, these vectors must be linearly independent. If $\theta_{1}=\theta_{2}$ then $\mathbf{0}=\sin \left(\theta_{0}\right) \mathbf{v}_{2}-\sin \left(\theta_{0}\right) \mathbf{v}_{3}-\mathbf{v}_{5}+\mathbf{v}_{6}$, and thus A would be reducible with respect to \mathcal{S}_{+}^{6}.

From now on we will consider when $0<\theta_{1}<\theta_{2}<\pi-\theta_{0}<\pi$ and we shall also consider the following matrix:

$$
B=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & \cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & -1 & \cos \left(\theta_{0}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
1 & -1 & \cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{2}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{1}\right) & \cos \left(\theta_{0}\right) & -\cos \left(\theta_{1}\right) & -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right)
$$

We will begin by looking at the following technical results on the set of zeros of B.
Lemma 1. We have $\mathcal{V}_{\text {min }}^{B}=\mathbb{R}_{++} \mathcal{W}$.
Proof. There are trivially no zeros of B with support of cardinality one.
From [Toolbox, Lemma 2.5], up to multiplication by a positive scalar, the zeros of B with support of cardinality two are exactly those given in \mathcal{W}.

From [Toolbox, Lemma 2.4], if we wish to find minimal zeros of B whose support have cardinality strictly greater than two, we need only consider the maximal principle submatrices of B of order strictly greater than two and with no off-diagonal entries equal to plus or minus one. These are the principle submatrices

$$
\begin{aligned}
B_{\{3,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
\cos \left(\theta_{0}+\theta_{1}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{1}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right), \\
B_{\{4,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
\cos \left(\theta_{0}+\theta_{2}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{2}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) .
\end{aligned}
$$

The required result then immediately follows.

Lemma 2. For $0<\theta_{1}<\theta_{2}<\pi-\theta_{0}<\pi$ we have

$$
\begin{array}{lll}
\operatorname{supp}\left(B \mathbf{v}_{1}\right)=\{6\}, & \operatorname{supp}\left(B \mathbf{v}_{2}\right)=\{5\}, & \operatorname{supp}\left(B \mathbf{v}_{3}\right)=\{5,6\} \\
\operatorname{supp}\left(B \mathbf{v}_{4}\right)=\{3,4\}, & \operatorname{supp}\left(B \mathbf{v}_{5}\right)=\{1,2,4\}, & \operatorname{supp}\left(B \mathbf{v}_{6}\right)=\{1,2,3\}
\end{array}
$$

Proof. Using basic trigonometric relations, this is trivial but tedious to show.
Lemma 3. For $0<\theta_{1}<\theta_{2}<\pi-\theta_{0}<\pi$ we have

$$
\mathcal{V}^{B}=\mathbb{R}_{++}\left(\left\{\mathbf{v}_{5}\right\} \cup\left\{\mathbf{v}_{6}\right\} \cup \operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{4}\right\} \cup \operatorname{conv}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right) .
$$

Proof. This follows immediately from Lemmas 1 and 2 and [Toolbox, Lemma 4.4].
We shall now consider matrices with such a set of zeros.
Lemma 4. For $0<\theta_{1}<\theta_{2}<\pi-\theta_{0}<\pi$ and $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{6}$ with $\mathcal{W} \subseteq \mathcal{V}^{A}$,
2. For all $i, j=1, \ldots, n$ with $i \leq j$ we have

$$
\begin{array}{ll}
a_{i j}=b_{i j} & \text { if }(i, j) \neq(1,6),(2,6) \\
a_{i j} \geq b_{i j} & \text { if }(i, j)=(1,6),(2,6)
\end{array}
$$

Furthermore for such an A with these conditions holding we have:
a. $\mathcal{V}^{A}=\mathcal{V}^{B}$,
b. A does not give an exposed ray of the copositive cone,
c. if $A \neq B$ then A is reducible with respect to \mathcal{N}^{n} and thus does not give an extreme ray of the copositive cone.

Proof. The equivalence follows directly from [Toolbox, Lemmas 1.2, 1.5, 2.5 and 2.8], noting that we have $\cos \left(\theta_{0}\right)+\cos \left(\theta_{1}\right)>\cos \left(\theta_{0}\right)+\cos \left(\pi-\theta_{0}\right)=0$.

Using the explicit description of \mathcal{V}^{B} from Lemma 3 it can be seen that for all $\mathbf{v} \in \mathcal{V}^{B}$ we have $\mathbf{v}^{T} A \mathbf{v}=\mathbf{v}^{T} B \mathbf{v}=0$, and thus $\mathcal{V}^{B} \subseteq \mathcal{V}^{A}$. Furthermore, we have $A-B \in \mathcal{N}^{6}$ and thus $\mathcal{V}^{A} \subseteq \mathcal{V}^{B}$.

The statement on being an exposed ray follows from [Toolbox, Theorem 5.1].
The final statement on being reducible is trivial.
We have thus shown that the only candidate for giving an extreme ray in this case is B (although it would not give an exposed ray). We shall now show that B does indeed give an extreme of the copositive cone.

Theorem 5. If $0<\theta_{1}<\theta_{2}<\pi-\theta_{0}<\pi$ then B gives an extreme ray of the copositive cone.
Proof. Suppose for the sake of contradiction that B does not give an extreme ray of the copositive cone. From [Toolbox, Theorem 5.2], there exists $C \in \mathcal{C O} \mathcal{P}^{6} \backslash\{\alpha B \mid \alpha \in \mathbb{R}\}$ such that $\mathcal{V}_{\text {min }}^{C}=\mathcal{V}_{\text {min }}^{B}$ and $\operatorname{supp}(C \mathbf{v})=\operatorname{supp}(B \mathbf{v})$ for all $\mathbf{v} \in \mathcal{V}_{\text {min }}^{B}$. Considering Lemma 1 we thus have $c_{i i}>0$ for all i, and without loss of generality $c_{11}=1$. Using Lemma 2 to consider the condition on the supports, we observe that there exist $a, b, c, d, e, f \in \mathbb{R}$ such that

$$
\begin{align*}
C & =\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & -a \\
-1 & 1 & 1 & 1 & -1 & -b \\
-1 & 1 & 1 & 1 & c & a \\
-1 & 1 & 1 & 1 & d & e \\
1 & -1 & c & d & 1 & b \\
-a & -b & a & e & b & f
\end{array}\right) \\
\mathbf{0} & =\left(\begin{array}{c}
\sin \theta_{0} \\
\sin \theta_{1} \\
0 \\
\sin \theta_{0} \\
\sin \theta_{2} \\
0
\end{array}\right)+\left(\begin{array}{cccccc}
\sin \left(\theta_{0}+\theta_{1}\right) & 0 & \sin \theta_{1} & 0 & 0 & 0 \\
0 & \sin \left(\theta_{0}+\theta_{1}\right) & \sin \theta_{0} & 0 & 0 & 0 \\
\sin \theta_{0} & \sin \theta_{1} & 0 & 0 & 0 & \sin \left(\theta_{0}+\theta_{1}\right) \\
0 & 0 & 0 & \sin \theta_{2} & \sin \left(\theta_{0}+\theta_{2}\right) & 0 \\
0 & \sin \left(\theta_{0}+\theta_{2}\right) & 0 & \sin \theta_{0} & 0 & 0 \\
0 & \sin \theta_{2} & 0 & 0 & \sin \theta_{0} & \sin \left(\theta_{0}+\theta_{2}\right)
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right) \tag{3}
\end{align*}
$$

One solution to (3) would correspond to $C=B$. Therefore, in order to have $C \neq B$, we require

$$
\begin{aligned}
0 & =\left|\begin{array}{cccccc}
\sin \left(\theta_{0}+\theta_{1}\right) & 0 & \sin \theta_{1} & 0 & 0 & 0 \\
0 & \sin \left(\theta_{0}+\theta_{1}\right) & \sin \theta_{0} & 0 & 0 & 0 \\
\sin \theta_{0} & \sin \theta_{1} & 0 & 0 & 0 & \sin \left(\theta_{0}+\theta_{1}\right) \\
0 & 0 & 0 & \sin \theta_{2} & \sin \left(\theta_{0}+\theta_{2}\right) & 0 \\
0 & \sin \left(\theta_{0}+\theta_{2}\right) & 0 & \sin \theta_{0} & 0 & 0 \\
0 & \sin \theta_{2} & 0 & 0 & \sin \theta_{0} & \sin \left(\theta_{0}+\theta_{2}\right)
\end{array}\right| \\
& =2 \sin ^{2} \theta_{0} \sin \left(\theta_{0}+\theta_{1}\right) \sin \left(\theta_{0}+\theta_{2}\right)\left(\sin \theta_{1} \sin \left(\theta_{0}+\theta_{2}\right)-\sin \theta_{2} \sin \left(\theta_{0}+\theta_{1}\right)\right) \\
& =-2 \sin ^{3} \theta_{0} \sin \left(\theta_{0}+\theta_{1}\right) \sin \left(\theta_{0}+\theta_{2}\right) \sin \left(\theta_{2}-\theta_{1}\right) \\
& <0 .
\end{aligned}
$$

This is a contradiction, and thus completes the proof.

