Cases: 777

Peter J.C. Dickinson (peter.dickinson@cantab.net))
January 27, 2014

1 Toolbox

In this we use the notation:

COP™ :={AeS" |vIAv>0 forallveR}},

St={AeS"|vIAv>0 forallveR"}
= conv{vv' | v € R"},

St ={AeS"|a;;=1and |a;;| <1 foralli,j=1,...,n}.

1.1 Limiting the entries of A

We begin by considering the entries of a copositive matrix.

Lemma 1.1. Consider A € COP™ such that a;; =1 for all i. Then a;; > —1 for all i,j.

Proof. For all 4,7 we have 0 < (e; + ;)T A(e; + e;) = 2 + 2a;;. O
Lemma 1.2 ([I, Lemma 3.1]). Consider A € 8™ such that a;; = 1 for alli. Then A ¢ COP™ if and only
if there exists T C {1,...,n} such that Az ¢ coOP? and ai; <1 for alli,j € T withi# j.

Corollary 1.3. Consider A € COP"™ such that a; = 1 for all i and A is irreducible with respect to N™.
Then A € ST

Due to this result, from now on we will often limit ourselves to matrices in S7'. We have the following
two results on matrices in this set.

Lemma 1.4. Consider A € S{'. Then for all i, j there exists a unique 6;; € [0, 7| such that a;; = cosb;;.

Lemma 1.5. For a,b € [—1,1] consider the following matrix:

1 -1 b
A=1-1 1 a
b 1

Then we have A € COP? if and only if a +b > 0.

Proof. To prove the reverse implication we note that if a + b > 0 then from
T

1 1 0 0 0
A=|-1)(-1| +[({0 0 a+bd
b b 0 a+b 1-b?

we have A € COP3.
To prove the forward implication we note that if A € COP? then for all € > 0 we have

A
0< (1] Af1] =2e(a+b)+e%
€ €
which implies that a +b > 0. O

Lemma 1.6. Let A € COP" NS} and i,5,k € {1,...,n} such thati # j #k # i and —1 = a;; = aji.
Then we have a;, = 1.

Proof. We have 0 < (e; + 2e; + er) " Ae; + 2e; + ex) = 2a;, — 2. O
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1.2 Set of zeros of A

We now consider the set of zeros of a matrix, starting with the following basic results.

Lemma 1.7. For A€ COP™ and v € V4, letting T = supp(v), we have

AI € Si,
(AV)I = szz = 0,
(Av); >0 for alli ¢ T.

Lemma 1.8. For all A € 8™ we have VA =R VA,
Lemma 1.9. Consider A € 8™ and a permutation matrix P € R™"*™. Then YPAPT _ ppA,

We now consider the following result on the minimal zero support sets.

Lemma 1.10. Let A € COP™ NSP and v € VA, such that |supp(v)| > 3. Then |a;;| < 1 for all
1,7 € supp(v) such that i # j.

Proof. Suppose for the sake of contradiction there exists ¢,j € supp(v) with ¢ # j such that a;; = —1.
Then (e; +e;) € V* and supp(e; + e;) is strictly contained in Z.

Now suppose for the sake of contradiction there exists ¢,j € supp(v) with ¢ # j such that a;; = 1.
Now letting u = (v +v,(e; — ej))7 we have that u # 0 and supp(u) is strictly contained in supp(v). By
the minimality of v this implies the contradiction

0<u'Au=v"Av +2v;(e; —e;)T Av + v?(ei —e;) A(e; —e;) = 0. O
Lemma 1.11. Let A € COP" NS} and u € R\ {0} such that supp(u) = {1,2}. Then we have u € Vi,
if and only if a10 = —1 and uy = us.
Lemma 1.12. Consider A € COP" NSt and v € R} with supp(v) = {1,2,3}. Then we have the
following:
1. If v.e VA then 2u; < E?Zl vj for alli=1,2,3.

2. If v e VA  then 2v; < 23:1 v; foralli=1,2,3.

Proof. If v € V4 then from Lemma for all i = 1,2,3 we have

3

3
O:(AV)i:ZaijUj:U¢+ Z aijijUi— Z UjZQ’L}i*Z’Uj.

j=1 §=1,2,3 j=1,2,3 j=1
J#i J#i

This proves the first part.
Furthermore we note that if there exists ¢ € {1,2,3} such that 2v; = Z;’:l vj then from the above

inequality we get a;; = —1 for all j € Z\{i}. In such a case, for all j € {1,2,3}\{i} we have (e;+e;) € V4

and supp(e; + e;) is strictly contained in {1,2,3}, and thus v ¢ VA, O
Lemma 1.13. Consider v € R, with supp(v) = {1,2,3} and 2v; < 23:1 vj for alli=1,2,3. Then we
have
U1 sin(61)
(V7 017 92) e Ri_;’_ 91 + 92 < 7T7 ’1)2 = U Sin(02) — 1.
U3 sin(01 + 02)

Proof. Consider arbitrary 61,62 > 0 such that 6#; + 05 < w. Letting 03 = 7 — 6; — 03 > 0 we have
0; + 03 <mforalli=1,2 and

sin(@l) sin(Gg + 93) sin(&l)

sin(f) = sin(fz) sin(6y + 03)
sin(6; + 602) sin(fs3) sin(fs)

Therefore the result is independent of permutations and without loss of generality we may assume that
Z={1,2,3} and 0 < v1 < vy < w3 < vy + va.



If for some v, 01,05 > 0 with 6 + 05 < m we have

V1 Sin(91)
vy | =v sin(fz) ,
V3 sin(60; + 65)

Then we must have 601,02 < 7/2, otherwise we get the contradiction that vs < max{vy,va}.
For all v > vy and i = 1,2 we let 0;(v) € (0,7/2] be such that v; = vsin(6;(v)). Note that:

e the value of §;(v) is uniquely determined by the value of v,
e the value of ;(v) varies continuously with v,

e 0;(v) is a strictly decreasing function with lim, ., 6;(v) =0,
o Oy(vg) = m/2.

We now let

f(v) = vsin(61(v) + 62(v))
= vsin(#; (v)) cos(f2(v)) + vsin(b2(v)) cos(61(v))
= v1 cos(02(v)) + va cos(f1 (v)).

We have that f(v) is a strictly increasing function with f(vs) = wacos(f1(v2)) < v2 < vz and

lim, o0 f(V) = v1 4+ v2 > vs3.
Therefore there exists a unique v € (vq,00) such that f(7) = vs, which completes the proof. O

Lemma 1.14. Consider n > 3 and A € COP" NSy and T = {1,2,3} and v,01,02 > 0 such that
01 + 02 < . Then the following are equivalent:

1 cos(f1 +62) — cos(s)
1. Az = | cos(61 + 62) 1 —cos(6h)
—cos(62) —cos(61) 1
sin(6)
sin(f2) "
2 sin(91 + 92) €V
0
sin(@l)
sin(6
3. {veVv"|supp(v) ST} =R, sm(al(f)oz)
0

Proof. We now split this proof into three parts:
M= Let a,b € R? such that

—cos(f2) sin(f2)
a= | —cos(t) |, b= | —sin(6y)
1 0

These are linearly independent vectors and we have

sin(91)
fucR|0=a'u=b"u} =R sin(6z)
sin(91 + 92)

If Az is as given mIthen we have A7 = aa’ +bb" and thus for v € R \ {0} such that supp(v) C T
we have

sin(6)
0=v'Av & 0=(a'vy)’+(b'vy)? & vzeR ., sin(f)
sin(01 + 92)



Bl This comes directly from the definitions.

R=IF From Lemma we have |a;;| < 1 for all 4,57 = 1,2,3 such that ¢ # j. Therefore there exists
a1, g, a3 € (0,7) such that

1 cos(ag)  —cos(ag)
Az = | cos(as) 1 —cos(aq)
—cos(ag) —cos(ay) 1

From Lemma [I.7, Az is a singular and thus

0 = det Az = sin?(a1) sin?(a2) — (cos(az) — cos(ay) cos(az))?

cos(az) = cos(aq) cos(ag) F sin(ay) sin(as) = cos(ag £ ag).

Suppose for the sake of contradiction that cos(as) = cos(aq — ag) then

T : :
—cos(a) —cos(a) sin(ag)\ [sin(asg)
Az = | —cos(a) —cos(ay) | + | sin(ay) | | sin(ay)
1 1 0 0

We then we have the contradiction u' Azu > 0 for all u € Rﬁ_ L

Therefore we have cos(ag) = cos(a; + a3) and

— cos(az) — cos(aw) T sin(ag) sin(as) T
Az = | —cos(aq) —cos(ay) | + | —sin(ay) —sin(ay) |
1 1 0 0
sin(a1)
fueR?®|u"Azu=0} =R sin(az)
sin(a + aw)
Therefore we must have a; + as < 7w and from Lemma [1.13| we have a; = 6; for i = 1, 2. O

Corollary 1.15. Let A € COP" NST and u € R \ {0} and T = supp(u) such that |Z| = 3. Then we

have u € Vlﬁin if and only if there exists v,01,05 > 0 such that 61 + 0> < 7 and

1 cos(f1 +62) — cos(fs) sin(6)
Az = | cos(0; + 6) 1 — cos(f1) and ur =v sin(6s)
—cos(fs) —cos(f;) 1 sin(60; + 63)

Corollary 1.16. Forn >4 let A€ COP" NSy and u,v € R} \ {0} such that supp(u) = {1,3,4} and
supp(v) = {2.3,4}.

Then we have u,v € Véin if and only if there exists v, A, 0y,01,02 > 0 and a € R such that g+ 0; < w
fori=1,2 and

1 a cos(p +61) —cos(6y)
" B a 1 cos(Bg + 63) —cos(6s)
{1,2,34} = cos(fp + 01) cos(fy + 02) 1 —cos(fp) |’
—cos(61) —cos () — cos(f) 1
sin(fy) 0
B 0 B sin(6p)
U{1,2’374} =V Sil’l(el) ) V{172,3,4} = sin(@z)
sin(6o + 61) sin(0o + 02)

1.3 Irreducibility of A
Lemma 1.17. For A € COP"™ NS} we have the following:

1. A is irreducible with respect to N™ if and only if for all i, j there exists u € VA, such that ug+u; > 0
and (Au); = (Au); = 0.

2. A is irreducible with respect to S if and only if span VA = R",

min



1.4 Technical results

Lemma 1.18. For a,b € R and 01,605 > 0 such that 01 + 05 < 7, consider the following matriz A € S*:

1 -1 a b
e -1 1 —cos(f2) cos(61 + 62)
I — cos(f2) 1 —cos(f)
b cos(0y +62) —cos(6y) 1

Then A € COP* if and only if a > cos(fz) and b > — cos(0y + 62).

Proof. In order to prove the forward implication we note that (17 1, 0, O)T € V4 and thus if A €
COP* then

1 0
1 0
0<4 0] a — cos(62)
0 b+ cos(61 + 62)

In order to prove the reverse implication we note that COP?* = Si + N* and

~1 -1\ 0 0 !
1 1 0 0
A= _ cos(6s) —cos(fs) + sin(6s) sin(fs)
cos(f1 + 63) cos(fy + 63) —sin(f; + 02) —sin(6; + 62)
0 0 a—cos(fz) b+ cos(f; + 0)
0 0 0 0
+ a — cos(f2) 0 0 0 -
b+ cos(61 +62) O 0 0

Lemma 1.19. Let A € COP" NSP. Then there does not exist i1,12, 71,72,k € {1,...,n}, all mutually
different, such that the minimal zero support set of A contains

{7;17i2}7 {jlv.j?}) {i17j17k'}7 {i27j27k}

Proof. Suppose for the sake of contradiction that A does contain such a minimal zero support set.
Without loss of generality i, = 1, is = 2, j; = 3, jo = 4, k = 5, and we have u, v, w,x € V4 where

1 0 sin(6;) 0
1 0 0 sin(f3)
" 0 v 1 W — sin(f2) x— 0
01’ 11 0 ’ sin(fy) ’
0 0 sin(91 + 92) sin(03 + 94)
0 0 0 0

with 61,05,03,0, >0 and 6; + 05 < 7 and 03 + 04 < 7.
There exist a,b € R such that

1 -1 cos(61 + 02) a —cos(62)
-1 1 b cos(fs +64) —cos(0y4)
Ag12,34,5) = | cos(01 + 62) b 1 -1 — cos(f;)
a cos(f3 + 04) -1 1 —cos(f3)
— cos(f2) — cos(fy) —cos(fy) — cos(03) 1
We must have 0 < (Au)s = —cos(fz) — cos(fs) = cos(m — 02) — cos(f4), which is equivalent to

m — 03 < 64, which is in turn equivalent to 62 + 64, > 7. Similarly 0 < (Av)s holds if and only if
01+ 03 > 7.
This then gives the contradiction 27 < (6 + 04) + (01 + 03) = (61 + 02) + (03 + 04) < 27. O



2 Cases 5, 7,12, 13, 14, 15, 16, 56

From Lemma there does not exist a copositive matrix with these minimal zero support sets.



3 Case 3

This is the case when we consider a matrix A with minimal zero support set:
{1.2}, {13}, {14}, {2,5}, {3,5,6}, {4,5,6}. (1)

From Corollary without loss of generality we have V4, =R, W, where

1 1 1 0 0 0
1 0 0 1 0 0
_ 0 1 0 0 sin(fo) 0
W= 0]’ 0]’ 1] 01’ 0 ’ sin(6y) (2)
0 0 0 1 sin(6) sin(f2)
0 0 0 0 sin(HO + 91)) sin(@o + (92))
and 0y > 0and 0 < 61 < 0y < 7w — by.
We shall also consider the following matrix:
1 -1 -1 -1 1 cos(f;)
-1 1 1 1 -1 cos(bp)
B -1 1 1 1 cos(bp +61) —cos(6;)
o -1 1 1 1 cos(fy + 63) —cos(f2)
1 -1 cos(fp + 61) cos(6y + 62) 1 —cos(fp)
cos(f1) cos(fp)  —cos(6y) —cos(f2) —cos(fo) 1

Lemma 3.1. For A € 8} the following are equivalent:
1. A € COP® with VA D W,
2. Foralli,j=1,...,n with i < j we have

Q5 = bu if (7"]) 7& (176)’ (256)
Aij > bij Zf (’Laj) = (176)’ (2a6)

Proof. This follows directly from Lemmas and noting that we have cos(6y) + cos(61) >
cos(fy) + cos(m — 6y) = 0. O

Lemma 3.2. For A € 8} the following are equivalent:
1. AeCOP® and W C VA and A is irreducible with respect to N°©,
2. We have A = B.

Proof. The implication follows directly from Lemma [£.1]

We will now prove the reverse implication. We trivially have W C VZ and from Lemma we have
B € COP™ and B is irreducible with respect to E1g, Fag.

We note from Lemmas and and the fact that W C VB, we have that B is irreducible with
respect to F11, Eva, B3, E14, Eas, Fas, Ess, E3s5, Ese, Faa, Eus, Fag, Es5, Ese, Eee-

We are thus left to show that B is irreducible with respect to E15, Fo3, Eoy, F34.

Considering (1, 1, 0, 0, O, O)TEVB we have

0
0
0
0
0
+

OO OO ==

cos(fp) + cos(61)

Therefore B is irreducible with respect to E15, Fag, Foy.



Considering (1, 0, 0, 1, 0, O)TEVB we have

1 0
0 0
0 0
B 1] 0
0 1+ cos(bp + 62)
0 cos(f1) — cos(62)
Therefore B is irreducible with respect to E34, which completes the proof. O

Lemma 3.3. We have VB, =R, W.

m

Proof. There are trivially no zeros of B with support of cardinality one.

From Lemma[T.11] up to multiplication by a positive scalar, the zeros of B with support of cardinality
two are exactly those given in W.

From Lemma [1.10] if we wish to find minimal zeros of B whose support have cardinality strictly
greater than two, we need only consider the maximal principle submatrices of B of order strictly greater
than two and with no off-diagonal entries equal to plus or minus one. These are the principle submatrices

1 cos(bp +61) —cos(61)
B{3,5,6} = COS(GO + 91) ]. — COS(GO) s
— cos(61) —cos(fo) 1
1 cos(y + 62) —cos(62)
B{475,6} = COS(G() + 92) 1 - COS(GO)
— cos(62) —cos(fo) 1
The required result then immediately follows. 0

Theorem 3.4. We have B is irreducible with respect to (ST +N™) if and only if 61 < 5.

Proof. From Lemma[3.2] we have that B is irreducible with respect to N. We are thus left to show that
B is irreducible with respect to ST if and only if 6; < 6.
From Lemmas and B is reducible with respect to S if and only if

RS £ span W
1 1 1 0 0 0
1 0 0 0 0 0
_ 0 1 0 0 0 0
- 0l 0]’ 11 1] sin(6p) ’ sin(6p) ’
0 0 0 1 sin(6) sin(f2)
0 0 0] 0 sin(90 + 91)) sin(90 + 92))
which in turn holds if and only if
1 sin(6p) sin(fy)
0=11 sin(6y) sin(fy) | =sin(6p) (sin(fy) + sin(f, — 61) — sin(hs)) .
0 sin(90 + 91) sin(00 + 92)

For a fixed 03 € (0,7) we now let f(61) = sin(f;) + sin(fz — 1) — sin(62).
We have f(0) = f(62) = 0, and f”(01) = —sin(61) — sin(f2 — 61) < 0 for all 6; € [0, 602]. Therefore
f(61) =0 if and only if 6; = 02, which completes the proof. O



4 Case 4

This is the case when we consider a matrix A with minimal zero support set:

{172}7 {173}’ {174}7 {2’ 576}7 {37 57 6}7 {47 576} (3)
From Corollary without loss of generality we have V4, =R, W, where
1 1 1 0 0 0
1 0 0 sin(fp) 0 0
_ 0 1 0 0 sin(fp) 0
W= 0]’ 01’ 11’ 0 ’ 0 ’ sin(6p) 4)
0 0 0 sin(6;) sin(6z) sin(f3)
0 0 0 sin(6p + 61) sin(6p + 62)) sin(6y + 63))

and g > 0 and 61 > 605 > 603 > 0 and Oy + 01 < 7.
We shall also consider the following matrix:

1 -1 -1 -1 —cos(fg+61) cos(f3)
-1 1 1 1 cos(fg +61) —cos(6y)
B -1 1 1 1 cos(fp + 03)  —cos(b2) (5)
h -1 1 1 1 cos(fg +63)  —cos(63)
—cos(fp + 61) cos(fp +01) cos(fp +62) cos(Bg + 03) 1 —cos(bp)
cos(f3) —cos(f) —cos(fs) — cos(f3) — cos(fo) 1

Lemma 4.1. For A € 8} the following are equivalent:
1. A€ COP™ and W C V4,

2. Foralli,j=1,...,n withi < j we have

A5 = bij if (Z’j) # (175)a (1’6)7
Q5 > bij Zf (Zm]) = (175)5 (176)'

Proof. [1}=2] follows directly from Lemmas T.17], [T.74] and [T.18] O

Lemma 4.2. For A € 8} the following are equivalent:
1. AeCOP® and W C VA and A is irreducible with respect to N°©,

2. We have A = B.

Proof. The implication follows directly from Lemma,

We will now prove the reverse implication. We trivially have W C VZ and from Lemma we have
B € COP™ and B is irreducible with respect to E15, Fig.

We note from Lemmas and and the fact that W C VB, we have that B is irreducible with
respect to F11, Fia, B3, B4, Eoo, Eos, Fae, F33, F3s, E3e, Faa, Eus, Eas, Ess, Ese, Fee-

We are thus left to show that B is irreducible with respect to Fog, Foy, F34.

Considering (1, 1, 0, 0, 0, 0)" € V5 we have

OO OO
OO O OO

cos(f3) — cos(61)

Therefore B is irreducible with respect to Fag, Fag4.
Considering (1, 0, 0, 1, 0, O)T € VB we have

1 0
0 0
0 0
B 1] 0
0 cos(fg + 03) — cos(6y + 01)
0 0
Therefore B is irreducible with respect to E34, which completes the proof. O



Lemma 4.3. If 6, = 03 = 03 then B € S%.

Proof. In such a case we have

1 1 T 0 0 T
-1 -1 0 0
-1 -1 0 0
B= . 1 + 0 0 =
—cos(6p + 61) —cos(6p + 61) —sin(6p + 61) —sin(6y + 61)
cos(6) cos(67) sin(6;) sin(6;)

Lemma 4.4. If 61 > 03 then VB,

Proof. There are trivially no zeros of B with support of cardinality one.

From Lemmall.11] up to multiplication by a positive scalar, the zeros of B with support of cardinality
two are exactly those given in W.

From Lemma [1.10] if we wish to find minimal zeros of B whose support have cardinality strictly
greater than two, we need only consider the maximal principle submatrices of B with no off-diagonal
entries equal to plus or minus one. For ¢ = 1,2, 3 these are the principle submatrices

1 cos(fp +0;) — cos(6;)
B{it1,56y = | cos(fo + 6;) 1 — cos(fo)
—cos(6;) —cos(6p) 1
1 1 T 0 0 T
= [ cos(6p + 6;) cos(fo+6;) | + |sin(bp + 6;) sin(fg + 6;)
— cos(6;) —cos(6;) —sin(6;) —sin(6;)
and the principle submatrix
1 —cos(fp+61) cos(f3)
Bfis6y = | —cos(0o + 61) 1 —cos(6p)
cos(63) —cos(6p) 1
-1 -1\ 0 0 T
= | cos(6y + 6;) cos(bp +0;) | + | sin(bp + 6;) sin(6p + 6;)
—cos(6;) —cos(6;) —sin(6;) —sin(6;)
0 cos(fg + 6;) — cos(6p + 01) cos(03) — cos(6;)
+ | cos(bp + 0;) — cos(fp + 61) 0 0
cos(f3) — cos(6;) 0 0

We have cos(6y + 0;) > cos(fg + 61) and cos(f3) > cos(f;), and at least one of these inequality relations
is strict (otherwise 6; = 6; = 63).
The required result then immediately follows. O

Lemma 4.5. We have B is irreducible with respect to S$ if and only if 61 > 05 > 0.

Proof. 1If 1 = 63 = 03 then from Lemma we have that B is reducible with respect to 8.
If 6, > 03 then from Lemma we have VB, =R, W. From Lemma we then have that B is
reducible with respect to Si if and only if

RS £ span W
1 1 1 —sin(6p) —sin(fp) — sin(fp)
1 0 0 0 0 0
— span 0 1 0 0 0 0
0]’ 0]’ 11’ 0 ’ 0 ’ 0
0 0 0 sin(6;) sin(6z) sin(fs)
0 0 0 sin(90 + 91) Sin(90 +62)) sin(fp + 03))
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This in turn holds if and only if

— sin(6y) — sin(6y) —sin(6p)
0= sin(6y) sin(f) sin(63)
Sin(eo + 91) sin(90 + 02) sin(90 + 93)

= —sin?(fp) (sin(f; — 0)(1 — cos(By — B3)) + sin(fy — 3)(1 — cos(fy — 63)))
Finally, as 0 < 0, — 0> < 7 and 0 < 05 — 03 < m, this holds if and only if either 6> = 61 or 65 = 05. O
Combining these results together we have the following theorem.
Theorem 4.6. For A € 8 the following are equivalent:
1. AeCOP® and W C VA and A is irreducible with respect to Si + NS,
2. We have 01 > 05 > 03 and A = B.
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