Cases: ???
Peter J.C. Dickinson (peter.dickinson@cantab.net)
January 27, 2014

1 Toolbox

In this we use the notation:

$$
\begin{aligned}
\mathcal{C O} \mathcal{P}^{n} & :=\left\{A \in \mathcal{S}^{n} \mid \mathbf{v}^{\top} A \mathbf{v} \geq 0 \quad \text { for all } \mathbf{v} \in \mathbb{R}_{+}^{n}\right\} \\
\mathcal{S}_{+}^{n} & :=\left\{A \in \mathcal{S}^{n} \mid \mathbf{v}^{\top} A \mathbf{v} \geq 0 \quad \text { for all } \mathbf{v} \in \mathbb{R}^{n}\right\} \\
& =\operatorname{conv}\left\{\mathbf{v} \mathbf{v}^{\top} \mid \mathbf{v} \in \mathbb{R}^{n}\right\}, \\
\mathcal{S}_{1}^{n} & :=\left\{A \in \mathcal{S}^{n} \mid a_{i i}=1 \text { and }\left|a_{i j}\right| \leq 1 \quad \text { for all } i, j=1, \ldots, n\right\} .
\end{aligned}
$$

1.1 Limiting the entries of A

We begin by considering the entries of a copositive matrix.
Lemma 1.1. Consider $A \in \mathcal{C O} \mathcal{P}^{n}$ such that $a_{i i}=1$ for all i. Then $a_{i j} \geq-1$ for all i, j.
Proof. For all i, j we have $0 \leq\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)^{\mathrm{T}} A\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)=2+2 a_{i j}$.
Lemma 1.2 (1, Lemma 3.1]). Consider $A \in \mathcal{S}^{n}$ such that $a_{i i}=1$ for all i. Then $A \notin \mathcal{C O} \mathcal{P}^{n}$ if and only if there exists $\mathcal{I} \subseteq\{1, \ldots, n\}$ such that $A_{\mathcal{I}} \notin \mathcal{C O} \mathcal{P}^{|\mathcal{I}|}$ and $a_{i j}<1$ for all $i, j \in \mathcal{I}$ with $i \neq j$.
Corollary 1.3. Consider $A \in \mathcal{C O P}^{n}$ such that $a_{i i}=1$ for all i and A is irreducible with respect to \mathcal{N}^{n}. Then $A \in \mathcal{S}_{1}^{n}$.

Due to this result, from now on we will often limit ourselves to matrices in \mathcal{S}_{1}^{n}. We have the following two results on matrices in this set.
Lemma 1.4. Consider $A \in \mathcal{S}_{1}^{n}$. Then for all i, j there exists a unique $\theta_{i j} \in[0, \pi]$ such that $a_{i j}=\cos \theta_{i j}$.
Lemma 1.5. For $a, b \in[-1,1]$ consider the following matrix:

$$
A=\left(\begin{array}{ccc}
1 & -1 & b \\
-1 & 1 & a \\
b & a & 1
\end{array}\right)
$$

Then we have $A \in \mathcal{C O P}{ }^{3}$ if and only if $a+b \geq 0$.
Proof. To prove the reverse implication we note that if $a+b \geq 0$ then from

$$
A=\left(\begin{array}{c}
1 \\
-1 \\
b
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
b
\end{array}\right)^{\top}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a+b \\
0 & a+b & 1-b^{2}
\end{array}\right)
$$

we have $A \in \mathcal{C O} \mathcal{P}^{3}$.
To prove the forward implication we note that if $A \in \mathcal{C O} \mathcal{P}^{3}$ then for all $\varepsilon>0$ we have

$$
0 \leq\left(\begin{array}{l}
1 \\
1 \\
\varepsilon
\end{array}\right)^{\top} A\left(\begin{array}{l}
1 \\
1 \\
\varepsilon
\end{array}\right)=2 \varepsilon(a+b)+\varepsilon^{2}
$$

which implies that $a+b \geq 0$.
Lemma 1.6. Let $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$ and $i, j, k \in\{1, \ldots, n\}$ such that $i \neq j \neq k \neq i$ and $-1=a_{i j}=a_{j k}$. Then we have $a_{i k}=1$.
Proof. We have $0 \leq\left(\mathbf{e}_{i}+2 \mathbf{e}_{j}+\mathbf{e}_{k}\right)^{\top} A\left(\mathbf{e}_{i}+2 \mathbf{e}_{j}+\mathbf{e}_{k}\right)=2 a_{i k}-2$.

1.2 Set of zeros of A

We now consider the set of zeros of a matrix, starting with the following basic results.
Lemma 1.7. For $A \in \mathcal{C O P}{ }^{n}$ and $\mathbf{v} \in \mathcal{V}^{A}$, letting $\mathcal{I}=\operatorname{supp}(\mathbf{v})$, we have

$$
\begin{aligned}
A_{\mathcal{I}} & \in \mathcal{S}_{+}^{n} \\
(A \mathbf{v})_{\mathcal{I}} & =A_{\mathcal{I}} \mathbf{v}_{\mathcal{I}}=\mathbf{0}, \\
(A \mathbf{v})_{i} & \geq 0 \quad \text { for all } i \notin \mathcal{I} .
\end{aligned}
$$

Lemma 1.8. For all $A \in \mathcal{S}^{n}$ we have $\mathcal{V}^{A}=\mathbb{R}_{++} \mathcal{V}^{A}$.
Lemma 1.9. Consider $A \in \mathcal{S}^{n}$ and a permutation matrix $P \in \mathbb{R}^{n \times n}$. Then $\mathcal{V}^{P A P^{\top}}=P \mathcal{V}^{A}$.
We now consider the following result on the minimal zero support sets.
Lemma 1.10. Let $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathbf{v} \in \mathcal{V}_{\min }^{A}$ such that $|\operatorname{supp}(\mathbf{v})| \geq 3$. Then $\left|a_{i j}\right|<1$ for all $i, j \in \operatorname{supp}(\mathbf{v})$ such that $i \neq j$.

Proof. Suppose for the sake of contradiction there exists $i, j \in \operatorname{supp}(\mathbf{v})$ with $i \neq j$ such that $a_{i j}=-1$. Then $\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) \in \mathcal{V}^{A}$ and $\operatorname{supp}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)$ is strictly contained in \mathcal{I}.

Now suppose for the sake of contradiction there exists $i, j \in \operatorname{supp}(\mathbf{v})$ with $i \neq j$ such that $a_{i j}=1$. Now letting $\mathbf{u}=\left(\mathbf{v}+v_{j}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right)$, we have that $\mathbf{u} \neq \mathbf{0}$ and $\operatorname{supp}(\mathbf{u})$ is strictly contained in $\operatorname{supp}(\mathbf{v})$. By the minimality of \mathbf{v} this implies the contradiction

$$
0<\mathbf{u}^{\top} A \mathbf{u}=\mathbf{v}^{\top} A \mathbf{v}+2 v_{j}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\top} A \mathbf{v}+v_{j}^{2}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\top} A\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=0
$$

Lemma 1.11. Let $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathbf{u} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ such that $\operatorname{supp}(\mathbf{u})=\{1,2\}$. Then we have $\mathbf{u} \in \mathcal{V}_{\text {min }}^{A}$ if and only if $a_{12}=-1$ and $u_{1}=u_{2}$.

Lemma 1.12. Consider $A \in \mathcal{C O P}{ }^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathbf{v} \in \mathbb{R}_{+}^{n}$ with $\operatorname{supp}(\mathbf{v})=\{1,2,3\}$. Then we have the following:

1. If $\mathbf{v} \in \mathcal{V}^{A}$ then $2 v_{i} \leq \sum_{j=1}^{3} v_{j}$ for all $i=1,2,3$.
2. If $\mathbf{v} \in \mathcal{V}_{\text {min }}^{A}$ then $2 v_{i}<\sum_{j=1}^{3} v_{j}$ for all $i=1,2,3$.

Proof. If $\mathbf{v} \in \mathcal{V}^{A}$ then from Lemma 1.7, for all $i=1,2,3$ we have

$$
0=(A \mathbf{v})_{i}=\sum_{j=1}^{3} a_{i j} v_{j}=v_{i}+\sum_{\substack{j=1,2,3 \\ j \neq i}} a_{i j} v_{j} \geq v_{i}-\sum_{\substack{j=1,2,3 \\ j \neq i}} v_{j}=2 v_{i}-\sum_{j=1}^{3} v_{j} .
$$

This proves the first part.
Furthermore we note that if there exists $i \in\{1,2,3\}$ such that $2 v_{i}=\sum_{j=1}^{3} v_{j}$ then from the above inequality we get $a_{i j}=-1$ for all $j \in \mathcal{I} \backslash\{i\}$. In such a case, for all $j \in\{1,2,3\} \backslash\{i\}$ we have $\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) \in \mathcal{V}^{A}$ and $\operatorname{supp}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)$ is strictly contained in $\{1,2,3\}$, and thus $\mathbf{v} \notin \mathcal{V}_{\text {min }}^{A}$

Lemma 1.13. Consider $\mathbf{v} \in \mathbb{R}_{+}^{n}$ with $\operatorname{supp}(\mathbf{v})=\{1,2,3\}$ and $2 v_{i}<\sum_{j=1}^{3} v_{j}$ for all $i=1,2,3$. Then we have

$$
\left|\left\{\left(\nu, \theta_{1}, \theta_{2}\right) \in \mathbb{R}_{++}^{3} \mid \theta_{1}+\theta_{2}<\pi, \quad\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\nu\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\right\}\right|=1
$$

Proof. Consider arbitrary $\theta_{1}, \theta_{2}>0$ such that $\theta_{1}+\theta_{2}<\pi$. Letting $\theta_{3}=\pi-\theta_{1}-\theta_{2}>0$ we have $\theta_{i}+\theta_{3}<\pi$ for all $i=1,2$ and

$$
\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)=\left(\begin{array}{c}
\sin \left(\theta_{2}+\theta_{3}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{3}\right)
\end{array}\right)=\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{1}+\theta_{3}\right) \\
\sin \left(\theta_{3}\right)
\end{array}\right) .
$$

Therefore the result is independent of permutations and without loss of generality we may assume that $\mathcal{I}=\{1,2,3\}$ and $0<v_{1} \leq v_{2} \leq v_{3}<v_{1}+v_{2}$.

If for some $\nu, \theta_{1}, \theta_{2}>0$ with $\theta_{1}+\theta_{2}<\pi$ we have

$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\nu\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right),
$$

Then we must have $\theta_{1}, \theta_{2} \leq \pi / 2$, otherwise we get the contradiction that $v_{3} \leq \max \left\{v_{1}, v_{2}\right\}$.
For all $\nu \geq v_{2}$ and $i=1,2$ we let $\theta_{i}(\nu) \in(0, \pi / 2]$ be such that $v_{i}=\nu \sin \left(\theta_{i}(\nu)\right)$. Note that:

- the value of $\theta_{i}(\nu)$ is uniquely determined by the value of ν,
- the value of $\theta_{i}(\nu)$ varies continuously with ν,
- $\theta_{i}(\nu)$ is a strictly decreasing function with $\lim _{\nu \rightarrow \infty} \theta_{i}(\nu)=0$,
- $\theta_{2}\left(v_{2}\right)=\pi / 2$.

We now let

$$
\begin{aligned}
f(\nu) & =\nu \sin \left(\theta_{1}(\nu)+\theta_{2}(\nu)\right) \\
& =\nu \sin \left(\theta_{1}(\nu)\right) \cos \left(\theta_{2}(\nu)\right)+\nu \sin \left(\theta_{2}(\nu)\right) \cos \left(\theta_{1}(\nu)\right) \\
& =v_{1} \cos \left(\theta_{2}(\nu)\right)+v_{2} \cos \left(\theta_{1}(\nu)\right)
\end{aligned}
$$

We have that $f(\nu)$ is a strictly increasing function with $f\left(v_{2}\right)=v_{2} \cos \left(\theta_{1}\left(v_{2}\right)\right)<v_{2} \leq v_{3}$ and $\lim _{\nu \rightarrow \infty} f(\nu)=v_{1}+v_{2}>v_{3}$.

Therefore there exists a unique $\widehat{\nu} \in\left(v_{2}, \infty\right)$ such that $f(\widehat{\nu})=v_{3}$, which completes the proof.
Lemma 1.14. Consider $n \geq 3$ and $A \in \mathcal{C O P}{ }^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathcal{I}=\{1,2,3\}$ and $\nu, \theta_{1}, \theta_{2}>0$ such that $\theta_{1}+\theta_{2}<\pi$. Then the following are equivalent:

1. $A_{\mathcal{I}}=\left(\begin{array}{ccc}1 & \cos \left(\theta_{1}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\ \cos \left(\theta_{1}+\theta_{2}\right) & 1 & -\cos \left(\theta_{1}\right) \\ -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{1}\right) & 1\end{array}\right)$
2. $\nu\left(\begin{array}{c}\sin \left(\theta_{1}\right) \\ \sin \left(\theta_{2}\right) \\ \sin \left(\theta_{1}+\theta_{2}\right) \\ \mathbf{0}\end{array}\right) \in \mathcal{V}^{A}$
3. $\left\{\mathbf{v} \in \mathcal{V}^{A} \mid \operatorname{supp}(\mathbf{v}) \subseteq \mathcal{I}\right\}=\mathbb{R}_{++}\left(\begin{array}{c}\sin \left(\theta_{1}\right) \\ \sin \left(\theta_{2}\right) \\ \sin \left(\theta_{1}+\theta_{2}\right) \\ \mathbf{0}\end{array}\right)$.

Proof. We now split this proof into three parts:
1 \Rightarrow 3 Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}_{+}^{3}$ such that

$$
\mathbf{a}=\left(\begin{array}{c}
-\cos \left(\theta_{2}\right) \\
-\cos \left(\theta_{1}\right) \\
1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
\sin \left(\theta_{2}\right) \\
-\sin \left(\theta_{1}\right) \\
0
\end{array}\right)
$$

These are linearly independent vectors and we have

$$
\left\{\mathbf{u} \in \mathbb{R} \mid 0=\mathbf{a}^{\top} \mathbf{u}=\mathbf{b}^{\top} \mathbf{u}\right\}=\mathbb{R}\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
$$

If $A_{\mathcal{I}}$ is as given in 1 then we have $A_{\mathcal{I}}=\mathbf{a a}^{\top}+\mathbf{b b}^{\top}$ and thus for $\mathbf{v} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ such that $\operatorname{supp}(\mathbf{v}) \subseteq \mathcal{I}$ we have

$$
0=\mathbf{v}^{\top} A \mathbf{v} \quad \Leftrightarrow \quad 0=\left(\mathbf{a}^{\top} \mathbf{v}_{\mathcal{I}}\right)^{2}+\left(\mathbf{b}^{\top} \mathbf{v}_{\mathcal{I}}\right)^{2} \quad \Leftrightarrow \quad \mathbf{v}_{\mathcal{I}} \in \mathbb{R}_{++}\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
$$

3月2 This comes directly from the definitions.
2 $\Rightarrow 1$. From Lemma 1.10 we have $\left|a_{i j}\right|<1$ for all $i, j=1,2,3$ such that $i \neq j$. Therefore there exists $\alpha_{1}, \alpha_{2}, \alpha_{3} \in(0, \pi)$ such that

$$
A_{\mathcal{I}}=\left(\begin{array}{ccc}
1 & \cos \left(\alpha_{3}\right) & -\cos \left(\alpha_{2}\right) \\
\cos \left(\alpha_{3}\right) & 1 & -\cos \left(\alpha_{1}\right) \\
-\cos \left(\alpha_{2}\right) & -\cos \left(\alpha_{1}\right) & 1
\end{array}\right)
$$

From Lemma 1.7, $A_{\mathcal{I}}$ is a singular and thus

$$
\begin{aligned}
0 & =\operatorname{det} A_{\mathcal{I}}=\sin ^{2}\left(\alpha_{1}\right) \sin ^{2}\left(\alpha_{2}\right)-\left(\cos \left(\alpha_{3}\right)-\cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)\right)^{2} \\
\cos \left(\alpha_{3}\right) & =\cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right) \mp \sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right)=\cos \left(\alpha_{1} \pm \alpha_{2}\right) .
\end{aligned}
$$

Suppose for the sake of contradiction that $\cos \left(\alpha_{3}\right)=\cos \left(\alpha_{1}-\alpha_{2}\right)$ then

$$
A_{\mathcal{I}}=\left(\begin{array}{c}
-\cos \left(\alpha_{2}\right) \\
-\cos \left(\alpha_{1}\right) \\
1
\end{array}\right)\left(\begin{array}{c}
-\cos \left(\alpha_{2}\right) \\
-\cos \left(\alpha_{1}\right) \\
1
\end{array}\right)^{\top}+\left(\begin{array}{c}
\sin \left(\alpha_{2}\right) \\
\sin \left(\alpha_{1}\right) \\
0
\end{array}\right)\left(\begin{array}{c}
\sin \left(\alpha_{2}\right) \\
\sin \left(\alpha_{1}\right) \\
0
\end{array}\right)^{\top}
$$

We then we have the contradiction $\mathbf{u}^{\top} A_{\mathcal{I}} \mathbf{u}>0$ for all $\mathbf{u} \in \mathbb{R}_{++}^{3}$.
Therefore we have $\cos \left(\alpha_{3}\right)=\cos \left(\alpha_{1}+\alpha_{2}\right)$ and

$$
\begin{aligned}
& A_{\mathcal{I}}=\left(\begin{array}{c}
-\cos \left(\alpha_{2}\right) \\
-\cos \left(\alpha_{1}\right) \\
1
\end{array}\right)\left(\begin{array}{c}
-\cos \left(\alpha_{2}\right) \\
-\cos \left(\alpha_{1}\right) \\
1
\end{array}\right)^{\top}+\left(\begin{array}{c}
\sin \left(\alpha_{2}\right) \\
-\sin \left(\alpha_{1}\right) \\
0
\end{array}\right)\left(\begin{array}{c}
\sin \left(\alpha_{2}\right) \\
-\sin \left(\alpha_{1}\right) \\
0
\end{array}\right)^{\top}, \\
& \left\{\mathbf{u} \in \mathbb{R}^{3} \mid \mathbf{u}^{\top} A_{\mathcal{I}} \mathbf{u}=0\right\}=\mathbb{R}\left(\begin{array}{c}
\sin \left(\alpha_{1}\right) \\
\sin \left(\alpha_{2}\right) \\
\sin \left(\alpha_{1}+\alpha_{2}\right)
\end{array}\right) .
\end{aligned}
$$

Therefore we must have $\alpha_{1}+\alpha_{2}<\pi$ and from Lemma 1.13 we have $\alpha_{i}=\theta_{i}$ for $i=1,2$.
Corollary 1.15. Let $A \in \mathcal{C O P}{ }^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathbf{u} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ and $\mathcal{I}=\operatorname{supp}(\mathbf{u})$ such that $|\mathcal{I}|=3$. Then we have $\mathbf{u} \in \mathcal{V}_{\min }^{A}$ if and only if there exists $\nu, \theta_{1}, \theta_{2}>0$ such that $\theta_{1}+\theta_{2}<\pi$ and

$$
A_{\mathcal{I}}=\left(\begin{array}{ccc}
1 & \cos \left(\theta_{1}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
\cos \left(\theta_{1}+\theta_{2}\right) & 1 & -\cos \left(\theta_{1}\right) \\
-\cos \left(\theta_{2}\right) & -\cos \left(\theta_{1}\right) & 1
\end{array}\right) \quad \text { and } \quad \mathbf{u}_{\mathcal{I}}=\nu\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
$$

Corollary 1.16. For $n \geq 4$ let $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ such that $\operatorname{supp}(\mathbf{u})=\{1,3,4\}$ and $\operatorname{supp}(\mathbf{v})=\{2,3,4\}$.

Then we have $\mathbf{u}, \mathbf{v} \in \mathcal{V}_{\min }^{A}$ if and only if there exists $\nu, \lambda, \theta_{0}, \theta_{1}, \theta_{2}>0$ and $a \in \mathbb{R}$ such that $\theta_{0}+\theta_{i}<\pi$ for $i=1,2$ and

$$
\begin{aligned}
& A_{\{1,2,3,4\}}=\left(\begin{array}{cccc}
1 & a & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
a & 1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{2}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{1}\right) & -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right), \\
& \mathbf{u}_{\{1,2,3,4\}}=\nu\left(\begin{array}{c}
\sin \left(\theta_{0}\right) \\
0 \\
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right)
\end{array}\right),
\end{aligned}
$$

1.3 Irreducibility of A

Lemma 1.17. For $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$ we have the following:

1. A is irreducible with respect to \mathcal{N}^{n} if and only if for all i, j there exists $\mathbf{u} \in \mathcal{V}_{\min }^{A}$ such that $u_{i}+u_{j}>0$ and $(A \mathbf{u})_{i}=(A \mathbf{u})_{j}=0$.
2. A is irreducible with respect to \mathcal{S}_{+}^{n} if and only if $\operatorname{span} \mathcal{V}_{\min }^{A}=\mathbb{R}^{n}$.

1.4 Technical results

Lemma 1.18. For $a, b \in \mathbb{R}$ and $\theta_{1}, \theta_{2}>0$ such that $\theta_{1}+\theta_{2}<\pi$, consider the following matrix $A \in \mathcal{S}^{4}$:

$$
A=\left(\begin{array}{cccc}
1 & -1 & a & b \\
-1 & 1 & -\cos \left(\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) \\
a & -\cos \left(\theta_{2}\right) & 1 & -\cos \left(\theta_{1}\right) \\
b & \cos \left(\theta_{1}+\theta_{2}\right) & -\cos \left(\theta_{1}\right) & 1
\end{array}\right) .
$$

Then $A \in \mathcal{C O P}{ }^{4}$ if and only if $a \geq \cos \left(\theta_{2}\right)$ and $b \geq-\cos \left(\theta_{1}+\theta_{2}\right)$.
Proof. In order to prove the forward implication we note that $(1,1,0,0)^{\top} \in \mathcal{V}^{A}$ and thus if $A \in$ $\mathcal{C O} \mathcal{P}^{4}$ then

$$
\mathbf{0} \leq A\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
a-\cos \left(\theta_{2}\right) \\
b+\cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
$$

In order to prove the reverse implication we note that $\mathcal{C O P}^{4}=\mathcal{S}_{+}^{4}+\mathcal{N}^{4}$ and

$$
\begin{aligned}
A= & \left(\begin{array}{c}
-1 \\
1 \\
-\cos \left(\theta_{2}\right) \\
\cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
-\cos \left(\theta_{2}\right) \\
\cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{2}\right) \\
-\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{2}\right) \\
-\sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)^{\top} \\
& +\left(\begin{array}{cccc}
0 & 0 & a-\cos \left(\theta_{2}\right) & b+\cos \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 0 & 0 \\
a-\cos \left(\theta_{2}\right) & 0 & 0 & 0 \\
b+\cos \left(\theta_{1}+\theta_{2}\right) & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Lemma 1.19. Let $A \in \mathcal{C O} \mathcal{P}^{n} \cap \mathcal{S}_{1}^{n}$. Then there does not exist $i_{1}, i_{2}, j_{1}, j_{2}, k \in\{1, \ldots, n\}$, all mutually different, such that the minimal zero support set of A contains

$$
\left\{i_{1}, i_{2}\right\}, \quad\left\{j_{1}, j_{2}\right\}, \quad\left\{i_{1}, j_{1}, k\right\}, \quad\left\{i_{2}, j_{2}, k\right\}
$$

Proof. Suppose for the sake of contradiction that A does contain such a minimal zero support set.
Without loss of generality $i_{1}=1, i_{2}=2, j_{1}=3, j_{2}=4, k=5$, and we have $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathcal{V}^{A}$ where

$$
\mathbf{u}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
\mathbf{0}
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
\mathbf{0}
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{c}
\sin \left(\theta_{1}\right) \\
0 \\
\sin \left(\theta_{2}\right) \\
0 \\
\sin \left(\theta_{1}+\theta_{2}\right) \\
\mathbf{0}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
0 \\
\sin \left(\theta_{3}\right) \\
0 \\
\sin \left(\theta_{4}\right) \\
\sin \left(\theta_{3}+\theta_{4}\right) \\
\mathbf{0}
\end{array}\right)
$$

with $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}>0$ and $\theta_{1}+\theta_{2}<\pi$ and $\theta_{3}+\theta_{4}<\pi$.
There exist $a, b \in \mathbb{R}$ such that

$$
A_{\{1,2,3,4,5\}}=\left(\begin{array}{ccccc}
1 & -1 & \cos \left(\theta_{1}+\theta_{2}\right) & a & -\cos \left(\theta_{2}\right) \\
-1 & 1 & b & \cos \left(\theta_{3}+\theta_{4}\right) & -\cos \left(\theta_{4}\right) \\
\cos \left(\theta_{1}+\theta_{2}\right) & b & 1 & -1 & -\cos \left(\theta_{1}\right) \\
a & \cos \left(\theta_{3}+\theta_{4}\right) & -1 & 1 & -\cos \left(\theta_{3}\right) \\
-\cos \left(\theta_{2}\right) & -\cos \left(\theta_{4}\right) & -\cos \left(\theta_{1}\right) & -\cos \left(\theta_{3}\right) & 1
\end{array}\right) .
$$

We must have $0 \leq(A \mathbf{u})_{5}=-\cos \left(\theta_{2}\right)-\cos \left(\theta_{4}\right)=\cos \left(\pi-\theta_{2}\right)-\cos \left(\theta_{4}\right)$, which is equivalent to $\pi-\theta_{2} \leq \theta_{4}$, which is in turn equivalent to $\theta_{2}+\theta_{4} \geq \pi$. Similarly $0 \leq(A \mathbf{v})_{5}$ holds if and only if $\theta_{1}+\theta_{3} \geq \pi$.

This then gives the contradiction $2 \pi \leq\left(\theta_{2}+\theta_{4}\right)+\left(\theta_{1}+\theta_{3}\right)=\left(\theta_{1}+\theta_{2}\right)+\left(\theta_{3}+\theta_{4}\right)<2 \pi$.

2 Cases 5, 7, 12, 13, 14, 15, 16, 56

From Lemma 1.19 , there does not exist a copositive matrix with these minimal zero support sets.

$3 \quad$ Case 3

This is the case when we consider a matrix A with minimal zero support set:

$$
\begin{equation*}
\{1,2\}, \quad\{1,3\}, \quad\{1,4\}, \quad\{2,5\}, \quad\{3,5,6\}, \quad\{4,5,6\} . \tag{1}
\end{equation*}
$$

From Corollary 1.16 without loss of generality we have $\mathcal{V}_{\text {min }}^{A}=\mathbb{R}_{++} \mathcal{W}$, where

$$
\mathcal{W}=\left\{\left(\begin{array}{l}
1 \tag{2}\\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
\sin \left(\theta_{1}\right) \\
\left.\sin \left(\theta_{0}+\theta_{1}\right)\right)
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{2}\right) \\
\left.\sin \left(\theta_{0}+\theta_{2}\right)\right)
\end{array}\right)\right\}
$$

and $\theta_{0}>0$ and $0<\theta_{1} \leq \theta_{2}<\pi-\theta_{0}$.
We shall also consider the following matrix:

$$
B=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & 1 & \cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & -1 & \cos \left(\theta_{0}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
1 & -1 & \cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{2}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{1}\right) & \cos \left(\theta_{0}\right) & -\cos \left(\theta_{1}\right) & -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right)
$$

Lemma 3.1. For $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{6}$ with $\mathcal{V}^{A} \supseteq \mathcal{W}$,
2. For all $i, j=1, \ldots, n$ with $i \leq j$ we have

$$
\begin{array}{ll}
a_{i j}=b_{i j} & \text { if }(i, j) \neq(1,6),(2,6) \\
a_{i j} \geq b_{i j} & \text { if }(i, j)=(1,6),(2,6)
\end{array}
$$

Proof. This follows directly from Lemmas 1.2, 1.5, 1.11 and 1.14 , noting that we have $\cos \left(\theta_{0}\right)+\cos \left(\theta_{1}\right)>$ $\cos \left(\theta_{0}\right)+\cos \left(\pi-\theta_{0}\right)=0$.

Lemma 3.2. For $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{6}$ and $\mathcal{W} \subseteq \mathcal{V}^{A}$ and A is irreducible with respect to \mathcal{N}^{6},
2. We have $A=B$.

Proof. The implication $1 \Rightarrow 2$ follows directly from Lemma 4.1
We will now prove the reverse implication. We trivially have $\mathcal{W} \subseteq \mathcal{V}^{B}$ and from Lemma 4.1 we have $B \in \mathcal{C O} \mathcal{P}^{n}$ and B is irreducible with respect to E_{16}, E_{26}.

We note from Lemmas 1.7 and 1.17 and the fact that $\mathcal{W} \subseteq \mathcal{V}^{B}$, we have that B is irreducible with respect to $E_{11}, E_{12}, E_{13}, E_{14}, E_{22}, E_{25}, E_{33}, E_{35}, E_{36}, E_{44}, E_{45}, E_{46}, E_{55}, E_{56}, E_{66}$.

We are thus left to show that B is irreducible with respect to $E_{15}, E_{23}, E_{24}, E_{34}$.
Considering (1, 1, 0, 0, 0, 0) ${ }^{\top} \in \mathcal{V}^{B}$ we have

$$
B\left(\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\cos \left(\theta_{0}\right)+\cos \left(\theta_{1}\right)
\end{array}\right)
$$

Therefore B is irreducible with respect to E_{15}, E_{23}, E_{24}.

Considering $(1,0, \quad 0, \quad 1, \quad 0,0)^{\top} \in \mathcal{V}^{B}$ we have

$$
B\left(\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1+\cos \left(\theta_{0}+\theta_{2}\right) \\
\cos \left(\theta_{1}\right)-\cos \left(\theta_{2}\right)
\end{array}\right)
$$

Therefore B is irreducible with respect to E_{34}, which completes the proof.
Lemma 3.3. We have $\mathcal{V}_{\text {min }}^{B}=\mathbb{R}_{++} \mathcal{W}$.
Proof. There are trivially no zeros of B with support of cardinality one.
From Lemma 1.11, up to multiplication by a positive scalar, the zeros of B with support of cardinality two are exactly those given in \mathcal{W}.

From Lemma 1.10, if we wish to find minimal zeros of B whose support have cardinality strictly greater than two, we need only consider the maximal principle submatrices of B of order strictly greater than two and with no off-diagonal entries equal to plus or minus one. These are the principle submatrices

$$
\begin{aligned}
B_{\{3,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos (\theta 1) \\
\cos \left(\theta_{0}+\theta_{1}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{1}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) \\
B_{\{4,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos (\theta 2) \\
\cos \left(\theta_{0}+\theta_{2}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{2}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right)
\end{aligned}
$$

The required result then immediately follows.
Theorem 3.4. We have B is irreducible with respect to $\left(\mathcal{S}_{+}^{n}+\mathcal{N}^{n}\right)$ if and only if $\theta_{1}<\theta_{2}$.
Proof. From Lemma 3.2 we have that B is irreducible with respect to \mathcal{N}^{n}. We are thus left to show that B is irreducible with respect to \mathcal{S}_{+}^{n} if and only if $\theta_{1}<\theta_{2}$.

From Lemmas 1.17 and $3.3 B$ is reducible with respect to \mathcal{S}_{+}^{n} if and only if

$$
\begin{aligned}
\mathbb{R}^{6} \neq & \operatorname{span} \mathcal{W} \\
& \left.=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{1}\right) \\
\left.\sin \left(\theta_{0}+\theta_{1}\right)\right)
\end{array}\right), \quad \begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{2}\right) \\
\left.\sin \left(\theta_{0}+\theta_{2}\right)\right)
\end{array}\right)\right\}
\end{aligned}
$$

which in turn holds if and only if

$$
0=\left|\begin{array}{ccc}
1 & \sin \left(\theta_{0}\right) & \sin \left(\theta_{0}\right) \\
1 & \sin \left(\theta_{1}\right) & \sin \left(\theta_{2}\right) \\
0 & \sin \left(\theta_{0}+\theta_{1}\right) & \sin \left(\theta_{0}+\theta_{2}\right)
\end{array}\right|=\sin \left(\theta_{0}\right)\left(\sin \left(\theta_{1}\right)+\sin \left(\theta_{2}-\theta_{1}\right)-\sin \left(\theta_{2}\right)\right)
$$

For a fixed $\theta_{2} \in(0, \pi)$ we now let $f\left(\theta_{1}\right)=\sin \left(\theta_{1}\right)+\sin \left(\theta_{2}-\theta_{1}\right)-\sin \left(\theta_{2}\right)$.
We have $f(0)=f\left(\theta_{2}\right)=0$, and $f^{\prime \prime}\left(\theta_{1}\right)=-\sin \left(\theta_{1}\right)-\sin \left(\theta_{2}-\theta_{1}\right)<0$ for all $\theta_{1} \in\left[0, \theta_{2}\right]$. Therefore $f\left(\theta_{1}\right)=0$ if and only if $\theta_{1}=\theta_{2}$, which completes the proof.

$4 \quad$ Case 4

This is the case when we consider a matrix A with minimal zero support set:

$$
\begin{equation*}
\{1,2\}, \quad\{1,3\}, \quad\{1,4\}, \quad\{2,5,6\}, \quad\{3,5,6\}, \quad\{4,5,6\} \tag{3}
\end{equation*}
$$

From Corollary 1.16 without loss of generality we have $\mathcal{V}_{\min }^{A}=\mathbb{R}_{++} \mathcal{W}$, where

$$
\mathcal{W}=\left\{\left(\begin{array}{l}
1 \tag{4}\\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
0 \\
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right)
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
0 \\
\sin \left(\theta_{2}\right) \\
\left.\sin \left(\theta_{0}+\theta_{2}\right)\right)
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{3}\right) \\
\left.\sin \left(\theta_{0}+\theta_{3}\right)\right)
\end{array}\right)\right\}
$$

and $\theta_{0}>0$ and $\theta_{1} \geq \theta_{2} \geq \theta_{3}>0$ and $\theta_{0}+\theta_{1}<\pi$.
We shall also consider the following matrix:

$$
B=\left(\begin{array}{cccccc}
1 & -1 & -1 & -1 & -\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{3}\right) \tag{5}\\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{1}\right) & -\cos \left(\theta_{1}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{2}\right) & -\cos \left(\theta_{2}\right) \\
-1 & 1 & 1 & 1 & \cos \left(\theta_{0}+\theta_{3}\right) & -\cos \left(\theta_{3}\right) \\
-\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{2}\right) & \cos \left(\theta_{0}+\theta_{3}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{3}\right) & -\cos \left(\theta_{1}\right) & -\cos \left(\theta_{2}\right) & -\cos \left(\theta_{3}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) .
$$

Lemma 4.1. For $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O P}{ }^{n}$ and $\mathcal{W} \subseteq \mathcal{V}^{A}$,
2. For all $i, j=1, \ldots, n$ with $i \leq j$ we have

$$
\begin{array}{ll}
a_{i j}=b_{i j} & \text { if }(i, j) \neq(1,5),(1,6), \\
a_{i j} \geq b_{i j} & \text { if }(i, j)=(1,5),(1,6) .
\end{array}
$$

Proof. $1 \Leftrightarrow 2$ follows directly from Lemmas $1.2,1.11,1.14$ and 1.18
Lemma 4.2. For $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{6}$ and $\mathcal{W} \subseteq \mathcal{V}^{A}$ and A is irreducible with respect to \mathcal{N}^{6},
2. We have $A=B$.

Proof. The implication $1 \Rightarrow 2$ follows directly from Lemma 4.1
We will now prove the reverse implication. We trivially have $\mathcal{W} \subseteq \mathcal{V}^{B}$ and from Lemma 4.1 we have $B \in \mathcal{C O} \mathcal{P}^{n}$ and B is irreducible with respect to E_{15}, E_{16}.

We note from Lemmas 1.7 and 1.17 and the fact that $\mathcal{W} \subseteq \mathcal{V}^{B}$, we have that B is irreducible with respect to $E_{11}, E_{12}, E_{13}, E_{14}, E_{22}, E_{25}, E_{26}, E_{33}, E_{35}, E_{36}, E_{44}, E_{45}, E_{46}, E_{55}, E_{56}, E_{66}$.

We are thus left to show that B is irreducible with respect to E_{23}, E_{24}, E_{34}.
Considering (1, 1, 0, 0, 0, 0) ${ }^{\top} \in \mathcal{V}^{B}$ we have

$$
B\left(\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
\cos \left(\theta_{3}\right)-\cos \left(\theta_{1}\right)
\end{array}\right) .
$$

Therefore B is irreducible with respect to E_{23}, E_{24}.
Considering (1, 0, 0, 1, 0,0$)^{\top} \in \mathcal{V}^{B}$ we have

$$
B\left(\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\cos \left(\theta_{0}+\theta_{3}\right)-\cos \left(\theta_{0}+\theta_{1}\right) \\
0
\end{array}\right) .
$$

Therefore B is irreducible with respect to E_{34}, which completes the proof.

Lemma 4.3. If $\theta_{1}=\theta_{2}=\theta_{3}$ then $B \in \mathcal{S}_{+}^{n}$.
Proof. In such a case we have

$$
B=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
-1 \\
-\cos \left(\theta_{0}+\theta_{1}\right) \\
\cos \left(\theta_{1}\right)
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
-1 \\
-\cos \left(\theta_{0}+\theta_{1}\right) \\
\cos \left(\theta_{1}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-\sin \left(\theta_{0}+\theta_{1}\right) \\
\sin \left(\theta_{1}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-\sin \left(\theta_{0}+\theta_{1}\right) \\
\sin \left(\theta_{1}\right)
\end{array}\right)^{\top}
$$

Lemma 4.4. If $\theta_{1}>\theta_{3}$ then $\mathcal{V}_{\min }^{B}=\mathbb{R}_{++} \mathcal{W}$.
Proof. There are trivially no zeros of B with support of cardinality one.
From Lemma 1.11 up to multiplication by a positive scalar, the zeros of B with support of cardinality two are exactly those given in \mathcal{W}.

From Lemma 1.10, if we wish to find minimal zeros of B whose support have cardinality strictly greater than two, we need only consider the maximal principle submatrices of B with no off-diagonal entries equal to plus or minus one. For $i=1,2,3$ these are the principle submatrices

$$
\begin{aligned}
B_{\{i+1,5,6\}} & =\left(\begin{array}{ccc}
1 & \cos \left(\theta_{0}+\theta_{i}\right) & -\cos \left(\theta_{i}\right) \\
\cos \left(\theta_{0}+\theta_{i}\right) & 1 & -\cos \left(\theta_{0}\right) \\
-\cos \left(\theta_{i}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)^{\top}
\end{aligned}
$$

and the principle submatrix

$$
\begin{aligned}
B_{\{1,5,6\}}= & \left(\begin{array}{ccc}
1 & -\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{3}\right) \\
-\cos \left(\theta_{0}+\theta_{1}\right) & 1 & -\cos \left(\theta_{0}\right) \\
\cos \left(\theta_{3}\right) & -\cos \left(\theta_{0}\right) & 1
\end{array}\right) \\
= & \left(\begin{array}{c}
-1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
-1 \\
\cos \left(\theta_{0}+\theta_{i}\right) \\
-\cos \left(\theta_{i}\right)
\end{array}\right)^{\top}+\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
\sin \left(\theta_{0}+\theta_{i}\right) \\
-\sin \left(\theta_{i}\right)
\end{array}\right)^{\top} \\
& +\left(\begin{array}{ccc}
\cos \left(\theta_{0}+\theta_{i}\right)-\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{0}+\theta_{i}\right)-\cos \left(\theta_{0}+\theta_{1}\right) & \cos \left(\theta_{3}\right)-\cos \left(\theta_{i}\right) \\
\cos \left(\theta_{3}\right)-\cos \left(\theta_{i}\right) & 0 & 0 \\
0
\end{array}\right)
\end{aligned}
$$

We have $\cos \left(\theta_{0}+\theta_{i}\right) \geq \cos \left(\theta_{0}+\theta_{1}\right)$ and $\cos \left(\theta_{3}\right) \geq \cos \left(\theta_{i}\right)$, and at least one of these inequality relations is strict (otherwise $\theta_{1}=\theta_{i}=\theta_{3}$).

The required result then immediately follows.
Lemma 4.5. We have B is irreducible with respect to \mathcal{S}_{+}^{6} if and only if $\theta_{1}>\theta_{2}>\theta_{3}$.
Proof. If $\theta_{1}=\theta_{2}=\theta_{3}$ then from Lemma 4.3 we have that B is reducible with respect to \mathcal{S}_{+}^{6}.
If $\theta_{1}>\theta_{3}$ then from Lemma 4.4 we have $\mathcal{V}_{\text {min }}^{B}=\mathbb{R}_{++} \mathcal{W}$. From Lemma 1.17 we then have that B is reducible with respect to \mathcal{S}_{+}^{6} if and only if

$$
\begin{aligned}
\mathbb{R}^{6} \neq & \operatorname{span} \mathcal{W} \\
& =\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
-\sin \left(\theta_{0}\right) \\
0 \\
0 \\
0 \\
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right)
\end{array}\right), \quad\left(\begin{array}{c}
-\sin \left(\theta_{0}\right) \\
0 \\
0 \\
0 \\
\sin \left(\theta_{2}\right) \\
\left.\sin \left(\theta_{0}+\theta_{2}\right)\right)
\end{array}\right), \quad\left(\begin{array}{c}
-\sin \left(\theta_{0}\right) \\
0 \\
0 \\
0 \\
\sin \left(\theta_{3}\right) \\
\left.\sin \left(\theta_{0}+\theta_{3}\right)\right)
\end{array}\right)\right.
\end{aligned}
$$

This in turn holds if and only if

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
-\sin \left(\theta_{0}\right) & -\sin \left(\theta_{0}\right) & -\sin \left(\theta_{0}\right) \\
\sin \left(\theta_{1}\right) & \sin \left(\theta_{2}\right) & \sin \left(\theta_{3}\right) \\
\sin \left(\theta_{0}+\theta_{1}\right) & \sin \left(\theta_{0}+\theta_{2}\right) & \sin \left(\theta_{0}+\theta_{3}\right)
\end{array}\right| \\
& =-\sin ^{2}\left(\theta_{0}\right)\left(\sin \left(\theta_{1}-\theta_{2}\right)\left(1-\cos \left(\theta_{2}-\theta_{3}\right)\right)+\sin \left(\theta_{2}-\theta_{3}\right)\left(1-\cos \left(\theta_{1}-\theta_{2}\right)\right)\right)
\end{aligned}
$$

Finally, as $0 \leq \theta_{1}-\theta_{2}<\pi$ and $0 \leq \theta_{2}-\theta_{3}<\pi$, this holds if and only if either $\theta_{2}=\theta_{1}$ or $\theta_{2}=\theta_{3}$.
Combining these results together we have the following theorem.
Theorem 4.6. For $A \in \mathcal{S}_{1}^{6}$ the following are equivalent:

1. $A \in \mathcal{C O} \mathcal{P}^{6}$ and $\mathcal{W} \subseteq \mathcal{V}^{A}$ and A is irreducible with respect to $\mathcal{S}_{+}^{6}+\mathcal{N}^{6}$,
2. We have $\theta_{1}>\theta_{2}>\theta_{3}$ and $A=B$.

References

[1] Alan J. Hoffman and Francisco Pereira, On copositive matrices with -1,0,1 entries, Journal of Combinatorial Theory 14 (1973), no. 3, 302-309.

