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1 Toolbox

In this we use the notation:

COPn := {A ∈ Sn | vTAv ≥ 0 for all v ∈ Rn+},

Sn+ := {A ∈ Sn | vTAv ≥ 0 for all v ∈ Rn}
= conv{vvT | v ∈ Rn},

Sn1 := {A ∈ Sn | aii = 1 and |aij | ≤ 1 for all i, j = 1, . . . , n}.

1.1 Limiting the entries of A

We begin by considering the entries of a copositive matrix.

Lemma 1.1. Consider A ∈ COPn such that aii = 1 for all i. Then aij ≥ −1 for all i, j.

Proof. For all i, j we have 0 ≤ (ei + ej)
TA(ei + ej) = 2 + 2aij .

Lemma 1.2 ([1, Lemma 3.1]). Consider A ∈ Sn such that aii = 1 for all i. Then A /∈ COPn if and only

if there exists I ⊆ {1, . . . , n} such that AI /∈ COP |I| and aij < 1 for all i, j ∈ I with i 6= j.

Corollary 1.3. Consider A ∈ COPn such that aii = 1 for all i and A is irreducible with respect to Nn.
Then A ∈ Sn1 .

Due to this result, from now on we will often limit ourselves to matrices in Sn1 . We have the following
two results on matrices in this set.

Lemma 1.4. Consider A ∈ Sn1 . Then for all i, j there exists a unique θij ∈ [0, π] such that aij = cos θij.

Lemma 1.5. For a, b ∈ [−1, 1] consider the following matrix:

A =

 1 −1 b
−1 1 a
b a 1


Then we have A ∈ COP3 if and only if a+ b ≥ 0.

Proof. To prove the reverse implication we note that if a+ b ≥ 0 then from

A =

 1
−1
b

 1
−1
b

T

+

0 0 0
0 0 a+ b
0 a+ b 1− b2


we have A ∈ COP3.

To prove the forward implication we note that if A ∈ COP3 then for all ε > 0 we have

0 ≤

1
1
ε

T

A

1
1
ε

 = 2ε(a+ b) + ε2,

which implies that a+ b ≥ 0.

Lemma 1.6. Let A ∈ COPn ∩ Sn1 and i, j, k ∈ {1, . . . , n} such that i 6= j 6= k 6= i and −1 = aij = ajk.
Then we have aik = 1.

Proof. We have 0 ≤ (ei + 2ej + ek)TA(ei + 2ej + ek) = 2aik − 2.
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1.2 Set of zeros of A

We now consider the set of zeros of a matrix, starting with the following basic results.

Lemma 1.7. For A ∈ COPn and v ∈ VA, letting I = supp(v), we have

AI ∈ Sn+,
(Av)I = AIvI = 0,

(Av)i ≥ 0 for all i /∈ I.

Lemma 1.8. For all A ∈ Sn we have VA = R++VA.

Lemma 1.9. Consider A ∈ Sn and a permutation matrix P ∈ Rn×n. Then VPAPT

= PVA.

We now consider the following result on the minimal zero support sets.

Lemma 1.10. Let A ∈ COPn ∩ Sn1 and v ∈ VAmin such that | supp(v)| ≥ 3. Then |aij | < 1 for all
i, j ∈ supp(v) such that i 6= j.

Proof. Suppose for the sake of contradiction there exists i, j ∈ supp(v) with i 6= j such that aij = −1.
Then (ei + ej) ∈ VA and supp(ei + ej) is strictly contained in I.

Now suppose for the sake of contradiction there exists i, j ∈ supp(v) with i 6= j such that aij = 1.
Now letting u =

(
v + vj(ei − ej)

)
, we have that u 6= 0 and supp(u) is strictly contained in supp(v). By

the minimality of v this implies the contradiction

0 < uTAu = vTAv + 2vj(ei − ej)
TAv + v2j (ei − ej)

TA(ei − ej) = 0.

Lemma 1.11. Let A ∈ COPn∩Sn1 and u ∈ Rn+\{0} such that supp(u) = {1, 2}. Then we have u ∈ VAmin

if and only if a12 = −1 and u1 = u2.

Lemma 1.12. Consider A ∈ COPn ∩ Sn1 and v ∈ Rn+ with supp(v) = {1, 2, 3}. Then we have the
following:

1. If v ∈ VA then 2vi ≤
∑3
j=1 vj for all i = 1, 2, 3.

2. If v ∈ VAmin then 2vi <
∑3
j=1 vj for all i = 1, 2, 3.

Proof. If v ∈ VA then from Lemma 1.7, for all i = 1, 2, 3 we have

0 = (Av)i =

3∑
j=1

aijvj = vi +
∑

j=1,2,3
j 6=i

aijvj ≥ vi −
∑

j=1,2,3
j 6=i

vj = 2vi −
3∑
j=1

vj .

This proves the first part.
Furthermore we note that if there exists i ∈ {1, 2, 3} such that 2vi =

∑3
j=1 vj then from the above

inequality we get aij = −1 for all j ∈ I\{i}. In such a case, for all j ∈ {1, 2, 3}\{i} we have (ei+ej) ∈ VA
and supp(ei + ej) is strictly contained in {1, 2, 3}, and thus v /∈ VAmin

Lemma 1.13. Consider v ∈ Rn+ with supp(v) = {1, 2, 3} and 2vi <
∑3
j=1 vj for all i = 1, 2, 3. Then we

have ∣∣∣∣∣∣
(ν, θ1, θ2) ∈ R3

++

∣∣∣∣∣∣ θ1 + θ2 < π,

v1v2
v3

 = ν

 sin(θ1)
sin(θ2)

sin(θ1 + θ2)


∣∣∣∣∣∣ = 1.

Proof. Consider arbitrary θ1, θ2 > 0 such that θ1 + θ2 < π. Letting θ3 = π − θ1 − θ2 > 0 we have
θi + θ3 < π for all i = 1, 2 and sin(θ1)

sin(θ2)
sin(θ1 + θ2)

 =

sin(θ2 + θ3)
sin(θ2)
sin(θ3)

 =

 sin(θ1)
sin(θ1 + θ3)

sin(θ3)

 .

Therefore the result is independent of permutations and without loss of generality we may assume that
I = {1, 2, 3} and 0 < v1 ≤ v2 ≤ v3 < v1 + v2.
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If for some ν, θ1, θ2 > 0 with θ1 + θ2 < π we havev1v2
v3

 = ν

 sin(θ1)
sin(θ2)

sin(θ1 + θ2)

 ,

Then we must have θ1, θ2 ≤ π/2, otherwise we get the contradiction that v3 ≤ max{v1, v2}.
For all ν ≥ v2 and i = 1, 2 we let θi(ν) ∈ (0, π/2] be such that vi = ν sin(θi(ν)). Note that:

• the value of θi(ν) is uniquely determined by the value of ν,

• the value of θi(ν) varies continuously with ν,

• θi(ν) is a strictly decreasing function with limν→∞ θi(ν) = 0,

• θ2(v2) = π/2.

We now let

f(ν) = ν sin(θ1(ν) + θ2(ν))

= ν sin(θ1(ν)) cos(θ2(ν)) + ν sin(θ2(ν)) cos(θ1(ν))

= v1 cos(θ2(ν)) + v2 cos(θ1(ν)).

We have that f(ν) is a strictly increasing function with f(v2) = v2 cos(θ1(v2)) < v2 ≤ v3 and
limν→∞ f(ν) = v1 + v2 > v3.

Therefore there exists a unique ν̂ ∈ (v2,∞) such that f(ν̂) = v3, which completes the proof.

Lemma 1.14. Consider n ≥ 3 and A ∈ COPn ∩ Sn1 and I = {1, 2, 3} and ν, θ1, θ2 > 0 such that
θ1 + θ2 < π. Then the following are equivalent:

1. AI =

 1 cos(θ1 + θ2) − cos(θ2)
cos(θ1 + θ2) 1 − cos(θ1)
− cos(θ2) − cos(θ1) 1



2. ν


sin(θ1)
sin(θ2)

sin(θ1 + θ2)
0

 ∈ VA

3.
{
v ∈ VA

∣∣ supp(v) ⊆ I
}

= R++


sin(θ1)
sin(θ2)

sin(θ1 + θ2)
0

.

Proof. We now split this proof into three parts:

1⇒3: Let a,b ∈ R3
+ such that

a =

− cos(θ2)
− cos(θ1)

1

 , b =

 sin(θ2)
− sin(θ1)

0

 .

These are linearly independent vectors and we have

{u ∈ R | 0 = aTu = bTu} = R

 sin(θ1)
sin(θ2)

sin(θ1 + θ2)

 .

If AI is as given in 1 then we have AI = aaT+bbT and thus for v ∈ Rn+\{0} such that supp(v) ⊆ I
we have

0 = vTAv ⇔ 0 = (aTvI)2 + (bTvI)2 ⇔ vI ∈ R++

 sin(θ1)
sin(θ2)

sin(θ1 + θ2)
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3⇒2: This comes directly from the definitions.

2⇒1: From Lemma 1.10 we have |aij | < 1 for all i, j = 1, 2, 3 such that i 6= j. Therefore there exists
α1, α2, α3 ∈ (0, π) such that

AI =

 1 cos(α3) − cos(α2)
cos(α3) 1 − cos(α1)
− cos(α2) − cos(α1) 1

 .

From Lemma 1.7, AI is a singular and thus

0 = detAI = sin2(α1) sin2(α2)− (cos(α3)− cos(α1) cos(α2))
2
,

cos(α3) = cos(α1) cos(α2)∓ sin(α1) sin(α2) = cos(α1 ± α2).

Suppose for the sake of contradiction that cos(α3) = cos(α1 − α2) then

AI =

− cos(α2)
− cos(α1)

1

− cos(α2)
− cos(α1)

1

T

+

sin(α2)
sin(α1)

0

sin(α2)
sin(α1)

0

T

We then we have the contradiction uTAIu > 0 for all u ∈ R3
++.

Therefore we have cos(α3) = cos(α1 + α2) and

AI =

− cos(α2)
− cos(α1)

1

− cos(α2)
− cos(α1)

1

T

+

 sin(α2)
− sin(α1)

0

 sin(α2)
− sin(α1)

0

T

,

{u ∈ R3 | uTAIu = 0} = R

 sin(α1)
sin(α2)

sin(α1 + α2)

 .

Therefore we must have α1 + α2 < π and from Lemma 1.13 we have αi = θi for i = 1, 2.

Corollary 1.15. Let A ∈ COPn ∩ Sn1 and u ∈ Rn+ \ {0} and I = supp(u) such that |I| = 3. Then we
have u ∈ VAmin if and only if there exists ν, θ1, θ2 > 0 such that θ1 + θ2 < π and

AI =

 1 cos(θ1 + θ2) − cos(θ2)
cos(θ1 + θ2) 1 − cos(θ1)
− cos(θ2) − cos(θ1) 1

 and uI = ν

 sin(θ1)
sin(θ2)

sin(θ1 + θ2)

 .

Corollary 1.16. For n ≥ 4 let A ∈ COPn ∩ Sn1 and u,v ∈ Rn+ \ {0} such that supp(u) = {1, 3, 4} and
supp(v) = {2, 3, 4}.

Then we have u,v ∈ VAmin if and only if there exists ν, λ, θ0, θ1, θ2 > 0 and a ∈ R such that θ0 + θi < π
for i = 1, 2 and

A{1,2,3,4} =


1 a cos(θ0 + θ1) − cos(θ1)
a 1 cos(θ0 + θ2) − cos(θ2)

cos(θ0 + θ1) cos(θ0 + θ2) 1 − cos(θ0)
− cos(θ1) − cos(θ2) − cos(θ0) 1

 ,

u{1,2,3,4} = ν


sin(θ0)

0
sin(θ1)

sin(θ0 + θ1)

 , v{1,2,3,4} = λ


0

sin(θ0)
sin(θ2)

sin(θ0 + θ2)


1.3 Irreducibility of A

Lemma 1.17. For A ∈ COPn ∩ Sn1 we have the following:

1. A is irreducible with respect to Nn if and only if for all i, j there exists u ∈ VAmin such that ui+uj > 0
and (Au)i = (Au)j = 0.

2. A is irreducible with respect to Sn+ if and only if spanVAmin = Rn.
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1.4 Technical results

Lemma 1.18. For a, b ∈ R and θ1, θ2 > 0 such that θ1 + θ2 < π, consider the following matrix A ∈ S4:

A =


1 −1 a b
−1 1 − cos(θ2) cos(θ1 + θ2)
a − cos(θ2) 1 − cos(θ1)
b cos(θ1 + θ2) − cos(θ1) 1

 .

Then A ∈ COP4 if and only if a ≥ cos(θ2) and b ≥ − cos(θ1 + θ2).

Proof. In order to prove the forward implication we note that
(
1, 1, 0, 0

)T ∈ VA and thus if A ∈
COP4 then

0 ≤ A


1
1
0
0

 =


0
0

a− cos(θ2)
b+ cos(θ1 + θ2)

 .

In order to prove the reverse implication we note that COP4 = S4+ +N 4 and

A =


−1
1

− cos(θ2)
cos(θ1 + θ2)




−1
1

− cos(θ2)
cos(θ1 + θ2)


T

+


0
0

sin(θ2)
− sin(θ1 + θ2)




0
0

sin(θ2)
− sin(θ1 + θ2)


T

+


0 0 a− cos(θ2) b+ cos(θ1 + θ2)
0 0 0 0

a− cos(θ2) 0 0 0
b+ cos(θ1 + θ2) 0 0 0

 .

Lemma 1.19. Let A ∈ COPn ∩ Sn1 . Then there does not exist i1, i2, j1, j2, k ∈ {1, . . . , n}, all mutually
different, such that the minimal zero support set of A contains

{i1, i2}, {j1, j2}, {i1, j1, k}, {i2, j2, k}

Proof. Suppose for the sake of contradiction that A does contain such a minimal zero support set.
Without loss of generality i1 = 1, i2 = 2, j1 = 3, j2 = 4, k = 5, and we have u,v,w,x ∈ VA where

u =


1
1
0
0
0
0

 , v =


0
0
1
1
0
0

 , w =


sin(θ1)

0
sin(θ2)

0
sin(θ1 + θ2)

0

 , x =


0

sin(θ3)
0

sin(θ4)
sin(θ3 + θ4)

0

 ,

with θ1, θ2, θ3, θ4 > 0 and θ1 + θ2 < π and θ3 + θ4 < π.
There exist a, b ∈ R such that

A{1,2,3,4,5} =


1 −1 cos(θ1 + θ2) a − cos(θ2)
−1 1 b cos(θ3 + θ4) − cos(θ4)

cos(θ1 + θ2) b 1 −1 − cos(θ1)
a cos(θ3 + θ4) −1 1 − cos(θ3)

− cos(θ2) − cos(θ4) − cos(θ1) − cos(θ3) 1

 .

We must have 0 ≤ (Au)5 = − cos(θ2) − cos(θ4) = cos(π − θ2) − cos(θ4), which is equivalent to
π − θ2 ≤ θ4, which is in turn equivalent to θ2 + θ4 ≥ π. Similarly 0 ≤ (Av)5 holds if and only if
θ1 + θ3 ≥ π.

This then gives the contradiction 2π ≤ (θ2 + θ4) + (θ1 + θ3) = (θ1 + θ2) + (θ3 + θ4) < 2π.
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2 Cases 5, 7, 12, 13, 14, 15, 16, 56

From Lemma 1.19, there does not exist a copositive matrix with these minimal zero support sets.
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3 Case 3

This is the case when we consider a matrix A with minimal zero support set:

{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5, 6}, {4, 5, 6}. (1)

From Corollary 1.16 without loss of generality we have VAmin = R++W, where

W =




1
1
0
0
0
0

 ,


1
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0
1
0
0
1
0

 ,


0
0

sin(θ0)
0

sin(θ1)
sin(θ0 + θ1))

 ,


0
0
0

sin(θ0)
sin(θ2)

sin(θ0 + θ2))




(2)

and θ0 > 0 and 0 < θ1 ≤ θ2 < π − θ0.
We shall also consider the following matrix:

B =


1 −1 −1 −1 1 cos(θ1)
−1 1 1 1 −1 cos(θ0)
−1 1 1 1 cos(θ0 + θ1) − cos(θ1)
−1 1 1 1 cos(θ0 + θ2) − cos(θ2)
1 −1 cos(θ0 + θ1) cos(θ0 + θ2) 1 − cos(θ0)

cos(θ1) cos(θ0) − cos(θ1) − cos(θ2) − cos(θ0) 1


Lemma 3.1. For A ∈ S61 the following are equivalent:

1. A ∈ COP6 with VA ⊇ W,

2. For all i, j = 1, . . . , n with i ≤ j we have

aij = bij if (i, j) 6= (1, 6), (2, 6)

aij ≥ bij if (i, j) = (1, 6), (2, 6)

Proof. This follows directly from Lemmas 1.2, 1.5, 1.11 and 1.14, noting that we have cos(θ0)+cos(θ1) >
cos(θ0) + cos(π − θ0) = 0.

Lemma 3.2. For A ∈ S61 the following are equivalent:

1. A ∈ COP6 and W ⊆ VA and A is irreducible with respect to N 6,

2. We have A = B.

Proof. The implication 1⇒2 follows directly from Lemma 4.1.
We will now prove the reverse implication. We trivially have W ⊆ VB and from Lemma 4.1 we have

B ∈ COPn and B is irreducible with respect to E16, E26.
We note from Lemmas 1.7 and 1.17 and the fact that W ⊆ VB , we have that B is irreducible with

respect to E11, E12, E13, E14, E22, E25, E33, E35, E36, E44, E45, E46, E55, E56, E66.
We are thus left to show that B is irreducible with respect to E15, E23, E24, E34.

Considering
(
1, 1, 0, 0, 0, 0

)T ∈ VB we have

B


1
1
0
0
0
0

 =


0
0
0
0
0

cos(θ0) + cos(θ1)

 .

Therefore B is irreducible with respect to E15, E23, E24.
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Considering
(
1, 0, 0, 1, 0, 0

)T ∈ VB we have

B


1
0
0
1
0
0

 =


0
0
0
0

1 + cos(θ0 + θ2)
cos(θ1)− cos(θ2)

 .

Therefore B is irreducible with respect to E34, which completes the proof.

Lemma 3.3. We have VBmin = R++W.

Proof. There are trivially no zeros of B with support of cardinality one.
From Lemma 1.11, up to multiplication by a positive scalar, the zeros of B with support of cardinality

two are exactly those given in W.
From Lemma 1.10, if we wish to find minimal zeros of B whose support have cardinality strictly

greater than two, we need only consider the maximal principle submatrices of B of order strictly greater
than two and with no off-diagonal entries equal to plus or minus one. These are the principle submatrices

B{3,5,6} =

 1 cos(θ0 + θ1) − cos(θ1)
cos(θ0 + θ1) 1 − cos(θ0)
− cos(θ1) − cos(θ0) 1

 ,

B{4,5,6} =

 1 cos(θ0 + θ2) − cos(θ2)
cos(θ0 + θ2) 1 − cos(θ0)
− cos(θ2) − cos(θ0) 1

 .

The required result then immediately follows.

Theorem 3.4. We have B is irreducible with respect to (Sn+ +Nn) if and only if θ1 < θ2.

Proof. From Lemma 3.2 we have that B is irreducible with respect to Nn. We are thus left to show that
B is irreducible with respect to Sn+ if and only if θ1 < θ2.

From Lemmas 1.17 and 3.3, B is reducible with respect to Sn+ if and only if

R6 6= spanW

=




1
1
0
0
0
0

 ,


1
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0
0
0
1
1
0

 ,


0
0
0

sin(θ0)
sin(θ1)

sin(θ0 + θ1))

 ,


0
0
0

sin(θ0)
sin(θ2)

sin(θ0 + θ2))




,

which in turn holds if and only if

0 =

∣∣∣∣∣∣
1 sin(θ0) sin(θ0)
1 sin(θ1) sin(θ2)
0 sin(θ0 + θ1) sin(θ0 + θ2)

∣∣∣∣∣∣ = sin(θ0) (sin(θ1) + sin(θ2 − θ1)− sin(θ2)) .

For a fixed θ2 ∈ (0, π) we now let f(θ1) = sin(θ1) + sin(θ2 − θ1)− sin(θ2).
We have f(0) = f(θ2) = 0, and f ′′(θ1) = − sin(θ1) − sin(θ2 − θ1) < 0 for all θ1 ∈ [0, θ2]. Therefore

f(θ1) = 0 if and only if θ1 = θ2, which completes the proof.
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4 Case 4

This is the case when we consider a matrix A with minimal zero support set:

{1, 2}, {1, 3}, {1, 4}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6} (3)

From Corollary 1.16 without loss of generality we have VAmin = R++W, where

W =




1
1
0
0
0
0

 ,


1
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


0

sin(θ0)
0
0

sin(θ1)
sin(θ0 + θ1)

 ,


0
0

sin(θ0)
0

sin(θ2)
sin(θ0 + θ2))

 ,


0
0
0

sin(θ0)
sin(θ3)

sin(θ0 + θ3))




(4)

and θ0 > 0 and θ1 ≥ θ2 ≥ θ3 > 0 and θ0 + θ1 < π.
We shall also consider the following matrix:

B =


1 −1 −1 −1 − cos(θ0 + θ1) cos(θ3)
−1 1 1 1 cos(θ0 + θ1) − cos(θ1)
−1 1 1 1 cos(θ0 + θ2) − cos(θ2)
−1 1 1 1 cos(θ0 + θ3) − cos(θ3)

− cos(θ0 + θ1) cos(θ0 + θ1) cos(θ0 + θ2) cos(θ0 + θ3) 1 − cos(θ0)
cos(θ3) − cos(θ1) − cos(θ2) − cos(θ3) − cos(θ0) 1

 . (5)

Lemma 4.1. For A ∈ S61 the following are equivalent:

1. A ∈ COPn and W ⊆ VA,

2. For all i, j = 1, . . . , n with i ≤ j we have

aij = bij if (i, j) 6= (1, 5), (1, 6),

aij ≥ bij if (i, j) = (1, 5), (1, 6).

Proof. 1⇔2 follows directly from Lemmas 1.2, 1.11, 1.14 and 1.18.

Lemma 4.2. For A ∈ S61 the following are equivalent:

1. A ∈ COP6 and W ⊆ VA and A is irreducible with respect to N 6,

2. We have A = B.

Proof. The implication 1⇒2 follows directly from Lemma 4.1.
We will now prove the reverse implication. We trivially have W ⊆ VB and from Lemma 4.1 we have

B ∈ COPn and B is irreducible with respect to E15, E16.
We note from Lemmas 1.7 and 1.17 and the fact that W ⊆ VB , we have that B is irreducible with

respect to E11, E12, E13, E14, E22, E25, E26, E33, E35, E36, E44, E45, E46, E55, E56, E66.
We are thus left to show that B is irreducible with respect to E23, E24, E34.

Considering
(
1, 1, 0, 0, 0, 0

)T ∈ VB we have

B


1
1
0
0
0
0

 =


0
0
0
0
0

cos(θ3)− cos(θ1)

 .

Therefore B is irreducible with respect to E23, E24.

Considering
(
1, 0, 0, 1, 0, 0

)T ∈ VB we have

B


1
0
0
1
0
0

 =


0
0
0
0

cos(θ0 + θ3)− cos(θ0 + θ1)
0

 .

Therefore B is irreducible with respect to E34, which completes the proof.
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Lemma 4.3. If θ1 = θ2 = θ3 then B ∈ Sn+.

Proof. In such a case we have

B =


1
−1
−1
−1

− cos(θ0 + θ1)
cos(θ1)




1
−1
−1
−1

− cos(θ0 + θ1)
cos(θ1)



T

+


0
0
0
0

− sin(θ0 + θ1)
sin(θ1)




0
0
0
0

− sin(θ0 + θ1)
sin(θ1)



T

.

Lemma 4.4. If θ1 > θ3 then VBmin = R++W.

Proof. There are trivially no zeros of B with support of cardinality one.
From Lemma 1.11, up to multiplication by a positive scalar, the zeros of B with support of cardinality

two are exactly those given in W.
From Lemma 1.10, if we wish to find minimal zeros of B whose support have cardinality strictly

greater than two, we need only consider the maximal principle submatrices of B with no off-diagonal
entries equal to plus or minus one. For i = 1, 2, 3 these are the principle submatrices

B{i+1,5,6} =

 1 cos(θ0 + θi) − cos(θi)
cos(θ0 + θi) 1 − cos(θ0)
− cos(θi) − cos(θ0) 1



=

 1
cos(θ0 + θi)
− cos(θi)

 1
cos(θ0 + θi)
− cos(θi)

T

+

 0
sin(θ0 + θi)
− sin(θi)

 0
sin(θ0 + θi)
− sin(θi)

T

.

and the principle submatrix

B{1,5,6} =

 1 − cos(θ0 + θ1) cos(θ3)
− cos(θ0 + θ1) 1 − cos(θ0)

cos(θ3) − cos(θ0) 1



=

 −1
cos(θ0 + θi)
− cos(θi)

 −1
cos(θ0 + θi)
− cos(θi)

T

+

 0
sin(θ0 + θi)
− sin(θi)

 0
sin(θ0 + θi)
− sin(θi)

T

+

 0 cos(θ0 + θi)− cos(θ0 + θ1) cos(θ3)− cos(θi)
cos(θ0 + θi)− cos(θ0 + θ1) 0 0

cos(θ3)− cos(θi) 0 0

 .

We have cos(θ0 + θi) ≥ cos(θ0 + θ1) and cos(θ3) ≥ cos(θi), and at least one of these inequality relations
is strict (otherwise θ1 = θi = θ3).

The required result then immediately follows.

Lemma 4.5. We have B is irreducible with respect to S6+ if and only if θ1 > θ2 > θ3.

Proof. If θ1 = θ2 = θ3 then from Lemma 4.3 we have that B is reducible with respect to S6+.
If θ1 > θ3 then from Lemma 4.4 we have VBmin = R++W. From Lemma 1.17 we then have that B is

reducible with respect to S6+ if and only if

R6 6= spanW

= span




1
1
0
0
0
0

 ,


1
0
1
0
0
0

 ,


1
0
0
1
0
0

 ,


− sin(θ0)

0
0
0

sin(θ1)
sin(θ0 + θ1)

 ,


− sin(θ0)

0
0
0

sin(θ2)
sin(θ0 + θ2))

 ,


− sin(θ0)

0
0
0

sin(θ3)
sin(θ0 + θ3))




.
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This in turn holds if and only if

0 =

∣∣∣∣∣∣
− sin(θ0) − sin(θ0) − sin(θ0)
sin(θ1) sin(θ2) sin(θ3)

sin(θ0 + θ1) sin(θ0 + θ2) sin(θ0 + θ3)

∣∣∣∣∣∣
= − sin2(θ0) (sin(θ1 − θ2)(1− cos(θ2 − θ3)) + sin(θ2 − θ3)(1− cos(θ1 − θ2)))

Finally, as 0 ≤ θ1 − θ2 < π and 0 ≤ θ2 − θ3 < π, this holds if and only if either θ2 = θ1 or θ2 = θ3.

Combining these results together we have the following theorem.

Theorem 4.6. For A ∈ S61 the following are equivalent:

1. A ∈ COP6 and W ⊆ VA and A is irreducible with respect to S6+ +N 6,

2. We have θ1 > θ2 > θ3 and A = B.
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