Case 6

Andrey Afonin, Roland Hildebrand

December 6, 2018

Basic structure

The minimal zero supports are given by $\{1,2\},\{1,3\},\{1,4,5\},\{2,4,6\},\{3,4,6\},\{4,5,6\}$. There is a symmetry exchanging indices 2 and 3 . We may write a copositive matrix with this minimal zero support set as

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -1 & \cos \left(\phi_{2}+\phi_{5}\right) & -\cos \phi_{5} & b_{3} \\
-1 & 1 & 1 & \cos \left(\phi_{1}+\phi_{4}\right) & b_{4} & -\cos \phi_{4} \\
-1 & 1 & 1 & \cos \left(\phi_{1}+\phi_{3}\right) & b_{5} & -\cos \phi_{3} \\
\cos \left(\phi_{2}+\phi_{5}\right) & \cos \left(\phi_{1}+\phi_{4}\right) & \cos \left(\phi_{1}+\phi_{3}\right) & 1 & -\cos \phi_{2} & -\cos \phi_{1} \\
-\cos \phi_{5} & b_{4} & b_{5} & -\cos \phi_{2} & 1 & \cos \left(\phi_{1}+\phi_{2}\right) \\
b_{3} & -\cos \phi_{4} & -\cos \phi_{3} & -\cos \phi_{1} & \cos \left(\phi_{1}+\phi_{2}\right) & 1
\end{array}\right),
$$

where $\phi_{j} \in(0, \pi), j=1, \ldots, 5 ; \phi_{1}+\phi_{j}<\pi, j=2,3,4 ; \phi_{2}+\phi_{5}<\pi$.
The minimal zeros of A are given by the columns of

$$
U=\left(\begin{array}{cccccc}
1 & 1 & \sin \phi_{2} & 0 & 0 & 0 \\
1 & 0 & 0 & \sin \phi_{1} & 0 & 0 \\
0 & 1 & 0 & 0 & \sin \phi_{1} & 0 \\
0 & 0 & \sin \phi_{5} & \sin \phi_{4} & \sin \phi_{3} & \sin \left(\phi_{1}+\phi_{2}\right) \\
0 & 0 & \sin \left(\phi_{2}+\phi_{5}\right) & 0 & 0 & \sin \phi_{1} \\
0 & 0 & 0 & \sin \left(\phi_{1}+\phi_{4}\right) & \sin \left(\phi_{1}+\phi_{3}\right) & \sin \phi_{2}
\end{array}\right)
$$

First order conditions

Consider the conditions $\left(A u_{i}\right)_{j} \geq 0$. $\left(A u_{1}\right)_{4} \geq 0$ is equivalent to $\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5} \leq \pi$, and $\left(A u_{2}\right)_{4} \geq 0$ is equivalent to $\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5} \leq \pi$. The other conditions are either automatically satisfied, or involve the elements b_{k}. The latter type of conditions involves only a single element b_{k} each, and hence by the irreducibility condition with respect to \mathcal{N}^{6} yields the following values for the b_{k} :

$$
\begin{aligned}
b_{3} & =\max \left(\cos \phi_{4}, \cos \phi_{3},-\cos \left(\phi_{1}+\phi_{2}+\phi_{5}\right), \frac{\sin \phi_{1}-\cos \left(\phi_{2}+\phi_{5}\right) \sin \phi_{4}}{\sin \left(\phi_{1}+\phi_{4}\right)}, \frac{\sin \phi_{1}-\cos \left(\phi_{2}+\phi_{5}\right) \sin \phi_{3}}{\sin \left(\phi_{1}+\phi_{3}\right)}\right) \\
& =\max \left(\cos \phi_{3}, \cos \phi_{4}\right) \\
b_{4} & =\max \left(\cos \phi_{5}, \frac{\sin \phi_{2}-\cos \left(\phi_{1}+\phi_{4}\right) \sin \phi_{5}}{\sin \left(\phi_{2}+\phi_{5}\right)},-\cos \left(\phi_{1}+\phi_{2}+\phi_{4}\right)\right)=\cos \phi_{5} \\
b_{5} & =\max \left(\cos \phi_{5}, \frac{\sin \phi_{2}-\cos \left(\phi_{1}+\phi_{3}\right) \sin \phi_{5}}{\sin \left(\phi_{2}+\phi_{5}\right)},-\cos \left(\phi_{1}+\phi_{2}+\phi_{3}\right)\right)=\cos \phi_{5}
\end{aligned}
$$

By possibly exchanging indices 2,3 we may assume $\phi_{3} \leq \phi_{4}$, which determines $b_{3}=\cos \phi_{3}$.
Note that now $\left(A u_{2}\right)_{j}=0$ for all $j \neq 4$. However, $A u_{2}=0$ would prevent A from being extremal, and hence we may assume $\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}<\pi$.

Parametrization

We arrive at the parametrization

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -1 & \cos \left(\phi_{2}+\phi_{5}\right) & -\cos \phi_{5} & \cos \phi_{3} \tag{1}\\
-1 & 1 & 1 & \cos \left(\phi_{1}+\phi_{4}\right) & \cos \phi_{5} & -\cos \phi_{4} \\
-1 & 1 & 1 & \cos \left(\phi_{1}+\phi_{3}\right) & \cos \phi_{5} & -\cos \phi_{3} \\
\cos \left(\phi_{2}+\phi_{5}\right) & \cos \left(\phi_{1}+\phi_{4}\right) & \cos \left(\phi_{1}+\phi_{3}\right) & 1 & -\cos \phi_{2} & -\cos \phi_{1} \\
-\cos \phi_{5} & \cos \phi_{5} & \cos \phi_{5} & -\cos \phi_{2} & 1 & \cos \left(\phi_{1}+\phi_{2}\right) \\
\cos \phi_{3} & -\cos \phi_{4} & -\cos \phi_{3} & -\cos \phi_{1} & \cos \left(\phi_{1}+\phi_{2}\right) & 1
\end{array}\right)
$$

with $\phi_{i} \in(0, \pi), \phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}<\pi, \phi_{1}+\phi_{2}+\phi_{4}+\phi_{5} \leq \pi, \phi_{3} \leq \phi_{4}$.

Copositivity / Absence of other minimal zeros

Copositivity of A will be checked by the criterion in Theorem 4.6 of [1]. For each index set $I \subset$ $\{1, \ldots, 6\}$, of cardinality not smaller than 3 and not containing a known minimal zero support, we have to find a vector $u \in \mathbb{R}^{6}$ with at least one positive element such that $\operatorname{supp}(u) \subset I \subset \operatorname{supp}_{\geq 0}(A u)$ or show that the submatrix A_{I} is copositive. For index sets of cardinality three this reduces to checking an inequality on the corresponding angles. We obtain

1. $I=\{2,4,5\}: \pi-\phi_{1}-\phi_{4}+\pi-\phi_{5}+\phi_{2} \geq \pi \Leftrightarrow \pi \geq-\phi_{2}+\phi_{1}+\phi_{4}+\phi_{5}$
2. $I=\{3,4,5\}: \pi-\phi_{1}-\phi_{3}+\pi-\phi_{5}+\phi_{2} \geq \pi \Leftrightarrow \pi \geq-\phi_{2}+\phi_{1}+\phi_{3}+\phi_{5}$
3. $I=\{1,4,6\}: \pi-\phi_{2}-\phi_{5}+\pi-\phi_{3}+\phi_{1} \geq \pi \Leftrightarrow \pi \geq-\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}$
4. $I=\{1,5,6\}: \pi-\phi_{3}+\phi_{5}+\pi-\phi_{1}-\phi_{2} \geq \pi \Leftrightarrow \pi \geq-\phi_{5}+\phi_{1}+\phi_{3}+\phi_{2}$
5. $I=\{2,5,6\}: \pi-\phi_{5}+\phi_{4}+\pi-\phi_{1}-\phi_{2} \geq \pi \Leftrightarrow \pi \geq-\phi_{4}+\phi_{1}+\phi_{5}+\phi_{2}$
6. $I=\{3,5,6\}: \pi-\phi_{5}+\phi_{3}+\pi-\phi_{1}-\phi_{2} \geq \pi \Leftrightarrow \pi \geq-\phi_{3}+\phi_{1}+\phi_{5}+\phi_{2}$
7. $I=\{2,3,4\} ;\{2,3,5\} ;\{2,3,4,5\}: u=e_{3}-e_{2}$
8. $I=\{2,3,5\} ;\{2,3,6\} ;\{2,3,5,6\}: u=e_{2}-e_{3}$.

This proves copositivity.
All angle inequalities are satisfied strictly and the vectors u are not nonnegative. Hence there are no additional minimal zeros.

Extremality

We use the extremality criterion Theorem 17 point 5 in [2]. The matrix A is extremal whenever every matrix B satisfying $\left(B u_{i}\right)_{j}=0$ whenever $\left(A u_{i}\right)_{j}=0$ is proportional to A. Let us consider the elements $\left(A u_{i}\right)_{j}$.

The following elements are always zero:

$$
\begin{equation*}
\left(A u_{1}\right)_{1,2,3,5},\left(A u_{2}\right)_{1,2,3,5,6},\left(A u_{3}\right)_{1,4,5},\left(A u_{4}\right)_{2,4,6},\left(A u_{5}\right)_{3,4,6},\left(A u_{6}\right)_{4,5,6} \tag{2}
\end{equation*}
$$

The following elements may become zero: If $\phi_{3}=\phi_{4}$, then

$$
\left(A u_{1}\right)_{6}=\left(A u_{4}\right)_{3}=\left(A u_{5}\right)_{2}=0
$$

If $\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}=\pi$, then

$$
\left(A u_{4}\right)_{1}=\left(A u_{3}\right)_{2}=\left(A u_{6}\right)_{2}=\left(A u_{1}\right)_{4}=\left(A u_{4}\right)_{5}=0 .
$$

The following elements are always positive:

$$
\left(A u_{2}\right)_{4},\left(A u_{3}\right)_{3,6},\left(A u_{5}\right)_{1,5},\left(A u_{6}\right)_{1,3}
$$

We now use relations (2), which translate to corresponding relations on B. Consider the face of A. For every B in this face there exists a matrix $P \in \mathcal{S}_{+}^{2}$ such that

$$
F P F^{T}=\left(\begin{array}{cccccc}
b_{11} & \star & \star & b_{14} & b_{15} & \star \tag{3}\\
\star & b_{22} & \star & b_{24} & \star & b_{26} \\
\star & \star & b_{33} & b_{34} & \star & b_{36} \\
b_{14} & b_{24} & b_{34} & b_{44} & b_{45} & b_{46} \\
b_{15} & \star & \star & b_{45} & b_{55} & b_{56} \\
\star & b_{26} & b_{36} & b_{46} & b_{56} & b_{66}
\end{array}\right),
$$

where F is a 6×2 matrix of rank 2 such that $u_{i}^{T} F=0, i=3,4,5,6$. By means of the relations $\left(B u_{1}\right)_{j}=0,\left(B u_{2}\right)_{j}=0$ for appropriate j the missing elements $b_{i j}$ are determined from the elements which are present in (3) by

$$
\begin{equation*}
b_{12}=-b_{11}, b_{13}=-b_{11}, b_{16}=-b_{36}, b_{23}=-b_{13}, b_{25}=-b_{15}, b_{35}=-b_{15} \tag{4}
\end{equation*}
$$

However, we obtain also the additional conditions $b_{11}=b_{22}=b_{33}$ on the elements present in (3) which translate to restrictions on P.

The first three rows of F have the left kernel vector

$$
\left(\sin \left(\phi_{3}-\phi_{4}\right),-\sin \left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right), \sin \left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right)\right)
$$

and we may assume

$$
F=\left(\begin{array}{cc}
1 & 0 \\
\frac{\sin \left(\phi_{3}-\phi_{4}\right)}{\sin \left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} & \frac{\sin \left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right)}{\sin \left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} \\
0 & 1 \\
\star & \star \\
\star & \star \\
\star & \star
\end{array}\right) .
$$

Then $b_{11}=p_{11}, b_{33}=p_{22}, b_{22}=\frac{\sin ^{2}\left(\phi_{3}-\phi_{4}\right)}{\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} p_{11}+2 \frac{\sin \left(\phi_{3}-\phi_{4}\right) \sin \left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right)}{\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} p_{12}+\frac{\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right)}{\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} p_{22}$, and the condition $b_{11}=b_{22}=b_{33}$ yields $p_{11}=p_{22}$ and a second linear condition

$$
\begin{equation*}
p_{11}=\frac{\sin ^{2}\left(\phi_{3}-\phi_{4}\right) p_{11}+2 \sin \left(\phi_{3}-\phi_{4}\right) \sin \left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right) p_{12}+\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}\right) p_{22}}{\sin ^{2}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}\right)} \tag{5}
\end{equation*}
$$

on P.
Let us now consider the different cases. Note that the relations $\phi_{3}=\phi_{4}$ and $\phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}=\pi$ cannot hold simultaneously, because $\phi_{1}+\phi_{2}+\phi_{3}+\phi_{5}<\pi$.

Consider the case $\phi_{3}<\phi_{4}, \phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}<\pi$: Here P is determined completely in dependence of p_{11}, because the coefficient at p_{12} in (5) is non-zero. Thus in this case there is no linearly independent solution B and A is extremal.

Consider the case $\phi_{3}=\phi_{4}, \phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}<\pi$: We get

$$
F=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1 \\
\star & \star \\
\star & \star \\
\star & \star
\end{array}\right) .
$$

The equations $b_{11}=b_{22}=b_{33}$ are satisfied by the relation $p_{11}=p_{22}$ alone.
However, in (3) the element b_{23} appears in addition by each of the relations $\left(B u_{4}\right)_{3}=0,\left(B u_{5}\right)_{2}=0$, and by (4) this gives the additional condition $b_{11}=b_{23}$ between the elements of (3). Further, the relation $\left(B u_{1}\right)_{6}=0$ yields $b_{16}=-b_{26}$, which translates to the relation $b_{26}=b_{36}$ between the elements of (3).

However, since the second and third row of F are now identical, these relations are satisfied automatically. Hence there remains the solution $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ which is linearly independent from the solution generated by A.

Since not all rows of F have zero elements, this matrix P gives rise to a non-zero solution B which is linearly independent of A, and A cannot be extremal.

Consider the case $\phi_{3}<\phi_{4}, \phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}=\pi$: The factor F takes the form

$$
F=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
\star & \star \\
\star & \star \\
\star & \star
\end{array}\right) .
$$

We now have also $u_{1}^{T} F=0$.
The additional relation $\left(B u_{6}\right)_{2}=0$ makes b_{25} appear at the respective place in (3). Now $\left(B u_{3}\right)_{2}=0$ makes b_{12} appear, and $\left(B u_{4}\right)_{1}=0$ makes b_{16} appear.

At this stage, both b_{16}, b_{26} are present in (3), and the condition $u_{1}^{T} F=0$ leads to the relation $b_{16}+b_{26}=0$. It follows that $\phi_{3}=\phi_{4}$, a contradiction.

Result

In Case 6 the extremal matrices with unit diagonal are given by (1) with $\phi_{i}>0, \phi_{1}+\phi_{2}+\phi_{4}+\phi_{5}<\pi$, $\phi_{3}<\phi_{4}$, as well as those obtained by exchanging row and column indices 2 and 3 in (1).

References

[1] Peter J.C. Dickinson. A new certificate for copositivity. Optimization Online.
[2] Peter J.C. Dickinson and Roland Hildebrand. Considering copositivity locally. J.Math. Anal.Appl., 437(2):11841195, 2016

