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Basic structure

The minimal zero supports are given by {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6}. There is a
symmetry exchanging indices 2 and 3. We may write a copositive matrix with this minimal zero
support set as

1 -1 -1 cos(¢2 + ¢5) — COoS ¢5 b3
-1 1 1 cos(¢p1 + ¢4) ba — COS ¢y
e -1 1 1 cos(¢p1 + ¢3) bs — CoS ¢)3
" | cos(pa + @5)  cos(pr + d4)  cos(d1 + ¢3) 1 — COS ¢ —cos 1 ’
— COS @5 ba bs — o8 P2 1 cos(¢1 + ¢2)
b3 — COS ¢y — Cos ¢3 —cos ¢ cos(¢1 + ¢2) 1

where ¢j S (Oaﬂ-)aj: 1v"'75; (bl +¢] <m, j :2a3a4; ¢2+¢5 <.
The minimal zeros of A are given by the columns of

1 1 sin g9 0 0 0
10 0 sin ¢ 0 0
U 0 1 0 0 sin ¢ 0
“ 10 0 sin ¢5 sin ¢y sin ¢3 sin(¢1 + ¢2)
0 0 sin(¢ps+ ¢5) 0 0 sin ¢
0 0 0 sin(qﬁl + ¢4) Sin(¢1 + ¢3> sin d)g

First order conditions

Consider the conditions (Au;); > 0. (Auq)s > 0 is equivalent to ¢ + ¢2 +da+ @5 < 7, and (Aug)s > 0
is equivalent to ¢1 + ¢2 + ¢3 + ¢5 < w. The other conditions are either automatically satisfied, or
involve the elements b;. The latter type of conditions involves only a single element b, each, and hence
by the irreducibility condition with respect to A/® yields the following values for the by:

sin ¢; — cos(¢2 + ¢5)sin @y sin ¢y — cos(p2 + ¢5) sin ¢3)
sin(¢1 + ¢4) ’ sin(¢1 + ¢3)

bs = max (cos ¢4, €08 ¢z, — cos(p1 + ¢ + P5),

= max(cos ¢z, cos @),

sin ¢g — cos(¢1 + ¢4) sin @5
sin(¢2 + ¢s)

sin ¢g — cos(p1 + ¢3) sin @5
sin(¢z + ¢5)

By possibly exchanging indices 2,3 we may assume ¢3 < ¢4, which determines bs = cos ¢3.

Note that now (Aug); = 0 for all j # 4. However, Aup = 0 would prevent A from being extremal,
and hence we may assume ¢1 + @2 + ¢z + @5 < 7.

by = max (COS @5, , —cos(¢1 + g2 + ¢>4)> = cos ¢s,

b5 = max (COS ®s5, , —cos(p1 + ¢ + ¢3)> = €08 ¢5.

Parametrization

We arrive at the parametrization

1 -1 -1 cos(p2 + ¢5) — CoS @5 cos @3
-1 1 1 cos(¢1 + d4) cos ¢ — COS ¢4
-1 1 1 cos(d1 + ¢3) cos ¢ — oS ¢3 (1)
cos(¢o + ¢5)  cos(py + ¢4) cos(P1 + ¢3) 1 — COS ¢ — cos 1
— COSs ¢5 Cos @5 cos ¢ — COS ¢g 1 cos(¢1 + ¢2)
cos ¢3 — COS ¢4 — Cos ¢3 —Cos ¢ cos(¢1 + ¢2) 1



with ¢; € (0,7), o1 + P2 + @3+ d5 < 7, 1 + d2 + s+ ¢5 < T, 3 < @4.

Copositivity / Absence of other minimal zeros

Copositivity of A will be checked by the criterion in Theorem 4.6 of [1]. For each index set I C
{1,...,6}, of cardinality not smaller than 3 and not containing a known minimal zero support, we
have to find a vector u € R® with at least one positive element such that supp(u) C I C suppsq(Au) or
show that the submatrix A; is copositive. For index sets of cardinality three this reduces to_checking
an inequality on the corresponding angles. We obtain

LI={245}:m—¢1—gu+T—¢s+do>7T & T>—do+ 1+ s+ @5
2. 1={345}:m—p1—Ps+T—Ps+ 2> & T>—o+ P11+ P3+ P5
3. I={1,4,6} :m—¢o— s+ —P3+ 1 > & T>—P1+ P2+ d3+ ¢35
4. I ={1,5,6} : T — 3+ ¢5+T— 1 — P2 > T & T> —d5+ ¢1 + d3+ P2
5. 1={2,5,6}:m—¢s+dat+m—1—o>T & T>—ds+d1+ P5+ P2
6. I ={3,5,6}:mT—¢s+P3+T—p1—2>T & T>—Pp3+ 1+ ¢5 + P2
7. 1=1{2,3,4};{2,3,5};{2,3,4,5} : u=e3 — ey

8. I=1{2,3,5};{2,3,6};{2,3,5,6} : u=rey —e3.

This proves copositivity.
All angle inequalities are satisfied strictly and the vectors u are not nonnegative. Hence there are
no additional minimal zeros.

Extremality

We use the extremality criterion Theorem 17 point 5 in [2]. The matrix A is extremal whenever every
matrix B satisfying (Bu;); = 0 whenever (Au;); = 0 is proportional to A. Let us consider the elements
(Aui)j.

The following elements are always zero:
(Aur)12,35, (Auz)1,235,6, (Aus)ias, (Aua)2ae, (Aus)sae, (Aue)ass. (2)
The following elements may become zero: If ¢35 = ¢4, then
(Aut)e = (Aua)s = (Aus)2 = 0.
If 1 + ¢2 + ¢s + ¢5 = 7, then
(Aug)1 = (Aug)z = (Aug)z = (Auqg)s = (Aug)s = 0.
The following elements are always positive:

(Aug)a, (Aus)ses, (Aus)i s, (Aug)i,3.



We now use relations (2), which translate to corresponding relations on B. Consider the face of A.
For every B in this face there exists a matrix P € 83_ such that

b1 1 * * b14 b15 *
* bgg * b24 * bg@
* * b33 b34 * b36

bia baa b3y bas bz bus

bis x %  bgs bss bsg
*x  bas bzs bas bse  bes

FPFT =

where F is a 6 x 2 matrix of rank 2 such that ul F = 0, i = 3,4,5,6. By means of the relations
(Bui1); = 0, (Bug); = 0 for appropriate j the missing elements b;; are determined from the elements
which are present in (3) by

bi2 = —b11, b1z = —b11, big = —b3e, bag = —b13, bas = —b15, b35s = —bys. (4)

However, we obtain also the additional conditions by; = bea = b33 on the elements present in (3) which
translate to restrictions on P.
The first three rows of I’ have the left kernel vector

(sin(¢z — ¢4), — sin(¢1 + ¢z + @3 + ¢5), sin(d1 + @2 + ¢ + ¢5)),

and we may assume

1 0
sin(¢z—¢a4) sin(¢1+¢2+dates)
sin(p1+¢2+ds+¢s)  sin(d1+P2+ds+¢s)
F= 0 1
* *
* *
* *

sin®(¢s—pa) sin(¢s3—¢a) sin(¢1+d2+dat+¢s) sin®(¢1+¢a+datds)
T2 (1o s 18 P 2T (6t n tds 1 5) P12 G2 (80 ¥ o ¥ s 4 6) P22
and the condition b1y = byo = b33 yields p11 = p22 and a second linear condition

Then b1 = p11, b3z = pag, bao =

— sin®(¢3 — ¢a)p11 + 2sin(¢s — ¢a) sin(dy + ¢2 + da + ¢5)p12 + sin’(¢1 + ¢ + da + d5)p22 (5)
- sin?(¢1 + 62 + 63 + 05)

on P.
Let us now consider the different cases. Note that the relations ¢3 = ¢4 and ¢1 + o + s + 5 =7
cannot hold simultaneously, because ¢y + ¢o + @3 + @5 < 7.

Consider the case ¢3 < ¢4, ¢1+ P2+ P4+ ¢5 < m: Here P is determined completely in dependence
of p11, because the coefficient at p12 in (5) is non-zero. Thus in this case there is no linearly independent
solution B and A is extremal.

Consider the case ¢3 = ¢4, ¢1 + @2 + Pq + @5 < m: We get

* X X O O
X X X = = O

The equations b1 = boy = b33 are satisfied by the relation p1; = pao alone.

However, in (3) the element by3 appears in addition by each of the relations (Bug)s = 0, (Bus)2 = 0,
and by (4) this gives the additional condition b;; = be3 between the elements of (3). Further, the
relation (Buy)g = 0 yields byg = —baog, which translates to the relation byg = bsg between the elements
of (3).



However, since the second and third row of F' are now identical, these relations are satisfied au-

0 1) which is linearly independent from the

tomatically. Hence there remains the solution P = (1 0

solution generated by A.
Since not all rows of F' have zero elements, this matrix P gives rise to a non-zero solution B which
is linearly independent of A, and A cannot be extremal.

Consider the case ¢3 < ¢q, ¢1 + P2 + ¢4 + ¢p5 = m: The factor F' takes the form

1
1

* ok ok o |
* ok ok OO

We now have also uf F' = 0.

The additional relation (Bug)2 = 0 makes bys appear at the respective place in (3). Now (Bug)s =0
makes by appear, and (Bug); = 0 makes byg appear.

At this stage, both byg, bag are present in (3), and the condition u F = 0 leads to the relation
big + bog = 0. It follows that ¢3 = ¢4, a contradiction.

Result

In Case 6 the extremal matrices with unit diagonal are given by (1) with ¢; > 0, ¢1 + d2+ ds + 5 < T,
¢3 < ¢4, as well as those obtained by exchanging row and column indices 2 and 3 in (1).
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