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Regular convex cones

Definition
A regular convex cone K C R" is a closed convex cone having
nonempty interior and containing no lines.

The dual cone
K*={seR,|(x,5) >0 VxeK}

of a regular convex cone K is also regular.



Conic programs

Definition
A conic program over a regular convex cone K C R” is an
optimization problem of the form

min (c,x): Ax=b.
xeEK

to every conic program we can associate a dual program over the
dual cone K*

examples
» linear programs (LP)
» second-order cone programs (SOCP)

v

semi-definite programs (SDP)
» geometric programs (GP)



Geometric interpretation

the feasible set is the

intersection of K with an
affine subspace



History of conic programming
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Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let K C R" be a regular convex cone. A (self-concordant
logarithmically homogeneous) barrier on K is a smooth function
F : K° — R on the interior of K such that

» F(ax) = —vloga + F(x) (logarithmic homogeneity)

» F"(x) > 0 (convexity)

> limy_9K F(x) = 400 (boundary behaviour)

> |F"(x)[h, h, h]| < 2(F"(x)[h, h])3/? (self-concordance)
for all tangent vectors h at x.
The homogeneity parameter v is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)

Let K C R" be a regular convex cone and F : K° — R a barrier on
K with parameter v. Then the Legendre transform F* is a barrier
on —K* with parameter v.



Barriers as penalty functions

let K C R" be a regular convex cone
let F: K° — R be a barrier on K
consider the conic program

min (c,x): Ax=b
x€K

for 7 > 0, solve instead the unconstrained problem

i F(x): Ax=
)(I‘T€1]I1£n7'<C,X>—|— (x) x=b

> unique minimizer x*(7) € K° for every 7 > 0
» solution depends continuously on 7 (central path)

» x*(1) —» x* as T — o0



Path-following methods

alternate Newton steps and increments of 7

the smaller the barrier parameter v, the faster we can increase 7
safely

(in short-step methods) the iterates have to stay in a tube around
the central path in order for the Newton method to make a
controllable iteration

the larger v, the smaller the diameter of the tube
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Affine connections

an affine connection V on a differentiable manifold defines the
parallel transport of tangent vectors u along curves o(t) by

ou”
0V ute” = (a”ﬁ+v7 u®)o? =0

the covariant derivative of the vector field u is given by

Vaul = gi+v” .

we may also define the covariant derivative of general tensors
law of transformation under coordinate changes x — y

= OxP ox9_, oy n dyY  9?x™m
BT gyagyB T PIgxr T 9xm JyadyP

vW

example: the flat affine connection on R" is given by Vgﬁ =0in
affine coordinates



Affine differential geometry

let M — R be a hypersurface immersion and ¢ a transversal
vector field on M

which objects can be defined on M by the connection on R™1?
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Affine metric, affine connection, cubic form

let y°, ..., y" be affine coordinates on R"*! and x1,..., x"

coordinates on M
extend these to a neighbourhood of M and complement with a
coordinate x° such that

» M is a level surface of x°

0
> EI 87 on M
in x coordinates the flat affine connection of R"! becomes

. % 32y5 0 8X0 82)/5
J dys Oxiox)’ P dys OxTOxI

ij,r=1,...,n

Vi is called the affine connection, Vg- = hjj the affine metric, and
C = Vh the cubic form on M



Centro-affine immersions

in centro-affine immersions the transversal vector field £ equals the
position vector field x

the cubic form C = Vh is totally symmetric



Conormal map
let M — R""! be a hypersurface immersion
to each x € M we associate a vector p € R,11 such that
> pis tangent to M at x

» (p,&) =1atx
this hypersurface immersion M < R, ;1 is the conormal map

the conormal map defines a duality on the class of centro-affine
hypersurface immersions
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Centro-affine geometry of barriers

let K C R" a regular convex cone, and F: K° - R a
logarithmically homogeneous function of degree —v

Theorem
Let M be a level surface of F. Then the centro-affine metric h and
the cubic form C of M on a tangent vector u to M are given by
hlu, u] = I/_lF”[U, ul,

Clu, u,u] = v F"[u, u, u].
The immersion defined by the conormal map is a level surface of
the dual barrier F*.
h, C are the projective counterparts of the derivatives F”, F"”’

indeed, Karmarkar used a metric proportional to h on the simplex in
his algorithm



Self-concordance and boundedness of cubic form

Theorem

Let K C R", n > 2, be a regular convex cone and F : K° — R a
logarithmically homogeneous locally strongly convex function with
homogeneity parameter v. Let M be a level surface of F.

Then F is self-concordant if and only if

|Clu, u, u]| < 2 (h[u, u])®/?

v—2
V=1~

for all vectors u which are tangent to M. Here v =

Corollary

On cones K C R", n > 2, there exist no barriers with parameter
v <2



Dependence between v and v
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Extreme case v =2

Corollary

Let K C R" be a regular convex cone, and n>2. Let F: K° - R
be a self-concordant barrier on K. Then F has parameter v > 2,
with equality if and only if K is isomorphic to the Lorentz cone and
F to the hyperbolic barrier on K.

the Lorentz cone L, C R" is the cone
{X = (xo,xl,...,x,,,l)T|xo > /X2 —|—---+X3_1}
its hyperbolic barrier is given by
F(x) = —% log (xg — x12 N — x,%,l)

the level surfaces are isometric to hyperbolic space



Outline

Geometry of self-concordant barriers
» self-concordant barriers
» affine differential geometry
» relationship between barriers and geometry
» canonical barrier

» self-scaled barriers



Affine normal

non-degenerate convex hypersurface in R”

the affine normal is the tangent to the curve made of the gravity
centers of the sections

a hypersurface immersion with the affine normal as transversal
vector field is called a Blaschke immersion



Affine spheres

a hyperbolic proper affine sphere is a convex surface such that all
affine normals meet at a point outside of the convex hull
a centro-affine immersion is a proper affine sphere if and only if
» the affine normal is proportional to the position vector
» the cubic form is traceless, Camhﬁ“f =0

Theorem (Calabi conjecture; Fefferman 76, Cheng-Yau 86, Li
90, and others)

Let K C R" be a regular convex cone. Then there exists a unique
foliation of K° by a homothetic family of affine complete and
Euclidean complete hyperbolic affine hyperspheres which are
asymptotic to OK.

Every affine complete, Euclidean complete hyperbolic affine
hypersphere is asymptotic to the boundary of a regular convex cone.



the foliating hyperspheres are asymptotic to the boundary of K
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Monge-Ampeére equation

characterisation of the log-homogeneous functions F : K¢ — R of
degree n whose level surfaces are affine spheres

up to an additive constant, F is the convex solution of the
Monge-Ampeére equation

logdet F” = 2F
with boundary condition

lim F(x) =400
x—0K
properties
» exists and is unique
» real analytic
» invariant w.r.t. unimodular linear maps

> respects Legendre duality



Canonical barrier

Theorem (H., 2014; independently D. Fox, 2015)

Let K C R" be a regular convex cone. Then the convex solution of
the Monge-Ampére equation logdet F” = 2F with boundary
condition F|gx = +o0 is a logarithmically homogeneous
self-concordant barrier (the canonical barrier) on K with parameter
v=n.

main idea of proof: use non-positivity of the Ricci curvature [Calabi

1972

already conjectured by O. Giiler

» invariant under the action of SL(R, n)
» fixed under unimodular automorphisms of K
» additive under the operation of taking products

> respects Legendre duality



Universal constructions: comparison

Property Universal barrier | Canonical barrier
SL(R, n)-invariance Yes Yes
Aut(K)-invariance Yes Yes
product additivity Yes Yes

parameter O(n) <n

duality No Yes
computability No No

for K C R3 with non-trivial automorphism group, the canonical
barrier is given generically by elliptic integrals

for homogeneous cones the two constructions coincide

for compact sets there exists also the entropic barrier with
parameter n+ O(log ny/n)
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Self-scaled barriers

Definition

Let K C R" be a regular convex cone, let K* be its dual cone, let
F be a self-concordant barrier on K with parameter v, and let F,
be the dual barrier on K*. Then F is called self-scaled if for every
x,w € K° we have

F'(w)x € int K*, Fo(F"(w)x) = F(x) — 2F(w) — v.
A cone K admitting a self-scaled barrier is called self-scaled cone.

Hauser, Giiler, Lim, Schmieta 1998 — 2002:
» self-scaled cone < symmetric cone

» self-scaled barriers on products are sums of self-scaled barriers
on irreducible components

» self-scaled barriers on irreducible cones are log-determinants



Parallelism conditions

the affine connection V is generated by the primal immersion
the dual immersion generates the dual connection V

the primal-dual symmetric connection V = %(V + V) is the

Levi-Civita connection of the affine metric

the most simple class of barriers are the hyperbolic barriers, on
whose level surfaces C =0

the next class, ordered by complexity, are the barriers whose level
surfaces have constant cubic form

constant means preserved by the geodesic flow of the affine metric

VC=0



Equivalence between self-scaledness and parallelism

Theorem
Let K C R" be a regular convex cone and F a self-concordant
barrier on it. Then the following are equivalent:

> F is a self-scaled barrier (and K a self-scaled cone)
> on the level surfaces of F the condition VC = 0 holds.

Every convex hyperbolic centro-affine hypersurface immersion
satisfying V. C = 0 can be completed to the level surface of a
self-scaled barrier on some symmetric cone.

this yields a local characterization of self-scaled barriers



Sketch of proof
VC = 0 can be rewritten as the 4-th order quasi-linear PDE

1
Fapys = §F7pa(FyaﬁpFn6o + FaypF goo + FaspF gyo)

here F'? is the inverse Hessian and F s, etc. the partial
derivatives

the integrability condition of this PDE is the Jordan identity for the
algebra defined by the structure tensor (ue v = K;Buavﬁ)

1
Kap=—5F " Faps

the barrier can be recovered from a metrised Euclidean Jordan
algebra by

% (_q\k
Fo) =3 g

k=2



Non-convex case

most of the proof remains valid if the convexity assumption is

dropped

the appropriate framework is the theory of Koechers w-domains

convex case

general case

symmetric cone

Euclidean Jordan algebra
irreducible Euclidean Jordan algebra
canonical barrier

determinant of Jordan algebra

w-domain

semi-simple Jordan algebra
simple Jordan algebra
logarithmic potential ®
w-function




Affine spheres with VC = 0

the classification of affine spheres with parallel cubic form reduces
to the classification of semi-simple Jordan algebras
irreducible spheres / simple factors:

‘ vector space | real dimension | range ‘

B}

affine sphere

C 2 Re(log ) [«]* [x] = const
cm 2m m >3 | Re(logaTx) [Tz [™ [xT 2] = const
Sm(C) m(m+1) m >3 | Re(logdet A) [det A|mFT [det A| = const
11,,(C) 212 m >3 | Re(logdet A) [det A]7™ |det A| = const
Aoy (C) 2m(2m — 1) m >3 | Re(logpf A) | |pf AP2m-1) | pf A| = const
H3(0,0C) 54 Re(log det A) [det AT [det A| = const
R 1 log || ] point
Rm™ m m >3 | loglzT Qx| [T Qx|™/? quadric
M (R) m? m >3 log | det A| [ det A|™ det A = const
M, (H) 4m? m > 2 logdet S (det 5)7™ det S = const
Sm(R) w m >3 log | det A| [det A|mFD/2 | det A = const
a,,(C) m? m >3 | log|det Al [det A|™ det A = const
H,,(H) m(2m — 1) m >3 log det S (det $)™1/2 | det S = const
Ao (R) m(2m — 1) m >3 log | pf A| [pf AT pf A = const
SH,,(H) m(2m + 1) m > 2 log det S (det S)m+1/2 det S = const
H3(0) 27 log | det A| [det A det A = const
H3(0,R) 27 log | det A| [det A[° det A = const
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