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Abstra
t

Iterative Feedba
k Tuning (IFT) is a widely used pro
edure for 
ontroller tuning.

It is a sequen
e of iteratively performed spe
ial experiments on the plant interla
ed

with periods of data 
olle
tion under normal operating 
onditions. In this note we

prove a rigorous result on the 
onvergen
e of the IFT pro
edure for disturban
e

reje
tion, whi
h is one of the main �elds of appli
ation.
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1 Introdu
tion

Iterative Feedba
k Tuning (IFT) is a data based method for the tuning of restri
ted 
om-

plexity 
ontrollers. It has proved to be very e�e
tive in pra
ti
e and is now widely used

in pro
ess 
ontrol, often for disturban
e reje
tion. Following the original formulation of

the method in [5℄, [6℄ many improvements and modi�
ations of IFT have been suggested

and partially implemented in pra
ti
e. The reader is referred to [4℄ for a re
ent overview.

However, surprisingly little attention was paid to the theoreti
al properties of IFT.

A quantitative study of the asymptoti
 aspe
ts of 
onvergen
e was undertaken in [2℄.

The only proof of 
onvergen
e of the algorithm appeared in [3℄. Unfortunately this proof


ontains a 
aw, so that stri
tly speaking the 
onvergen
e of the method is not yet proven.

The goal of this note is to even out this dis
repan
y between the wide pra
ti
al use of

IFT and the state of theoreti
al knowledge about it. In this note we fo
us on IFT for

disturban
e reje
tion.

The obje
tive of IFT is to minimize a quadrati
 performan
e 
riterion. IFT is a

sto
hasti
 gradient des
ent s
heme in a �nitely parameterized 
ontroller spa
e. The gra-

dient of the 
ost fun
tion at ea
h step is estimated from data. These data are 
olle
ted

with the a
tual 
ontroller in the loop. One of the advantages of IFT is that most data are


olle
ted while the pro
ess runs under normal operating 
onditions. These data are then

used to design a spe
ial experiment, whi
h yields a noisy, but unbiased, estimate of the


ost fun
tion gradient. This gradient estimate is used to perform the next des
ent step

in 
ontroller spa
e. For more details of the pro
edure see [5℄.

It will be shown that under suitable assumptions the algorithm 
onverges to a station-

ary point of the performan
e 
riterion. The proof is based on the proof provided in [3℄,

but 
ontains an additional proposition whi
h is ne
essary for mathemati
al 
orre
tness.

The remainder of the note is stru
tured as follows. In the next se
tion we summarize

the details of the IFT algorithm for disturban
e reje
tion. In Se
tion 3 we state and prove

the 
onvergen
e theorem and establish 
onditions for its validity.

2 IFT for disturban
e reje
tion

In this se
tion we review the IFT method for the disturban
e reje
tion problem with a


lassi
al LQ 
riterion. For a more general and detailed presentation of IFT the reader is

referred to [5℄, [6℄.
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Figure 1: The 
ontrol system under normal operating 
onditions.

Consider a SISO dis
rete time system des
ribed by

y(t) = G(q)u(t) + v(t) ; (1)

where y(t) is the output, u(t) is the input, G(q) is a linear time-invariant transfer fun
tion,

with q being the shift operator, and v(t) = H(q)e(t) is the pro
ess disturban
e. HereH(q)

is a moni
, stable and inversely stable transfer fun
tion and e(t) is zero mean white noise

with varian
e �

2

.

We fo
us on the feedba
k loop around G(q) depi
ted in Figure 1, where C(q; �) is

a one-degree-of-freedom 
ontroller belonging to a parameterized set of 
ontrollers with

parameter � 2 R

n

. We assume that in the 
ontrol system of Figure 1 the referen
e signal

r(t) is set at zero under normal operating 
onditions. Our goal is to tune the 
ontroller

C(q; �) so that the varian
e of the noise-driven 
losed loop output

y(t; �) =

1

1 +G(q)C(q; �)

v(t) = S(q; �)v(t)

is as small as possible. Here the transfer fun
tion S(q; �) is the sensitivity fun
tion.

In order to avoid a large 
ontrol e�ort, it is 
ommon to in
lude a penalty also on the

varian
e of the input signal

u(t; �) = �C(q; �)S(q; �)v(t) :

Thus we have to �nd a minimizer for the 
ost fun
tion

J(�) =

1

2

E

h

y(t; �)

2

+ �u(t; �)

2

i

; (2)

where � � 0 is a s
alar expressing the importan
e of the penalty on the 
ontrol e�ort.
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1

Figure 2: The setting of the se
ond experiment.

The IFT method yields an approximate solution to the above problem. IFT is based

on the possibility of obtaining an unbiased estimate of the gradient

�J

��

(�) of the 
ost

fun
tion at � = �

i

from data 
olle
ted from the 
losed-loop system with the 
ontroller

C(�

i

) operating on the loop. The 
ost fun
tion J(�) 
an then be minimized with an

iterative sto
hasti
 gradient des
ent s
heme of Robbins-Monro type [1℄. In the s
heme a

sequen
e of 
ontrollers C(q; �

i

) is 
omputed and applied to the plant. In the i-th iteration

step data obtained from the system with the 
ontroller C(�

i

) operating on the loop are

used to 
onstru
t the next parameter ve
tor �

i+1

a

ording to

�

i+1

= �

i

� 


i

R

�1

i

est

N

"

�J

��

(�

i

)

#

: (3)

Here 


i

is a nonnegative s
alar sequen
e of step lengths, R

i

is a sequen
e of positive def-

inite matri
es and est

N

h

�J

��

(�

i

)

i

is an unbiased estimate of the gradient

�J

��

(�) obtained

from data.

In the sequel we des
ribe the 
onstru
tion of the unbiased gradient estimate.

The exa
t expression of the gradient of J(�) is given by

�J

��

(�

i

) = E

"

y(t; �

i

)

�y

��

(t; �

i

) + �u(t; �

i

)

�u

��

(t; �

i

)

#

: (4)

Its unbiased estimate est

N

h

�J

��

(�

i

)

i

is obtained from two data sets 
olle
ted from the


losed loop as follows. First, a sequen
e of N input-output data are 
olle
ted under

normal operating 
onditions, i.e. without referen
e signal:

u

1

(t; �

i

) = �C(q; �

i

)S(q; �

i

)v

1

i

(t) ;

y

1

(t; �

i

) = S(q; �

i

)v

1

i

(t) :

3



Here v

1

i

(t) denotes the 
orresponding realization of the noise v(t) for the �rst bat
h of


olle
ted data at iteration i. Se
ondly, a spe
ial experiment of the same length N is

performed. During this experiment the loop is fed with the referen
e signal

r

2

i

(t) = �K

i

(q)y

1

(t; �

i

);

where K

i

(q) is a suitable pre�lter (see Figure 2). The obtained input and output data

are given by

u

2

(t; �

i

) = �S(q; �

i

)

h

K

i

(q)y

1

(t; �

i

) + C(q; �

i

)v

2

i

(t)

i

;

y

2

(t; �

i

) = �G(q)S(q; �

i

)K

i

(q)y

1

(t; �

i

) + S(q; �

i

)v

2

i

(t) ;

where v

2

i

(t) is the 
orresponding realization of the noise, i.e. for the se
ond bat
h of data

at iteration i.

We assume the two experiments of iteration step i to be suÆ
iently separated in time,

so that the realization v

2

i

(t) of the noise 
an be 
onsidered as being independent of the

realization v

1

i

(t). The obtained data are used to form the following estimates of the

gradients of u

1

(t; �

i

) and y

1

(t; �

i

):

est

"

�u

1

��

(t; �

i

)

#

=

1

K

i

(q)

�C

��

(q; �

i

)u

2

(t; �

i

) ; (5)

est

"

�y

1

��

(t; �

i

)

#

=

1

K

i

(q)

�C

��

(q; �

i

) y

2

(t; �

i

) : (6)

These estimates are 
orrupted by the noise v

2

i

(t) of the se
ond experiment as follows:

est

"

�u

1

��

(t; �

i

)

#

=

�u

1

��

(t; �

i

)�

S(q; �

i

)

K

i

(q)

C(q; �

i

)

�C

��

(q; �

i

) v

2

i

(t) ;

est

"

�y

1

��

(t; �

i

)

#

=

�y

1

��

(t; �

i

) +

S(q; �

i

)

K

i

(q)

�C

��

(q; �

i

) v

2

i

(t) : (7)

Using (5) and (6), an estimate of the gradient

�J

��

(�

i

) is then obtained as

est

N

"

�J

��

(�

i

)

#

=

1

N

N

X

t=1

"

y

1

(t; �

i

)est

"

�y

1

��

(t; �

i

)

#

+ �u

1

(t; �

i

)est

"

�u

1

��

(t; �

i

)

##

: (8)

The estimate is unbiased be
ause independen
y between the disturban
e realizations in

the �rst and se
ond experiments was assumed.

Thus the IFT pro
edure for disturban
e reje
tion amounts to the iterative s
heme (3)

with the gradient estimate est

N

h

�J

��

(�

i

)

i

given by (8), (5{6). The sequen
es 


i

and R

i

are basi
ally left to the 
hoi
e of the user, but have to ful�ll some requirements for the

algorithm to 
onverge, whi
h will be spe
i�ed below. The 
onsisten
y of the algorithm

and its 
onvergen
e properties are studied in the next se
tion.
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3 Convergen
e analysis of IFT

This se
tion 
ontains the main result of the present note. It is largely based on the

results presented in the Appendix of [3℄, but Proposition 3.4 is new. Further we state

exa
t 
onditions under whi
h the IFT algorithm for disturban
e reje
tion is guaranteed

to 
onverge to a subset of the set of stationary points of the 
ost fun
tion. We reformulate

the 
onvergen
e theorem and �ll a gap in its original proof as it is found in [3℄.

The proof of 
onvergen
e is based on the following proposition stated in [7℄.

Proposition 3.1 [7℄ Let (
;F ; P ) be a probability spa
e. Let Z

n

, �

n

, �

n

and �

n

be �nite

nonnegative F

n

-measurable random variables, where F

1

� : : : � F

n

� : : : is a sequen
e of

sub-�-algebras of F . Suppose that E(Z

n+1

j F

n

) � Z

n

(1+�

n

)+ �

n

� �

n

for all n. Then the

sequen
e fZ

n

g and the sum

P

1

n=1

�

n


onverge with probability 1 
onditioned on the event

that the sums

P

1

n=1

�

n

,

P

1

n=1

�

n


onverge. 2

In order to apply Proposition 3.1 to the IFT algorithm we introdu
e the following as-

sumptions.

Assumption 3.2 Let D be a 
onvex 
ompa
t subset of the parameter spa
e R

n

. Let the

following 
onditions hold.

1. The pro
ess noise v is uniformly bounded for all experiments. Realizations of the

noise in di�erent experiments are mutually independent.

2. There exists a neighbourhood O of D su
h that the set of 
ontrollers fC(�) j � 2 Og

is two times 
ontinuously di�erentiable with respe
t to �.

3. The 
ontrollers C(�) and their �rst and se
ond derivatives have their poles uniformly

bounded away from the unit 
ir
le for � 2 D.

4. The 
losed loop systems 
orresponding to the 
ontrollers C(�) are stable and have

their poles uniformly bounded away from the unit 
ir
le for � 2 D.

5. The sequen
e f


n

g of step lengths is nonnegative and satis�es

P

1

n=1




n

=1,

P

1

n=1




2

n

<

1.

6. The sequen
e fR

n

g of positive de�nite symmetri
 weighting matri
es satis�es �I �

R

n

� �I for some positive 
onstants �; �.

6a. The weighting matrix R

n

may also be a random variable, but R

�1

n

is un
orrelated

with the noise realizations v

1

n

; v

2

n

in experiment n.

5



7. The event A = f�

n

2 D 8ng has a non-zero probability.

The �rst six 
onditions are standard assumptions in the literature on IFT (see e.g.

[3℄,[4℄).

By 
ondition 6a, the matrix R

�1

n


an be 
onsidered as �xed during iteration step n. Con-

ditions 6 and 6a assure that at non-stationary points of the 
ost fun
tion J the expe
ted

value of J at the next step is smaller than its value at the 
urrent step. Condition 6a is

pra
ti
ally relevant only in the neighbourhood of stationary points of J , where the error

in the gradient estimate is 
omparable to or larger than the gradient itself. If 
ondition

6a is to hold, the 
hoi
e of R

n


an be based on data 
olle
ted during previous iterations,

but not in the 
urrent one.

Condition 7 is to make 
onvergen
e analysis meaningful. A ne
essary 
ondition for it to

hold is e.g. that the set D 
ontains stationary points of the 
ost fun
tion J .

We are now ready to apply Proposition 3.1 to IFT. Setting Z

n

= J(�

n

), �

n

= 0, �

n

=

E

�
�

�

�

�

J(�

n+1

)� J(�

n

) + 


n

�

�J

��

(�

n

)

�

T

R

�1

n

est

N

h

�J

��

(�

n

)

i

�

�

�

�

�

, �

n

= 


n

�

�J

��

(�

n

)

�

T

R

�1

n

�J

��

(�

n

), and

de�ning F

n

as the �-algebra generated by iteration steps 1; : : : ; n� 1, we obtain the fol-

lowing result.

Proposition 3.3 Let Assumption 3.2 hold. Then the sum

P

1

n=1




n

�

�J

��

(�

n

)

�

T

R

�1

n

�J

��

(�

n

)

and the sequen
e J(�

n

) 
onverge with probability 1 
onditioned on the event A.

Proof. A detailed proof 
an be found in [3℄. 2

By 
onditions 5 and 6 of Assumption 3.2, Proposition 3.3 implies that the sequen
e f�

n

g

a

umulates to stationary points of J with probability 1 
onditioned on A. However, it

does not follow immediately that f�

n

g 
annot also a

umulate to non-stationary points.

We have to ex
lude this possibility expli
itly by the following proposition.

Proposition 3.4 Let Assumption 3.2 hold. Then the sequen
e f�

n

g 
onverges to a 
losed


onne
ted subset of the set D




= f� 2 D j

�J

��

(�) = 0g with probability 1, 
onditioned on

the event A.

Before proving Proposition 3.4, we furnish an auxiliary result.

Let U be a subset of R

k

. Let V be a subset of U su
h that the minimal distan
e

between points in V and points in the 
omplement of U is stri
tly positive:

inffjx� yj jx 2 V; y 2 R

k

n Ug = l > 0: (9)

6



Consider a sto
hasti
 pro
ess

X

n+1

= X

n

+ 


n

Y

n

;

where X

n

; Y

n

are random variables that take values in R

k

and f


n

g is a sequen
e of non-

negative numbers su
h that

P

1

n=1




n

=1. Suppose that the expe
tations and varian
es

of the variables Y

n

are uniformly bounded:

jEY

n

j < 


E

; Tra
e[CovY

n

℄ < 


2

�

8 n;

where 


E

; 


�

> 0 are positive 
onstants.

Now de�ne events V

n

, n = 1; 2; : : : by V

n

= fX

n

2 V g. Given the event V

n

, de�ne the

random number

^

N as the least integer N > n su
h that X

N

62 U . If su
h a number does

not exist, i.e. X

m

2 U for all m � n, then let

^

N =1.

With these de�nitions we have the following proposition.

Proposition 3.5

Prob

8

<

:

^

N

X

m=n




m

>

l

2(


E

+ 


�

)

j V

n

9

=

;

>

1

2

:

Proof. Suppose X

n

2 V , i.e. the event V

n

has o

urred. De�ne

�

N as the least integer

N > n su
h that

P

N

m=n




m

>

l

2(


E

+


�

)

. Then we have

E

"

max

n�m�

�

N

jX

m

�X

n

j

#

� E

2

4

�

N�1

X

m=n

jX

m+1

�X

m

j

3

5

=

�

N�1

X

m=n




m

EjY

m

j �

�

N�1

X

m=n




m

q

EjY

m

j

2

=

�

N�1

X

m=n




m

q

jEY

m

j

2

+ Tra
e[CovY

m

℄ �

q




2

E

+ 


2

�

l

2(


E

+ 


�

)

<

l

2

:

It follows that

Prob

(

max

n�m�

�

N

jX

m

�X

n

j < l

)

>

1

2

:

But we have

Prob

8

<

:

^

N

X

m=n




m

>

l

2(


E

+ 


�

)

9

=

;

= Probf

^

N �

�

Ng = ProbfX

n

; : : : ;X

�

N�1

2 Ug

� Prob

(

max

n�m�

�

N

jX

m

�X

n

j < l

)

:

Combining these inequalities 
ompletes the proof. 2

7



Now we are ready to prove that non-stationary points of J 
annot be a

umulation

points of the sequen
e f�

n

g.

Proof of Proposition 3.4

The proof is by redu
tio ad absurdum. Assume there is a non-zero probability, 
onditioned

on A, that f�

n

g a

umulates to a non-stationary point of J . Denote this event by A

NSt

.

Suppose A

NSt

has o

urred. Let �̂ 2 D be an a

umulation point of f�

n

g su
h that

�J

��

(�̂) 6= 0. By Proposition 3.3 there exists another a

umulation point �

�

of f�

n

g with

�J

��

(�

�

) = 0. Then there exist a positive number 
 > 0, a neighbourhood U of �̂ and a

neighbourhood U

0

of �

�

su
h that j

�J

��

(�)j > 
 for all � 2 U and the interse
tion U \ U

0

is empty. Further there exist a positive number l > 0 and a neighbourhood V of �̂ su
h

that 
ondition (9) holds.

Now observe that

 

�J

��

(�)

!

T

R

�1

n

�J

��

(�) � �

�1




2

8 � 2 U: (10)

Moreover, the quantities

�

�

�E

h

R

�1

n

est

N

h

�J

��

(�

n

)

ii
�

�

�, Tra
e

h

Cov

h

R

�1

n

est

N

h

�J

��

(�

n

)

iii

are bounded

uniformly by the positive numbers




E

= �

�1

max

�2D

�

�

�

�

�

�J

��

(�)

�

�

�

�

�

; 


2

�

= �

�2

max

�2D

Tra
eCov

"

est

N

"

�J

��

(�

n

)

##

with 


�

> 0.

Now Proposition 3.5 
an be applied. By 
ombining it with (10) we get that for any pair

of integers (n

1

; n

2

) su
h that n

2

> n

1

and �

n

1

2 V , �

n

2

2 U

0

, we have

Prob

8

<

:

n

2

X

n=n

1




n

 

�J

��

(�

n

)

!

T

R

�1

n

�J

��

(�

n

) >

l�

�1




2

2(


E

+ 


�

)

9

=

;

>

1

2

:

But both �̂ and �

�

are a

umulation points of the sequen
e f�

n

g. Hen
e there exist in-

�nitely many 
onse
utive pairs of su
h numbers n

1

; n

2

. Thus the sum

P

1

n=1




n

�J

��

(�

n

)

T

R

�1

n

�J

��

(�

n

)

diverges with probability 1, 
onditioned on A

NSt

. Hen
e it diverges with a non-zero prob-

ability 
onditioned on A. This 
ontradi
ts Proposition 3.3.

We have proven that with probability 1 f�

n

g a

umulates only to a subset of D




. This

subset is 
losed by de�nition and is 
onne
ted with probability 1 be
ause the expe
tation

of j�

n+1

� �

n

j tends to zero as n!1. The proof is 
omplete. 2

Remark. Generi
ally the stationary points of the 
ost fun
tion J will be isolated and

non-degenerated. It seems 
lear that the algorithm 
annot 
onverge to a lo
al maximum

or a saddle point of J if the noise in the gradient estimate is ex
iting in unstable dire
tions.

Therefore the assumption of 
onvergen
e to an isolated lo
al minimum is justi�ed.
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