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Abstract

The numerical modelling of the fully developed Poiseuille flow of a yield stress fluid in a square section is presented. The dead
regions in outer corners and the plug region in the center are exhibited. Numerical computations cover the complete range of the
dimensionless number describing the yield stress effect, from a Newtonian flow to a fully stopped flow. The resolution of variational
inequalities describing the flow is based on the augmented Lagrangian method and a specific mixed finite element method. The lo-
calization of yield surfaces is approximated by an anisotropic auto-adaptive mesh procedure. The limit load analysis and the associated
limit yield surface are obtained by an extrapolation procedure. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Yield stress fluids; Bingham model; Variational inequalities; Limit load analysis; Adaptive mesh; Mixed finite element
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1. Introduction

One of the difficult problems in viscoplastic fluid mechanics is to predict the appearance and develop-
ment of dead regions with the variation of material properties and flow parameters. Understanding yield
stress mechanisms is of major importance in petroleum industry (pipe-line), food industry, ceramics ex-
trusion, bricks, debris flows, and semi-solid materials. Furthermore, the characteristics of dead regions and
flow curves are of particular interest in the design of extrusion geometries.

The fully developed flow of a Bingham fluid in a tube with a square cross-section (see Fig. 1(a)), contains
most of the features of viscoplastic flows. In a plug region, located in the center of the section (see Fig. 1(b)),
the material translates with a constant velocity, while four dead regions are located in the outer corners. In
contrast, the flow in a circular tube does not exhibit dead regions. Plug and dead regions are characterized
by a rigid body motion of the material, and are related to rigid zones, by contrast to shear zones, where the
material deforms. The separation surfaces between rigid and shear zones are related to the yield surfaces.

By using variational methods, Mosolov and Mjasnikov [1] showed the existence and uniqueness of the
plug region. The existence of dead regions and the fact that dead regions always present a concavity turned
towards the inside of the section is also showed in [2]. Accurate exhibition of such flow patterns represents a
challenge for numerical methods.

The pour accuracy of most numerical simulations can be explained in part by the replacement of the
viscoplastic model by more regular ones, such as non-linear biviscous laws (see [3—5]). These biviscous laws
introduce an additional regularization parameter. The practical difficulty to solve the regularized model
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Fig. 1. Square tube cross-section: (a) tri-dimensional view; (b) schematic view of the cross-section.

problem increases when the regularization parameter approaches zero, i.e., when the regularized model
approaches the less regular viscoplastic model. Furthermore, the computational time grows very rapidly
when the regularization parameter approaches zero. Finally, all rigid zones disappear completely as soon as
the regularized model is used, and the notion of zones with small deformations may be introduced. As a
consequence, regularized model studies encounter difficulties to provide accurate solutions, especially in the
most interesting case where yield properties become important. Nevertheless, biviscosity models are widely
used, since most available numerical codes for solving Newtonian flows with a non-constant viscosity
function can directly be re-used. Recently, Taylor and Wilson [6] explored the resolution of the Bercovier
and Engelman [3] regularized model in square and rectangular tube sections. These authors exhibited some
dead regions. Nevertheless, unexpected situations were exhibited: the concavity of the dead regions were
inverted, and dead and plug regions was connected. The dramatic effect of the regularization parameter on
the inversion of concavity has been analyzed by Wang [7]. The author showed that these unexpected effects
were caused by an insufficient accuracy of the numerical simulation.

The replacement of the Bingham model by regularized one can be avoided in practical computations:
in the framework of variational inequalities, Fortin [8] proposed an algorithm to solve the flow of a
Bingham fluid in a square cross-section. Moreover, the author exhibited results for the flow in a square
section. Nevertheless, meshes were rough, and a dead region was represented by only one triangular
element. The augmented Lagrangian framework introduced by Fortin and Glowinski [9], later devel-
oped by Glowinski and LeTallec [10], has furnished efficient algorithms for solving viscoplastic flow
problems. Since this approach does not require the use of a regularized model, an accurate prediction of
rigid zones could be expected. Huilgol and Panizza [11] applied this approach to the resolution of a
Bingham model in a L-shaped tube section. A plug region was found at the center of the section.
Nevertheless, as pointed out by Wang [12], the flow field in the corner regions was not clearly resolved
by these authors.



P. Saramito, N. Roquet | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5391-5412 5393

Even when using augmented Lagrangian method for solving the exact Bingham model, the finite element
prediction of the yield surface is not accurate enough. The first improvement is to increase the polynomial
degree used by the finite element method. The second improvement is to increase mesh refinement. A
uniform mesh refinement increases the computational time rapidly, while the accuracy increases slowly in
terms of the yield surface determination. The idea of anisotropic auto-adaptive mesh generation, intro-
duced in 1990 by Vallet [13] and developed by Borouchaki et al. [14] has been recently used for the sim-
ulation of Euler and Navier—Stokes equation by Castro-Diaz et al. [15] to capture shocks accurately, i.e.
surfaces where the solution is discontinuous. By analogy, in the context of viscoplastic flows, the second
derivatives of the velocity field are generally discontinuous across yield surfaces. Since such surfaces are a
priori unknown, mesh refinement requires an iterative process to catch the solution and obtain a high
precision for yield surfaces.

In this paper, the flow of a Bingham fluid along a pipe of square cross-section is considered. The nu-
merical technique combines the augmented Lagrangian method that takes rigorously into account the yield
stress constitutive equation, and the auto-adaptive mesh procedure for the capture of surfaces associated
with abrupt variations of the solution.

The second section presents the Bingham model and states the problem of the flow along a prismatic
tube. Numerical methods and tests are grouped in the third section. The augmented Lagrangian algorithm
is recalled. Then, the stress-and-velocity mixed finite element approximation is introduced. The validation
uses a circular tube section. The efficiency of the mesh adaptation strategy is tested on both circular and
cross-square sections. The fourth section presents results on a square cross-section, including rigid zone
enhancement and velocity and stress profiles. The limit case where rigid zones invade the whole section,
related to the limit load analysis, is treated using an extrapolation procedure. Finally, a scaling procedure
extends the flow curve of a circular pipe to the case of the squared pipe. Two short appendixes group
explicit expressions of some constants.

2. Problem statement

The Bingham model [16,17] is characterized by the following property: the material starts to flow only if
the applied forces exceed a certain limit gy, called the yield limit. The total Cauchy stress tensor is expressed
by

Ot = —p-1+o0,

where o denotes its deviatoric part, and p is the pressure. The conservation of momentum is

p(zl;Jru-Vu) —dive+Vp=0,

where u is the velocity field, and p the constant density. Since the fluid is assumed to be incompressible, the
mass conservation leads to

divu=0.
The constitutive equation can be written as:
D(u)
[D(u)]
ol <oo if ID(u)] = 0,

o = 2nD(u) + 0y if |D(u)| # 0,

or equivalently:

1 -2 )% if o] > ao,
D(u): ( “)2’7

0 otherwise,
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where gy > 0 is the yield stress, 7 > 0 is the plastic viscosity, D(u) = (Vu+ Vu')/2 is the rate-of-defor-
mation tensor, and, for any tensor T = (t;;), the notation |z| represents the following matrix norm:

: 12
- 'EI'L'_ B
o = 7—72<Zfz:;> :

j
Notice that oy = 0, one is led to the classical viscous incompressible fluid. When ¢y > 0, rigid zones in the
interior of the fluid can be observed. As o, becomes larger, these rigid zones develop and may completely
block the flow when g is sufficiently large.

We consider the fully developed flow in a prismatic tube (see Fig. 1(a)). Let (O,) be the axis of the tube
and (O,,) the plane of the bounded section Q C R?. The pressure gradient is written as Vp = (0,0, —f) in Q,
where /' > 0 is the constant applied force density. The velocity is written as u = (0,0, u), where the third
component u along the (O.) axis depends only upon x and y, and is independent of ¢ and z. The problem
can be considered as a two-dimensional one, and the stress tensor ¢ is equivalent to a two shear stress
component vector: 6 = (g, 0,,). We also use the following notations:

Ou Qu
- (55)

0o, %
ox oy’

lo| = /02 + o’)%z.

Finally, the so-called Mosolov problem can be summarized as:
(P): find ¢ and u defined in Q such that

div e =

o (1—%)5 if |o| > oo, )
0 otherwise ,

dive=—fin Q, (2)

u =0 on 0Q. (3)

Here, (1) expresses the constitutive equation, (2) the conservation of momentum and (3) the no-slip
boundary condition. In the case of a square cross-section, we reduce the domain of computation by using
symmetries (see Fig. 1(a)). Thus, in this paper, results for the square cross-section are represented in a
triangular domain.

Let L be a characteristic length of the cross-section €, i.e., the half-length of an edge of a square section,
or the radius of a circular section (also denoted by R for convenience in that case). A characteristic velocity
is given by U = L*f/(2n) and a characteristic viscous stress by X = nU/L = Lf /2. The Bingham dimen-
sionless number is defined by the ratio of the yield limit gy by a representative viscous stress ~

2
=

This is the only dimensionless number of the problem.

Bi 4)

3. Numerical methods and tests

The augmented Lagrangian method, applied to the Mosolov problem (1)—(3), is briefly introduced in this
appendix. Then, the delicate problem of the choice of a mixed finite element is carefully treated. Next, the
validation of our numerical methodology on a circular pipe with uniform meshes is presented. Finally, our
mesh adaptation strategy is tested and discussed.



P. Saramito, N. Roquet | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5391-5412 5395
3.1. Augmented Lagrangian algorithm

Let H| (Q) denote the classical functional space [18] and J the functional defined for all v € H}(Q) by

J(v) ZE/|VU|2dX+O’0/ |Vu|dx—/fvdx.
2 Q Q Q
Glowinski et al. [19] showed that the solution u of problem (P) expressed as a minimization point of J on
Hy ()

min J(v). (5

UEHOI (Q)

Since J is non-differentiable on H,(€2) when o, > 0 due to the term [, |[Vu|dx, the problem cannot be
described by an equation and thus requires a specific convex optimization approach (see also [20]).
Let

y = Vue 13(0). (6)

The linear constraint (6) is handled by using a Lagrange multiplier that coincides with the stress & € L2(£2)2

L) =1 [ et o [ plac- [ foare [(u-p) o
Q Q Q Q

For all a > 0, the augmented Lagrangian
,u.50) = L(u3i0) +5 [ Vu—sf s
Q

becomes quadratic and positive-definite with respect to u. This implies that, with ¢ and y fixed, £, can be
minimized with respect to u on H| (), whereas this operation becomes in practice impossible for a = 0.
This transformation becomes helpful since we can solve the saddle-point problem of ., that coincides with
those of .#, by an appropriate algorithm proposed in [9]:
Algorithm (Uzawa)
initialization: » = 0
Let ¢” and y° arbitrarily chosen in L?(Q)’.
loop: n > 0

e Step I: Let ¢" and y" being known, find u"*! € H}(Q) such that

—aAu"! = f +div (6" — ay") in Q, (7)
u"t' =0 on 3Q. (8)

e Step 2: compute explicitly:

_ 90 o' +aVu't! : n n+1
n+1 . (1 \o‘”+aVu”+1|) ita if |O' JraVu ‘ > 0y, (9)
0 otherwise .

e Step 3: compute explicitly:
O_n+l — +a(vun+1 _ ,y)H»l). (10)

end loop
The interest of this algorithm is that it transforms the global non-differentiable problems (5) into a family of
completely standard problem (7), (8) and local explicit computation (9), coordinated via the Lagrange
multiplier in (10).
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3.2. Stress—velocity mixed finite element approximation

Let A and B be the two bilinear forms defined by
Aty u;Ev) = (m+a) [,y-&dx—a [,Vu-&dx —a [, Vv-ydx+a [, Vu- Vodx,
B¢ v;t)=— [, & tdx+ [,Vv-tdx.

The saddle point of .Z,, is characterized as the solution of a problem expressed by the following variational
inequalities:
(FV): find (y,u;6) € L2(Q)* x H}(Q) x L*(Q)” such that

O'o/g(|f| x4 AQ i E — 3, 0) + BE —y,050) > /vadx,

B(y,u;1) =0

for all (& v;7) € LX(Q)° x H (Q) x L*(Q)*.

Let D, C L*(Q), V, C H}(Q), and T, C L*(Q2) be some finite dimensional spaces. The finite dimensional
version of the variational inequalities is simply obtained by replacing functional spaces by their finite di-
mensional counterparts:

(FV),: find (y,,us;6,) € Dy x V, x T, such that

ao/g<|:| i) Ay 45 & — 30,0) + BE — 35, 030) > /vadx,

B(Yh? Ups T) =0
for all (¢,v;t) € Dy x V, X T,
For gy = 0 the problem reduces to a linear one that fits the theory of mixed finite elements (see, e.g.,

[21]). The choice D, = T, leads to y, = R,Vu,, where R, denotes the projection from LZ(Q)2 on T;, defined
for all & € L*(Q) by:

R,E €T, and /Rhé-rdx:/§~tdx VvVt e T,.
Q Q

See also [22] for the use of the properties of R, in the context of stabilized mixed finite element approxi-
mation. An investigation of stress—velocity mixed finite element space combinations that satisfies R, = [ is

wh-C’ oandy:R—C"

Fig. 2. Mixed finite element approximation.



P. Saramito, N. Roquet | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5391-5412 5397

presented in [23] and applied in the context of viscoelastic fluid flows [24]. Thus, the case gy = 0 leads to
6, = nR,Vu, and the problem reduces to the following linear elliptic one:
(Q),: find u;, € ¥, such that

r//R;,Vuh -RhVde+a/(1—Rh)Vuh . (]—Rh)Vvdx: /fvdx Yv e V;,
Q Q Q

When R, # 1 ie. T, # VV,, the discrete solution u, depends upon the numerical parameter a > 0 of the
augmented Lagrangian method. This property is not desirable. A necessary and sufficient condition for the
solution u, to be independent of the parameter a is 7, = VV,.

Let 7, be a finite element mesh composed of triangles. We introduce the space 7, composed of con-
tinuous piecewise polynomial quadratic functions (P, — C°). Thus, T, = D, = VYV, is the set of discontin-
uous piecewise linear functions (P, — C~!). Fig. 2 represents the corresponding degrees of freedom. In a
preliminary version, the space ¥}, was implemented by continuous piecewise linear functions (P, — C°), and
T, = D, by discontinuous piecewise constant functions (P — C~!). The quadratic implementation leads to a
better approximation, and thus, is well-suited to exhibit fine flow patterns.

3.3. Validation on a circular tube

This subsection presents the validation of the numerical methodology on a circular pipe, since the an-
alytical solution is known. Let Q be a section of a circular pipe of radius R and center (x,y) = (0,0). Let
r = 4/x? + »? for convenience. The Bingham number is defined by Bi = 20, /(fR). For 26y > fR, i.e. Bi > 1,
the flow is completely blocked and the velocity field is zero. When 26, < fR, the velocity field u(r) is given
by:

(1 ’2) _@(1 _L) when L > 220

1
2 2\ TR /R R R TR
_712 X u(r) = 2’ 2 .

IR 2 ( — %) otherwise .

Thus, a plug flow of radius 20, /f exists, which translates at constant velocity in the (O,) direction. Note
that the solution u(r) is only one time differentiable, since the gradient of velocity is non-differentiable at the
junction between the shear and the plug zones (i.e. at r = 2a¢/f).

Fig. 3 shows the evolution of the normalized residual term ||y, — V|| ;2 (o) versus the iteration number 71
for three values of the numerical parameter a of the algorithm. Note that ¢ = 20 leads to an optimal
convergence velocity. For n ~ 1400, the computation reaches the machine precision, roughly 1073 in
quadruple precision. For a = 5 or a = 50, the convergence is slower. Recall that the limit u;, of the family
(uy),~, does not depend upon a, since the finite element approximation for velocity and stresses are
carefully chosen. Note also on Fig. 3 the asymptotic slope on the semi-logarithmic scale. This slope is
related to the convergence velocity v* defined by

* b 1 n n
vt = lim ——log [y} — Vigil| ).

Fig. 4 shows v* versus a for various uniform mesh size 2 and Bingham number. Fig. 5 presents a family of
three uniform finite element meshes with decreasing element size 4. We observe that the optimal conver-
gence velocity occurs for a value of a that depends upon 4 and Bi. The optimal a increases when 2 — 0 and
Bi increases, while the corresponding optimal convergence velocity v* decreases. This expresses that the
computation time increases with mesh size and Bi. From a practical point of view, the optimal value of a is
difficult to predict, since it depends strongly upon the dimensionless number Bi, and the finite element
mesh. Nevertheless, the algorithm converges for all ¢ > 0. For all computations of the previous section,
involving adaptive meshes, the value a =200 has been used, and iterations were performed until the
maximum of |y} — Vu}| over Q becomes lower than 10~'2.

Let us turn to the convergence of u, versus the mesh size # — 0 for the uniform mesh family. The exact
solution u is known for the circular pipe and Fig. 6 plots in logarithmic scale the error in L>-norm versus /.
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Fig. 6. Convergence of the finite element method: [|u — u[|,2(q) as a function of the mesh size /.

Observe that the error decreases rapidly with 4. The error is about 1073 for # = 1072. More generally, the
error behaves as (/(h*), where A is in the range 2-3. The continuous P; finite element, used for the velocity,
is responsible of this efficient convergence property. In the case of the continuous P, element, the con-
vergence is slower: Glowinski [25] showed a O(h+/|In(h)|) behavior for the error in H'-norm, and Falk
and Mercier [26] showed an optimal ((h) estimate for the vorticity in L>-norm when € is connected. When
using the P; element, Roquet et al. [27] showed recently a ¢(h*y/|In(h)|) estimate for the velocity in
H'-norm.
Finally, let us introduce the field of dissipative energy, defined in Q by

E = 3|Vul|* + 64| Vul.

This field E is known to be non-differentiable across the border between shear and rigid zones, as can be
seen with its explicit expression:

4n (l)z—ﬂxi when £ > %
X E(r) =14 \R R R R = fR 11
f2R? (r) { 0 otherwise. ()

Notice that E is continuous, but its first derivative is discontinuous. The following subsection, related to the
mesh adaptation process, exploits this important property.

3.4. Mesh adaptation

Let 7 be an initial mesh and u, be the solution of problem (FV), associated to 7. Next, let ¢, = ¢(u)
be the governing field obtained from Vu, by

5 1/2

Py = (n\Vu0| +Go|vuo|) .

Note that ¢, is the square root of the dissipative energy. This choice will be explained in the following
subsection. The governing field ¢, is approximated by a piecewise polynomial function over each triangle
K € 7, and the error of interpolation in the unitary direction d € R? is estimated by:

*p,
od?

exa = h12<,d in K,
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where /g 4 is the length of K in the d direction,

62% T
W:d “H(gp,)-d

and H(¢,) denotes the Hessian of ¢,

H(py) = @, /0x* ¢, /0xdy
P =\@gpfoxdy  Bgy/00 )

Following Vallet [13], a possibility to adapt the mesh to the computation of ¢, is to equi-distribute this
error, i.e. to make it constant over all triangles and in all directions. Let 4;, 4, be the eigenvalues of H(¢,)
and d; and d, the associated eigenvectors:
o? o?
(/;O = )1 and i;) = A2.
aod; od;

The error exq is independent of d and K when exq4, = exq,, 1.€. When
2 ) 2
i g, 121] = hy g\ 72| = ¢y VK € T,

where ¢y > 0 is a constant independent of K. The Hessian H(¢@,) being known over K, we suppose that
H(¢,) is non-singular, i.e. 4;4; # 0. The constant ¢, being known, we want to build triangles of length 4, in
the d; direction with #; = \/co/|A:|, i = 1,2. Such a triangle has no privileged direction in a metric such that
the two hd; vectors, i = 1,2, have the same norm. Thus, we introduce the metric M(¢,), the eigenvectors as
column of H(¢,) with the corresponding |4,| and |4,|. The induced norm || - ||,, satisfies

[hdiyy = hxrJd - M (o) - di = Jeo, k=1,2.

Thus, an isotropic mesh in the Riemann space associated to the metric M(¢,) is a mesh extended in the
Euclidean space with a factor #4; in the d; direction.

Solving a problem using a mesh adaptation is an iterative process, which involves three main steps:

1. Starting from an initial mesh 7, the problem is solved using the augmented Lagrangian algorithm. Let

uy be the corresponding solution associated to the mesh .7,

2. Let ¢, = (1| Vuo|* + 60| Vuo|)'”* be the governing field. This field must emphasize regions where the so-
lution has high gradients, so that the mesh generator refines these regions.
3. Starting from the governing field ¢, on the mesh .7, the anisotropic mesh generator (see [14,28]) gen-

erates a totally new mesh, denoted by 7.

Then, 7| is used to solve the problem, and so on, until the obtained solution gets clear limits between shear
zones and rigid zones with no more jagged borders.

In the case of a circular section, the dissipative energy E is expressed by (11). Thus, as pointed out in the
previous subsection, ¢ = +/E is continuous, but its first derivative is discontinuous, so the Hessian H (o) is
defined with Dirac measures. From a numerical point of view, H(¢) is not explicitly computed but rather
approximated numerically. The numerical computation of H(¢) will have high variations around the
border of the plug flow. Then, the metric induced by ¢ will force the mesh generator to refine strongly the
new mesh near this border.

This theoretical prediction can be verified in Fig. 7, which shows the initial mesh and the mesh obtained
after ten loops of the adaptation process. Elements in the central plug zone become larger, while the mesh is
strongly refined with stretched elements around the border of this zone and near the wall.

The same kind of properties are expected to extend to various cross-section geometries: numerical tests
have confirmed that the square root of the dissipative energy appears to be a good governing field for both
circular and square sections.
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Fig. 7. Initial and adapted mesh after 10 iterations for a circular section (Bi = 0.5). (a) Initial uniform mesh (4000 elements); (b)
adapted mesh (5000 elements).

3.5. Efficiency of the adaptation process on the square section

The influence of the mesh adaptation on the quality of our solution is shown in Fig. 8. The left column
plots the adapted meshes while the right column represents the |6,|/2 field for Bi = 1. The grey scale
represents values above 1 for dark while rigid zones from 1 to 0.9 are in dark grey and in light gray for
values smaller than 0.5. The |6|/2 = 1 contour is associated with the yield surface.

The first row shows results for an isotropic regular mesh. We can see the poor accuracy of the solution,
especially between shear and rigid zones, which are regions of interest. Moreover, the dead zone is un-
readable.

Basing on this result, the governing field ¢ is computed, as described before, and then a mesh adaptation
step is used. Then, the mesh plotted in the second row is obtained. This mesh is no longer regular and is
slightly anisotropic. Refined regions already emphasize the shear zones. A solution to our problem can now
be computed, using this mesh as a startup. The result, shown in column 2 row 2, is already better than the
one computed with the initial mesh. Borders between shear and rigid zones are clearer and the dead zone in
the corner has begun to be noticeable.

Going through some more cycles of adaptation loops, results are clearly improved. After 10 loops, we
get the mesh and solution shown in the third row. The computational cost for 10 iterations of the adaptive
process is of about one hour on an Intel/Linux (200 MHz) personal computer. The final mesh contains
about 2000 triangles. Here, we have the wanted type of an anisotropic and irregular mesh. Elements are still
larger in the rigid zones, both the inner plug and dead zones, while they are strongly refined in the shear
zone. In particular, the regions with small element sizes are located near the wall and around the borders
between shear and rigid zones. Note also that elements are stretched along these borders, as a result of the
mesh anisotropy. The corresponding solution shows accurate contours and borders.

While the concavity of the separating line between shear and dead zones is turned towards the inside of
the section (Fig. 8(c), right), a brutal change of concavity occurs, and concavity of contours for |6/ = 0.9
turns towards corners. Thus, the prediction of dead zones requires accurate numerical computation in this
region, as pointed out in Section 4.

As in the case of the circular section, the field ¢ is here continuous but its first derivative appears to be
discontinuous. Note that in 1995, Seregin [29] showed, in a more general case, the continuity of Vu. Fig.
9(a) represents ¢ in elevation in the vertical direction, for Bi = 0.7 and after 10 iterations of adaptation
loop. One can notice that rigid zones are associated with ¢ = 0 and the brutal transition of ¢ at the
separation from rigid to shear zones. The representation of both the energy field in elevation and the
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Fig. 9. (a) Elevation view of the governing field ¢ and the corresponding anisotropic adaptative mesh; (b) two-dimensional view of the
mesh (Bi = 0.7, iteration 10).

corresponding anisotropic mesh shows that the mesh adapts to the surface curvature in the three dimen-
sional space. For all computations in Section 4, 10 iterations of the adaptive process have been used.

Fig. 10 shows two successive zooms of the adapted mesh. Observe the different length scales and the
anisotropy in the border of the shear zone. The first zoom shows that the mesh is able to catch in detail of
the separation line between the rigid and shear zones, corresponding to |6| = gy. The second zoom shows
also that triangles becomes flat in the direction normal to the separation line, since the adaptation is an-
isotropic. The shortest edge of the mesh is about 10° times smaller than the longest one.

4. Results on a square cross-section
4.1. Yield surfaces and velocity field

Fig. 11(a)—(c) show adapted meshes and the corresponding solutions for different Bingham numbers,
namely Bi = 0.5, 0.9 and 1.05. Dark lines indicate the velocity contours. Let us observe the shear zone
(l6]/Z = Bi), in grey, and the two rigid zones, in white (J¢|/2 < Bi). The first rigid zone is a dead region,
close to the outer corner. The second rigid zone, at the center of the flow, is an inner plug, that translates
with a constant velocity in the (O,) direction.

Let us now consider the dead region and its evolution with Bingham number. The dead region always
presents a concavity turned towards the inside of the section, as pointed out in the Section 1. Note that the
plug region, associated with a rigid translation movement, and the dead region, associated with zero ve-
locity, are always separated by the shear zone, where the velocity varies gradually. Taylor and Wilson [6,
Fig. 2(d), p. 98], proposed a flow with four shear zones reduced to small regions near the middle of the
walls, while dead and plug regions become connected. Using the regularized model due to Papanastasiou
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Fig. 10. Several length scales for an adapted mesh (Bi = 1, iteration 10).

[5], Burgos and Alexandrou [30] obtained also connected plug and dead regions (Fig. 8(d), line 1, p. 494 and
Fig. 9(d), line 1, p. 495). and exhibited dead regions with inverted concavity (Fig. 8(d), line 2, p. 494).
Theoretical studies showed for all Bi > 0 that:

1. the existence and uniqueness of the plug zone (showed by Mosolov and Mjasnikov [1]);

2. the existence of dead zones with concavity as found in the present paper (showed in 1966 by Mosolov

and Mjasnikov [2]).

Our results are consistent with these properties. In particular, plug and dead zones cannot be connected
before the fluid comes to a full stop. Wang [7] showed that these unexpected phenomena are due to a lack of
precision in the numerical computations proposed by Taylor and Wilson [6], namely a too high value of the
regularization parameter.

The inner plug is circle-like when small enough. As it grows, the inner plug gets flat due to its facing the
wall. The shear zone near the middle of the wall is thinner than the one along the diagonal, but it also
decreases slowly, so that the shear zone finally vanishes everywhere for the same critical Bingham number.
This phenomena will be studied in detail in the following section.
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Fig. 11. Evolution versus Bi of velocity contours and shear (in gray) and rigid (in white). (a) Bi = 0.5; (b) Bi = 0.9; (c) Bi = 1.05.

The entire evolution of shear and rigid zones is described here. The fluid comes to a full stop for a
Bingham number slightly greater than 1.05. For Bi = 1.05 (see Fig. 11(c)), an almost totally yielded cross-
section appears, with only a thin shear zone. The maximum velocity, i.e velocity of the inner plug, is in this
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case roughly 103 times smaller than the corresponding one in the Newtonian case, which is associated with a
wide area of the flow.

4.2. Velocity and stress profiles

Fig. 12(a)-(d) represent the velocity u and the yield criteria |a|/% — Bi profiles along the median line
x = 0 and the diagonal line x = y. A curvilinear abscissa s = /x*> + y? is used along the diagonal, varying
from zero at the center to v/2L at the outer corner. For each cut, the evolution for several Bingham
numbers, ranging from the Newtonian case (Bi = 0) to the full stop case is represented. Fig. 12(a) shows the
growth of the inner plug region for non-zero Bingham numbers. This corresponds to the plateau that grows
in size and decreases in intensity while Bi increases. The Newtonian case Bi = 0 is associated with a
gradually varied flow. The diagonal cut of the velocity is represented on Fig. 12(b). One can observe also

] ] I ] ] | I I
w/U (@) u/U (b)

s/L
| el @
=~ Bi=0

0.5 k- Bi = 0\ i

Bi =Y.

m

0 0 l :

0 02 04 06 08 1 /L 0 0.5 1.0 V2 s/l

Fig. 12. Velocity profiles: (a) along the median; (b) along the diagonal; yield criteria profiles; (c) along the median; (d) along the
diagonal.
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the plug, represented as a plateau, and the formation of the dead region, which corresponds to curves
approaching gradually the zero velocity axis as Bi increases.

Fig. 12(c)—(d) show the yield criteria. Only the positive parts of this quantity are represented, corre-
sponding to shear zones.

In the median cut (Fig. 12(c)), one can see that the shear zone gets closer to the wall, as Bi increases.
Note that the maximum value of the yield criterion over the whole section £ is reached at the wall, i.e. along
the median cut. Then, until this maximum gets to zero, there still exists a shear zone, at least at the middle
of the wall, at x = 1. When this maximum reaches the zero value, the plug flow touches the wall, and the
fluid stops.

On the diagonal cut (Fig. 12(d)), observe that the shear zone decrease, related to the expansion of both
the inner plug region and the dead region. The local maximum along the diagonal cut also decreases. When
this maximum reaches zero, there is no more separation between the two types of rigid zones: the plug and
the dead region come into contact and the fluid stops.

4.3. Limit load analysis

The evolution described in the previous section shows that the fluid comes to a full stop for a critical
Bingham number, namely Bi.. For values of the Bingham number greater than Bi., the flow is totally
stopped, whereas for values smaller than Bi. it can be described by our results. When Bi increases and
approaches Bi, the shear zone reduces to a surface, referred as the limit yield surface. In this section, we are
interested in determining Bi. and plotting the limit yield surface. This is done using extrapolations from
data computed for several Bingham numbers, from Bi = 0 to Bi = 1.05, which is the current limit in solving
the problem.

Let Spiug (reSp. Sdead), as on Fig. 13(a), be the distance along the diagonal from the center of the section to
the plug region border (resp. to the dead region border). Fig. 13(b) shows s, and sgeaq as a function of the
Bingham number. These distances computed numerically are interpolated by third-degree polynomials,
where the coefficients are provided by a non-linear least squares fitting procedure. The intersection of the
two third-order polynomial curves can also be computed, and occurs for Bi= Bi.~ 1.07 and
Splug = Sdead == 1.22 on Fig. 13(b).

By using variational methods, Mosolov and Mjasnikov [1] showed that: Bi.=4/(2+ /) =~
1.0603178 .. .; this exact value confirms, to our point of view, the accuracy of our numerical computations.

s/L
Sd (]/L
DI R dea
\/: X X-~x__x><xx
L &
- +
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F '
A :
Ed :
) Spiug/ L # :
0.5
0 B | | i
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Fig. 13. Intersection of the yield surface with the diagonal: (a) schematics and notations; (b) computations and extrapolation.
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Taylor and Wilson [6], by using a regularized model, predicted a critical Bi. value of 1.12. Note that these
authors used another dimensionless number: 1 = Bi/4 and obtained A.;; = 0.28.

The previous extrapolation procedure along the diagonal is extended to other cutting directions, as
shown in Fig. 14. Each cutting direction furnishes a point of the limit yield surface in the square cross-
section. In Appendix A, we show that the limit yield surface is an arc of circle tangent to the wall. The
radius . and the center (x.,y.) of the arc describing the limit yield surface express:

Bi.
re = 7’ ~ 0.53015890,
Bi.
Ye=yo=1— 7’ ~ 0.46984110.
The exact yield surface is drawn in solid lines on Fig. 14, while the numerical extrapolations are represented
by the + symbol. We observe that the extrapolation procedure slightly overestimates the exact coordinates.
We point out that the extrapolation procedure developed here applies systematically to an arbitrary shape

section while the exact yield surface can be easily explicitly expressed only for some particular section
geometries (such as circle, square and rectangles).

4.4. Hydraulic analogy

This subsection aims at bringing out simple laws for use in practical designs. A classical engineering
problem is to get the flow-rate as a function of the pressure drop in the pipe, given the fluid properties and
the duct geometry. This result can easily be expressed by an explicit equation for a viscoplastic fluid of
Bingham type, when the pipe is of a circular cross-section. Results for both circular and square pipes are
compared by using the fraction Bi/Bi. € [0, 1]. This has been done for the mean velocity e, and for the
the maximum velocity uy.x, Which is the velocity of the inner plug region:

21 Cinean 4B 1/Bi\"
mean Bi) = 1 —= e T A2l 5 5 12
12 tmean (B1) == ( 3Bzc+3<310) ) (12)

2’1 N Cmax Bi :
LTfumax(Bl)— 3 (1 ), (13)

_B_ic
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where Bi is expressed by (4). The above expressions are exact for a circular section with Bi, =1 and
Cmax = Cmean = 1. In the case of a square section, Bi. is known from the previous subsection. Moreover,
Cinean and Cpx can also be computed since the Newtonian solution u(x, y), associated with Bi = 0, can be
expressed using a Fourier expansions. The computation of these constants is reported in Appendix B. Fig.
15 compares tme,, and uy,, as obtained by direct numerical computations in a square cross-section, and by
using (12) and (13). Recall that relations (12) and (13) are not a priori exact in the case of a square cross-
section. Nevertheless, the maximum of the relative error is of about 10~ and cannot be seen on the plot.
These relations are of practical interest for most engineering problems.

The pressure drop in a pipe of length % is given by dop = f x &£ (see also Fig. 1(a)) and is usually
compared with the kinetic energy pu? /2 by introducing the hydraulic coefficient A:

mean

L pul
op = A —— P mean
P Dy 2

where Dy is the hydraulic diameter, defined to be four times the ratio of the section to the wetted perimeter,
1.e. Dy = 2R for the circular section and Dy = 2L for the square section. By introducing the Reynolds
number Re = pumen Dy /1 and using the previous expression of uyean, We get:

5. Conclusion

The objective of this work is to examine the development of macroscopic features, such as flow curves
and rigid zone enhancements, for the fully developed flow of a yield stress fluid in a square pipe. Our
numerical resolution of the Bingham model leads to results that are qualitatively and quantitatively in good
agreement with previous theoretical and numerical studies. An important result is the precision of the yield
surface prediction, especially when the fluid comes close to the full stop. In that case, an extrapolation
procedure leads to the limit yield surface at the full stop. Moreover, a scaling procedure extends the flow
curve of a circular pipe to the case of the square pipe, interpreted as an approximate law.
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The results of the present paper fully validate, to our opinion, the robustness and the accuracy of our
numerical strategy. Validated on a circular cross-section and applied to a square cross-section, this ap-
proach could be applied to a tube section of any shape. Our approach combines a high order mixed finite
element approximation, an anisotropic auto-adaptive mesh procedure, and the augmented Lagrangian
method. The adaptive strategy allows accurate capture of the yield surfaces. This approach also eliminates
the regularized parameter introduced frequently in numerical computations, and associated with a loss of
accuracy.

Solving viscoplastic fluid flows in a square pipe is not only of interest as an appropriate test problem for
developing the fluid mechanics of yield stress fluids, but it is also of practical interest and great importance
in food and petroleum industries. In most of these cases, optimization tends to eliminate dead regions by
modifying the pipe section geometry. In addition, the numerical methods used for solving this problem is of
interest for various fluid and solid mechanics problems involving variational inequalities.

Appendix A. Computation of the limit yield surface and Bi,

Mosolov and Mjasnikov [1] gave a geometric mean for the computation of Bi:

Bic _ mes(w)
2 aco mes(dm)

they claim in [1, Lemma 2.3, p. 250], that there exists w. C  such that the supremum in the previous
relation is achieved. Moreover, every such w, satisfies the following property (Lemma 2.3, proof pp. 269—
270):

If P € 0w, \ 02, then the connected part of dw, \ 02 containing P is an arc of circle touching the wall
0Q and tangent to 0Q2 at the touching points.

In addition, such w. can be taken as the limit plug region A.. This is obtained thanks to the Theorem 2, in
[31, p. 611], that claims, in particular:
Bi.  mes(A4.)

2 mes(04.)’

Hence, in the present case of a square €, it is established that the limit yield surface is an arc of circle
tangent to 0Q. More precisely, let us consider the subdomain w(r) C @, obtained by replacing the corners of
the square by arcs of circle of radius r and center (1 — r,1 — r), as shown in gray, Fig. 16. Let

l1-r r

Fig. 16. Computation of Bi. and the limit yield surface.
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~ mes(w(r)) (- Hr? +4
() = es(@w(r) ~ 20— 4y + 8

O0<r<l.

The limit plug region 4. is an w(r) that achieves the supremum of @. In particular, 4. is an o(r) that
maximize @. In other words, there exists 7. €]0, 1] such that 4. = w(r.) and

B
= sup (r) = D(re).
2 g

Finally, a straightforward computation shows that
Bi. 2 Bi.

TZW andrCZT.

Appendix B. Expression of Cycan and Cpax

The solution u for Bi = 0 satisfies —Au = 2 in Q = [—1,1]* and u = 0 on 8Q. Fourier expansion leads to:
= )" cosh(ax) cos(ayy)
=1-)"—4
u(x, ) Y ; a; cosh(ay)

where a; = (2k + 1)n/2. Thus, we get:

Conean = g — 163 By 1o461611964122972470774985 ..
k=0 ak
Conax =2 —8 Z _CU ) 17874165250422104902304040 ..
— a; cosh (ar)
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