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Polar active �uids are an important topic in theoretical and applied physics, par-
ticularly in biophysics and the modeling of active materials such as living tissues.
There are currently many continuum hydrodynamic frameworks for liquid crystals
and active gels in the literature, which we would like to propose unifying here. In
this paper, we propose a new thermodynamic framework for continuous mechanical
modelling of active polar �uids. This framework is designed to take into account
the most complex situations, combining activity, polarity, and nonlinear rheology.
It uni�es the skew-symmetric couple-stress theory with a general thermodynamic
formalism recently developed by one of us, providing a more complete and rigorous
description of active polar �uids. We show that, starting from a free energy and a
dissipation potential, it is possible to derive constitutive equations that automat-
ically satisfy the second law of thermodynamics. By construction, our framework
allows a thermodynamically-consistent coupling of the di�erent variables, in partic-
ular the density through the Hencky strain tensor. In addition, the use of a dissi-
pation potential and of the Hencky strain tensor allows us to generalize Onsager's
relations to nonlinear rheologies in large deformations, such as plasticity. Finally,
a major advantage of our approach is its ability to naturally provide an energy es-
timate in the general case, for any free energy and any dissipation potential. Our
theoretical framework paves the way for better modeling of active gels and could
also be applied to other complex systems. In particular, we propose an application
to the modeling of collective cell motion, where a rigorous treatment of energy and
dissipation is crucial for understanding the underlying physical mechanisms.
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1. Introduction

1.1. Context

Epithelial cells proliferate and expand during the formation of embryos, heal wounds by �lling
the vacant space or invade neighbouring tissues if they themselves form tumour aggregates. In
all cases, these phenomena largely involve the collective migration of cells. The cells interact
with each other, attracting and repelling each other, and therefore display closely correlated
movements [Dup03; TCJ12; Xi+19; Dur20].
Among the systems that exhibit collective behaviour, biological tissues belong to the family of

active materials, i.e. those made up of self-propelled units, here the cells, capable of converting
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energy (previously stored or immediately available in their environment) into movement, thus
taking the system out of thermodynamic equilibrium [Mar+13].
The transition from a disordered system to a collective motion results in a symmetry breaking

in the system, which is similar to a phase change in a material [VZ12; Mar+13]. Just as phase
changes occur as a function of the value of one or more so-called order or control parameters
(e.g. temperature for a solid-liquid transition), the degree of symmetry of a system subject
to collective behaviour must be quanti�able. This is the case for cells, which have the ability
to reorganise their internal structure asymmetrically in response to external stimuli, whether
chemical or physical. This asymmetry is called polarity and gives the cell a front-to-back
direction, in which it can exert forces [LMT16]. To describe collective cell migration, the
literature mainly considers polarity as a vector with variable norm [KP13; Not+16; BC17;
CR17; HS17; Cza+18; AT19; BM19; Pér+19; Boo+21], which is denoted p in the following;
symmetry breaking then results in a polar order. In other situations, it may be more appropriate
to describe polarity as a tensor [LMT16; Pop+17; Saw+17]; symmetry breaking then leads to
a nematic order.
The nature and physical characterisation of this polarity, its role in the emergence of collective

movements and its coupling with the other physical quantities involved therefore constitute a
major challenge and an open question in the modelling of the collective movement of epithelia.
Given the arbitrary complexity of the coupling between mechanics and polarity, it is impor-
tant to have thermodynamic guarantees for the resulting equations. Indeed, the now classical
hydrodynamic theory [Kru+05; Mar+13; AT19] omits an important term in the expression of
the stress tensor. This term is called the Ericksen stress tensor in the theory of liquid crys-
tals [GP93, equation (3.100)], from which the theory of active gels is inspired. Here, we show
that omitting this term can lead to solutions violating the second principle of thermodynamics.
Moreover, this classical hydrodynamic theory uses the Onsager relations to construct its con-
stitutive equations, which limits force-�ux relations to linear cases only, and therefore does not
allow the introduction of nonlinear rheologies such as plasticity. In this paper, we propose a
rigorous mathematical framework that guarantees by construction the second principle of ther-
modynamics and the generalized Onsager-Edelen symmetry, an extension of the linear Onsager
relations to the nonlinear case [Sar24, section 4.3].

1.2. State of the art of physical models of collective cell migration

There are broadly two approaches to modelling collective motion. The �rst approaches the
problem from the point of view of discrete mechanics and focuses on modelling the individ-
ual behaviour of cells and their interactions [CR17; HS17; AT19; Xi+19; Bea+22]. It allows
collective e�ects to emerge and links ingredients at the cellular level with emerging behaviour
at the tissue level. The second approach is based on continuum mechanics, and is the one
adopted in this paper. It is relevant insofar as, experimentally, it is possible to extract de-
scriptive mechanical quantities at a mesoscopic scale, i.e. that are statistically homogeneous
and continuous. In other words, it is possible to neglect the e�ect of �uctuations intrinsic to
the microstructure of the epithelium with respect to variables that have been averaged over a
small representative group of cells, assumed much bigger than a cell but much smaller than the
complete tissue [Tli+18]. It is therefore possible to describe the tissue locally, at the level of
these cell groups, using tensorial variables that are regular in space and time, which justi�es the
approach [CD07; Gra+08] � this approach is already widely used in the literature to describe
this type of system [Sto84; GP93; Fun93; Eri99; Eri01; Hum03; CD07; Mar+13; Tli+15; HS17;
JGS18; AT19; Xi+19].
The vast majority of continuous models of collective movement in epithelia in the literature,

also called hydrodynamic models, are based on a common set of assumptions:
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(i) tissues under consideration can be likened to shallow incompressible isothermal �uids:
they are continuum undergoing large deformations, the thickness of which is assumed to
be negligible compared with the characteristic length, so that migration can be considered
to be two-dimensional;

(ii) migration takes place under conditions that do not allow cells to be observed growing,
dividing or dying;

(iii) the system respects the basic principles of continuum mechanics and is at mechanical
equilibrium: migration is slow, of the order of a micron per minute, so inertia can be
neglected;

(iv) migration takes place on timescales that prevent genetics from modifying the mechanical
properties of cells;

(v) the activity of cells is su�cient for them to change their neighbours without a yield strain,
so the contribution of plasticity to rheology can be neglected.

Several reviews of cell migration models (discrete and/or continuous) exist in the literature; for
instance, [HS17; AT19; BM19] can be consulted.
More generally, in mathematical modelling for biology, a broad consensus has been established

in favour of viscoelastic mechanical models [Fun93; Cia03; Hum03; CD07; CV07; Bre+09;
Éti+15; Clé+17; VCL20], and the modelling of collective cell motion is no exception to the
rule, as shown by the three reviews cited above. In cases where the arrangement of cells within
the tissue remains unchanged, for example in arterial walls, muscles or skin, the tissue behaves
like an elastic or viscoelastic solid, and can therefore be described using, among others, the
Kelvin-Voigt [BM19] or Burger models. Conversely, if the arrangement evolves in response
to tissue deformation or strong cell motility, then the tissue is subjected to large unbounded
deformations over relatively long times, and acts more like a viscoelastic �uid [Tli+20]: it can
be more accurately described with, for example, Maxwell [AT19] or Oldroyd [Old50] models.
However, a viscoelastic model alone is not su�cient to describe the active dynamics of cell

migration, and it needs to be supplemented with an evolution equation for the polarity. This
can be obtained from the global Helmholtz free energy F of the system as follows [AT19]:

□
p = −1

γ

∂F

∂p
, (1)

where γ is a rotational viscosity. The notation
□
p := ∂tp+(v • ∇)p− (W (v)+aD(v)) • p stands

for the Gordon-Schowalter objective rate, where v is the velocity �eld, W (v) = (∇v−∇vT)/2
is the vorticity tensor, D(v) = (∇v + ∇vT)/2 is the deformation rate tensor and a ∈ R is
a parameter. The operator □ • □ refers to the contracted product and its associated norm is
noted |·|. Here, we adopt the convention ∇v = ( ∂vi

∂xj
)i,j for the gradient of a vector �eld. Thanks

to this formulation, it is possible to propose a coupling between polarity and other physical
�elds such as cell density ρ [AT19], elastic deformation [Mar14; Tli+18], the anisotropy of
cell shape [Cza+18] or the concentration of a chemical signal [Not+16] or of one or more
proteins [IM23], such as actomyosin [BM19].
A �nal ingredient characterising continuous models of cell migration is the presence of an

active stress σa often de�ned as a function of the polarity [Mar+13; AT19]:

σa := −ζ∆µp⊗ p, (2)

where ζ∆µ is the active stress coe�cient and ∆µ can be seen for instance as the energy gain
per ATP molecule. For instance, it can be interpreted as the result of the contraction of actin
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�laments induced by molecular motors. The characteristic of this term is that it can a priori
adopt any sign, re�ecting both contraction (ζ < 0) and extension (ζ > 0), which tends to put
the system out of equilibrium. In practice, the sign of ζ is �xed in advance, and the coe�cient
ζ∆µ is mostly taken to be positive [Mar+13]. Note that generalisations of this de�nition have
been proposed, in particular by introducing a dependence on the concentration of a given
chemical agent [Not+16; BM19].

1.3. State of the art of frameworks to derive hydrodynamics models

1.3.1. Tissues as active gels

The protein �laments (such as actin) that make up the cytoskeleton are elongated objects
immersed in the cytoplasm. When the cell polarises, the �bres contract and, more importantly,
align. In addition, the cell is an active material and can regulate its mechanical properties and
microstructure, in particular by consuming ATP. Such a material is generally referred to as an
active gel [Mar+13].
The average orientation of the active gels �laments is represented by the vector p, called the

director and, unlike continuous models of collective cell migration, assumed to be unitary, i.e.
|p| = 1. Through this constraint, the theory implicitly considers �laments as rigid rods: the
distinction between the ends of molecules is irrelevant, so the roles played by −p and −p are
identical. Mathematically, this translates into an evolution equation invariant to the p 7→ −p
transformation. In our context, this is suitable for the axial part of the anisotropy of the cells, in
this case their shape, but not for the polar part represented by the vector p, which distinguishes
the front and back of the cell and vanishes when the cell is not polarized.
If a tissue is equated with its underlying protein network, then it can be treated as an active

gel, but at the cost of several simpli�cations: we do not take into account the fact that p is a
vector whose modulus can vary, the fact that p and −p are di�erent vectors, and the fact that
cellular materials can have plasticity due to cellular rearrangements.
With or without these simpli�cations, most models of collective cell migration in the lit-

erature are in fact adaptations of the theory of active gel [Mar+13; JGS18; AT19; BM19].
The latter extends the nematic liquid crystal formalism to active gels, mainly by introducing
an active stress tensor as in (2). The theory of nematic liquid crystals provides a theoretical
thermodynamic framework that makes it possible to construct continuum mechanics equations
from Onsager's principle, coupling an order parameter describing the level of symmetry of the
system, as explained previously, with the usual mechanical �elds (velocity, deformation, etc.),
while guaranteeing the second principle of thermodynamics and the objectivity of the equations
obtained [GP93]. The result is the equation (1) and a Cauchy stress tensor which is also derived
from the free energy.
Although the theory of active gels has already envisaged the coupling of polarity with the

Maxwell model [Mar+13; AT19], it does not a priori allow the systematic introduction of any
rheology, nor does it facilitate the coupling of di�erent physical �elds with elastic deformation
in the context of large deformations.

1.3.2. Micromechanical generalisations of the liquid crystal theory

Since the introduction of the theory of liquid crystals, many other theoretical frameworks
have emerged in the literature. Although they have not been considered in the construction of
equations for the theory of active gels or models of collective cell migration, they are nonetheless
relevant.
These theoretical frameworks are based on the following observation (which we restrict here

to cells, but the reasoning is the same): cells have the capacity to align their polarities locally,
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in the same way as sardines orient themselves in the same direction as their neighbours in a
shoal. The distance over which neighboring polarities maintain a certain alignment before it
is gradually reduced is called the coherence length. To create this alignment, the cells can
be induced to exert torques, using rotations that occur on a microscopic scale, relative to the
size of the tissue, called microrotations. From this point of view, tissues are continuum whose
microscopic scale can have a signi�cant in�uence on the macroscopic behaviour. A priori,
classical continuum mechanics does not allow these length scales to be taken into account.
The �rst attempt to put the concept of microrotation into a mathematical formalism probably

dates back to the beginning of the 20th century with the publication of [CC09], which developed
the beginnings of the theory of so-called micropolar media, in which a new kinematic variable
is introduced, microrotation, assumed to be independent of macroscopic rotation. This theory
has since been generalized by the theory of microcontinuum, which applies to both solids [Eri99]
and �uids [Eri01]. For example, it has been used in the mechanical modelling of esophageal
tissue [San+14].
A microcontinuum is a continuum whose microscopic constituents are themselves considered

to be deformable and contribute to the macroscopic behaviour of the material. The intrinsic
deformability and orientation of a microscopic constituent are described using a so-called mi-
crodeformation tensor, which generalises the concept of microrotation and is assumed to be
representable by a continuous tensor �eld at the macroscopic level. It therefore adds a certain
number of additional degrees of freedom to the kinematic level, depending on the material un-
der consideration. In particular, the theory of micropolar media adds three more. As a result,
the conservation laws derived from this theory of microcontinuum are much more voluminous
than in the framework of classical continuum mechanics: in the most general framework, in
addition to the conservation equations for mass and momentum, we have to add a conservation
equation known as the microinertia equation (6 equations) and the angular momentum equa-
tion (9 equations), which involves a tensor of order 3. In addition to the complexity of such a
theory, the concept of microstrain is not necessarily legitimate as pointed out in [HD11].
Couple stress theory, on the other hand, seeks to describe the in�uence of microstructure

on macroscopic behaviour solely on the basis of purely kinematic continuous �elds. It also
introduces the concept of the couple stress tensor, which is the analogue of the Cauchy stress
tensor for rotations. A �rst version of this theory applied to solids appeared in the early 1960s,
before being adapted to �uids in 1966 [Sto66]. Although it provides a solid mechanical basis
for the theory of liquid crystals, and a fortiori for models of collective cell migration, it su�ers
from the same defects as the classical theory of liquid crystals presented in [GP93], given at the
end of the previous section. The original couple stress theory su�ers from some indetermina-
cies [HHD15], which two papers in the literature have attempted to remove [Yan+02; HHD15],
making it a self-consistent size-dependent theory within the context of classical continuum me-
chanics. In the �rst one, the couple stress is proven to be deviatoric and symmetric by assuming
the couple moment must vanish; we will refer to it as the deviatoric-symmetric couple stress
theory. The second yields a diametrically opposed conclusion, proving that the couple stress is
skew-symmetric; we will refer to it as the skew-symmetric couple stress theory. There seems to
be no consensus on the question, even though according to [HD11], the formulation in [Yan+02]
� is not consistent with proper boundary condition speci�cations and energy conjugacy within
the principle of virtual work �.

1.3.3. Hydrodynamics with a dissipation potential

Alternatively, in a preceding paper, some of us have proposed to apply the dissipation potential
formalism to tissue dynamics [Tli+15]. This formalism relies on the dissipation potential, a
function that describes the dissipative phenomena (i.e. non-equilibrium thermodynamic) oc-
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curring in the dynamics under consideration and allows the introduction of nonlinear rheologies
(unlike Maxwell's), such as plasticity for example, thus generalizing Onsager's linear relations.
Like the theory of active gels, this theoretical framework uses the free energy in addition to
the dissipation potential, making it possible to derive a large number of constitutive equations,
which are guaranteed to satisfy the second principle of thermodynamics.
The concept of dissipation potential was introduced independently by Ziegler in 1968 [Zie68],

by Verhás in 1972 [Ver72], by Edelen in 1973 [Ede73; Ede74] and by Moreau in 1974 [Mor74].
In 1975, Halphen and Son Nguyen proposed the formalism of generalized standard materi-
als [HS75] which, although it applies only to the case of small deformations, relaxes the hy-
pothesis of di�erentiability of the dissipation potential. More recently, one of us has updated
the dissipation potential formalism and proposed a uni�ed framework for it [Sar24]. However,
this framework does not allow higher-order derivatives to be introduced into the constitutive
equations, and thus the equations of the theory of nematic liquid crystals and its derivatives
to be obtained. For example, to take into account the alignment of polarities, it is common to
introduce the Laplacian of the polarity �eld into the equations, something the framework does
not allow.
Conceptually similar, the use of a Rayleigh potential allows similar results to be obtained, in

particular by generalizing Onsager's linear relations. For example, it has been used to obtain
the hydrodynamic equations for nematic liquid crystals [SV01; SMV04] and, more recently, for
active nematic gels [Mir+25].

1.4. Scope of this article

In this paper, we propose a uni�ed framework of all these theories allowing at least to obtain
the equations of the theory of active gels and furthermore to couple it with more complex
rheology. For this purpose, we combine the skew-symmetric couple stress theory [HHD15] and
the uni�ed formalism of dissipation potential developed in [Sar24].
Like the others, this new theoretical framework allows to obtain objective constitutive equa-

tions that satisfy the second principle of thermodynamics, based solely on free energy and
dissipation potential. As in active gel theory and contrary to the framework in [Sar24], the free
energy here can depend, among other things, on the polarity gradient, allowing a Laplacian of
the polarity �eld to be incorporated into the equations. In addition, the use of a dissipation
potential makes it possible to generalize Onsager's relations to the nonlinear case, and thus to
introduce a wide variety of di�erent rheologies, such as plasticity. On the other hand, the intro-
duction of viscoelastic ingredients is not discussed in this paper, but is possible by considering
the so-called intermediate con�guration, developed for example in [Sar24, section 3.6]. Such
ingredients could be used to describe nonlinear elasticity, which is crucial in morphogenesis for
instance.
We also show how our framework enables us to obtain a rigorous coupling of the various

physical �elds with the density of the continuous medium under consideration and an energy
estimate of the equations from the theory of active gels, a result which had not been envisaged
by the other formalisms and which is the gateway to results of the mathematical existence
of solutions to the equations. Importantly, by construction our framework includes the term
called Ericksen tensor in the theory of liquid crystals [GP93, equation (3.100)], which we show
to be indispensable for energy estimate. In the literature of active gel theory, this contribution
to the stress tensor is mentioned in some reference articles [JGS18; ACJ22] but is absent from
others [Mar+13; AT19]. In simple cases, the absence of this term has no detectable impact on
equation solutions. However, we argue that in the general case the absence of this term can
have crucial e�ects in relation with the second principle of thermodynamics. We discuss its
consequence on the solution stability.
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Unlike [Mir+25], our approach is based on more recent developments in microrotation theory,
bases its argument on the Clausius-Duhem inequality, and uses more general tools to deal with
large deformations, such as the Hencky strain tensor. In particular, this last consideration
allows a rigorous coupling with the density �eld and paves the way for a greater variety of
rheologies under large deformations, as shown in [Sar24].
An outline of the paper is as follows. Section 2 gives a brief presentation of the skew-

symmetric couple stress theory of Hadjesfandiari, Hajesfandiari, and Dargush [HHD15] and of
the uni�ed thermodynamic framework developed in [Sar24]. Then, section 3 combines them
in a new theory of constitutive equations within the couple stress theory. In section 4, this
new framework is applied to active gels and collective cell migration. Finally, in section 5, the
resulting system of equations is solved numerically on a simple geometry to illustrate the e�ect
of active stress.

2. Conservation laws and constitutive equations

In this section, we �rst give the conservation laws in the skew-symmetric couple stress theory,
then recall the main ingredients to build thermodynamically consistent constitutive equations
in classical continuum mechanics, based on the framework developed in [Sar24].

2.1. Conservation laws in the skew-symmetric couple stress theory

Within a size-dependent continuum, the extension of the classical continuum in the skew-
symmetric couple stress theory, boundaries of elementary volumes are subject to both a normal
force-traction vector and a normal moment-traction vector. The Cauchy's theorem then gives
the existence of the Cauchy stress tensor σ and the couple stress tensor µ, which has been proven
to be skew-symmetric [HHD15]. They represent respectively the surface forces and couples.
The linear momentum and angular momentum conservation laws in the domain Ω ⊂ R3 write
respectively [HHD15, equation (53) and (54)]

ρ
.

v − divσT = ρb in Ω× ]0,+∞[, (3a)

−divµT = ϵ : σ in Ω× ]0,+∞[, (3b)

where v is the velocity �eld, .

φ := ∂tφ + (v • ∇)φ is the Lagrangian rate, b represents the
volume forces and ϵ is the Levi-Civita third order pseudo-tensor. Here, σ is not necessarily
a symmetric tensor, but note that if µ = 0, then it is. The divergence of a tensor �eld τ is
de�ned as div τ = τij,j, with the Einstein summation convention. The operator □ : □ refers
to the double contracted product and its associated norm is noted |·|. Those equations are
complemented with the law of conservation of mass:

∂ρ

∂t
+ div(ρv) = 0 in Ω× ]0,+∞[. (3c)

In practice, constitutive equations satisfying the second principle are determined from the
Clausius-Duhem inequality. This inequality links the Lagrangian rate of the local free energy
Ψ (hence F :=

∫
Ω
ρΨdx is the global free energy) to energetically conjugated pairs coupling

deformation rates and stress tensors. For an isothermal size-dependent �uid, the Clausius-
Duhem inequality is [HHD15, equation (90)]

−ρ
.

Ψ+ symσ :D(v) + µ :KT ⩾ 0 in Ω× ]0,+∞[, (3d)

where sym gives the symmetric part of a tensor. The tensor K := W (ω), where ω := 1
2
∇× v

is the vorticity, is the mean curvature rate tensor and is energetically conjugated to the couple
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stress tensor. Because both µ and K are skew-symmetric, they can be better represented by
only a vector, respectively l and k = 1

2
∇× ω, so that

µ = −ϵ • l =

 0 −l3 l2
l3 0 −l1
−l2 l1 0

 , K = −ϵ • k =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 . (3e)

Then, (3d) writes equivalently

−ρ
.

Ψ+ symσ :D(v)− 2l • k ⩾ 0 in Ω× ]0,+∞[. (3f)

2.2. Building constitutive equations

Here, we recall the thermodynamic framework proposed in [Sar24, Remark 4.3]. It applies in
three steps:

1. Choose a set of objective thermodynamic variables A and corresponding objective rates
D, expressed as corotational rates of the former. In our case, A could contain the polarity
�eld, the elastic strain tensor, etc.

2. De�ne an objective Helmholtz free energy Ψ with respect to A. If A contains a vector,
then Ψ should only depend on its norm. If it contains a tensor, then Ψ should only
depend on its corresponding sets of invariants (see for instance [Eri80, Appendix B]). In
that case, Ψ is said to be objective-isotropic [Sar24, de�nition 2.38].

3. De�ne an objective dissipation potential Φ with respect to D; it is allowed to depend on
A. It should be positive and satisfy Φ(D = 0;A) = 0 and the inequality(

∂Φ

∂D
(D;A)

∣∣∣∣ D) ⩾ 0. (4)

The operator (· | ·) refers to the canonical inner product, obtained by integrating over Ω
the pointwise inner product of two �elds of matching nature (scalar, vector or tensor).
The associated norm is denoted by ∥·∥. If Φ is convex, then inequality (4) is automatically
satis�ed.

Applying those three steps and assuming the gyroscopic terms vanish, we obtain the following
thermodynamically-consistent constitutive equations:

σ ∈ ρ
∂Ψ

∂h
+

∂Φ

∂D(v)
, (5a)

0 ∈ ρ
∂Ψ

∂Ai

+
∂Φ

∂Di

, (5b)

where Ai represents the i-th thermodynamic variable and Di its corresponding rate. The tensor
h is the Hencky strain, representing the true strain in the large deformations context. It can
be proven that D(v) expresses actually as a corotational rate of the Hencky strain. When Φ is
di�erentiable, then the symbol ∈ can be replaced by a simple equality. When it is not but is
convex, its partial derivative actually refers to its subdi�erential with respect to the considered
variable.
As we previously said, this framework does not allow higher-order derivatives in the consti-

tutive equations (5b) and thus excludes the polarity equation from the active gel theory. From
now, we are going to show how it is possible to extend it thanks to the skew-symmetric couple
stress theory so it becomes possible.
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3. Our framework

3.1. Introduction

To build our framework, we follow a rather classic approach, as presented for instance in [Eri01;
Sar24]. We start o� from the Clausius-Duhem inequality (3f), by integrating it over the whole
domain then expanding the Lagrangian rate of the free energy with respect to the thermody-
namic variables A, using the chain rule. Then, we can write the inequality under a big inner
product between generalized thermodynamic forces (the stress tensor σ, the couple stress vec-
tor l and the partial derivatives of Ψ with respect to A) and generalized thermodynamic �uxes
(the rates D). We conclude with the convexity and the positivity of the dissipation potential Φ.
The main di�culty lies in �nding an appropriate kinematic measure of the rotational defor-

mation, a corotational derivative of which gives the mean curvature rate vector k. We denote
by r this deformation vector, de�ned as the unique solution to the Cauchy's problem

◦
r = k, in Ω× ]0,+∞[, (6a)

k(t = 0) = k0, in Ω, (6b)

where
◦
r := ∂tr + (v • ∇)r − W (v) • r denotes the corotational rate of a vector. We could

also introduce the mean curvatue rate tensor R = −ϵ • r. The kinematic de�nition of R using
the deformation gradient is beyond the scope of this paper. Note that by construction, R is
skew-symmetric.
Just as the Cauchy stress tensor σ is the conjugate of the Hencky strain h via the free

energy Ψ, the couple stress vector l will be that of the mean curvature vector r we have just
introduced.
Now we assume the local free energy Ψ to be a function of the thermodynamic variables

A = (h, r, c, g,p, τ ), where g (resp. τ ) is a vector (resp. a second order tensor) representing
the spatial variations of the concentration c (resp. the polarity p). We then de�ne the global
free energy F by

F (h(t), r(t), c(t),p(t)) =

∫
Ω(t)

ρ(t)Ψ(h(t), r(t), c(t), g(t),p(t),∇p(t)) dx. (7)

Note that we do not need to precise the dependence of F with respect to ρ, despite the presence
of the latter in its expression, because the density is linked to the Hencky strain tensor through
the relation [Sar24, equation (3.18)]

ρ = ρ0 exp(− trh), (8)

where ρ0 is the density in the reference frame.
Similarly, let us assume the dissipation potential Φ is a function of the thermodynamic rates

D = (D(v),k,
.

c,
□
p), where we recall that

□
p := ∂tp+ (v • ∇)p− (W (v) + aD(v)) • p.

In the following, we use the abusive but widely used notation

∂Ψ

∂∇c
=

∂Ψ

∂g g=∇c

,
∂Ψ

∂∇p
=

∂Ψ

∂τ τ=∇p
. (9)

3.2. Constitutive equations

If the boundary conditions

l× n = 0,
∂Ψ

∂r
× n = 0,

∂Ψ

∂∇c
• n = 0,

∂Ψ

∂∇p
• n = 0, (10)

10



hold in ∂Ω× ]0,+∞[, then the constitutive equations are given by

symσ ∈ ∂(ρΨ)

∂h
+

∂Φ

∂D(v)
−∇c⊗ ρ

∂Ψ

∂∇c
+ a sym

(
p⊗ ∂F

∂p

)
− ρ∇pT •

∂Ψ

∂∇p
(11a)

skwσ = −1

2
W

(
ρ
∂Ψ

∂r

)
+ skw

(
p⊗ ∂F

∂p

)
(11b)

0 ∈ ∂F

∂c
+

∂Φ

∂
.

c
, (11c)

0 ∈ ∂F

∂p
+

∂Φ

∂
□
p
, (11d)

where skw gives the skew-symmetric part of a tensor and ∂F
∂c

(resp. ∂F
∂p

) is the Gâteaux
derivative of F with respect to c (resp. p), that is

∂F

∂c
= ρ

∂Ψ

∂c
− div

(
ρ
∂Ψ

∂∇c

)
,

∂F

∂p
= ρ

∂Ψ

∂p
− div

(
ρ
∂Ψ

∂∇p

)
. (12)

Note there is not any constitutive equation for the couple stress tensor µ (nor its vector counter-
part l), rather a constitutive relation is directly given for the skew-symmetric part of the stress
tensor σ. An expression for the couple stress vector can still be retrieved through lemma 8 and
the use of the identities ϵ : (y ⊗ z) = y × z and ϵ :W (q) = −∇× q:

∇× l = −1

2
∇×

(
ρ
∂Ψ

∂r

)
+

∂F

∂p
× p. (13)

However, when ∂Ψ
∂∇p

= 0, a constitutive equation for the couple stress vector can be obtained,
involving the (sub)di�erential of Φ with respect to the mean curvature rate vector k, if the
boundary condition

∂Ψ

∂∇c
• n = 0 (14)

holds in ∂Ω× ]0,+∞[:

symσ ∈ ∂(ρΨ)

∂h
+

∂Φ

∂D(v)
−∇c⊗ ρ

∂Ψ

∂∇c
+ ap⊗ ρ

∂Ψ

∂p
(15a)

l ∈ −1

2
ρ
∂Ψ

∂r
−−1

2

∂Φ

∂k
(15b)

0 ∈ ∂F

∂c
+

∂Φ

∂
.

c
, (15c)

0 ∈ ρ
∂Ψ

∂p
+

∂Φ

∂
□
p
. (15d)

Note the term p ⊗ ρ∂Ψ
∂p

does not present the sym operator in the expression of the stress

tensor (15a). Indeed, when the free energy does not depend on the polarity gradient, ∂Ψ
∂p

is
necessary colinear to the polarity �eld, by objective-isotropy. In this case, the skew-symmetric
part of the stress tensor can be obtained from lemma 8:

skwσ = W (l). (16)

Thus, if ∂Φ
∂k

= 0, constitutive equations (15) lead to (11) when ∂Ψ
∂∇p

= 0.

11



Theorem 1 � Second law of thermodynamics

If the dissipation potential Φ is convex and positive, and satis�es Φ(D = 0;A) = 0 for
any A, then the Clausius-Duhem inequality (3d) (or equivalently (3f)) is satis�ed when
equations (11) (or (15) when ∂Ψ

∂∇p
= 0) are chosen as constitutive equations.

Proof. See appendix B.2. ■

Remark I � Converse of the theorem: The convexity of the dissipation function is a su�cient
condition to obtain the second principle of the thermodynamics, but is not necessary according
to [Sar24, remark 4.4]. The Edelen's theorem is more general because it gives in addition a
necessary condition, but to our knowledge is not applicable in this context, since it only applies
when thermodynamic variables are de�ned in �nite-dimensional spaces.

Remark II � Boundary conditions: See remark VII in appendix B.2.

Remark III � Viscoelasticity: The introduction of viscoelastic ingredients, not discussed here,
is entirely possible and requires the introduction of a new thermodynamic variable he, the
reversible part of the Hencky strain tensor, whose existence can be established by considering
the so-called intermediate con�guration, as explained in section 3.6 in [Sar24]. Several examples
are also developed in sections 5.11 to 5.15 in [Sar24].

3.3. Resulting equations

The derived equations (11) can be gathered with the conservation laws from section 2.1 to
become the

Problem 1. Find v, ρ, c and p de�ned in Ω× ]0,+∞[ such that

ρ
.

v − divσT = ρb in Ω× ]0,+∞[, (17a)
∂ρ

∂t
+ div(ρv) = 0 in Ω× ]0,+∞[, (17b)

∂Φ

∂
.

c
+ ρ

∂Ψ

∂c
− div

(
ρ
∂Ψ

∂∇c

)
∋ 0 in Ω× ]0,+∞[, (17c)

∂Φ

∂
□
p
+ ρ

∂Ψ

∂p
− div

(
ρ
∂Ψ

∂∇p

)
∋ 0 in Ω× ]0,+∞[, (17d)

where the stress tensor σ is given by

σ ∈ ∂(ρΨ)

∂h
+

∂Φ

∂D(v)
− 1

2
W

(
ρ
∂Ψ

∂r

)
−∇c⊗ ρ

∂Ψ

∂∇c
− ρ∇pT •

∂Ψ

∂∇p

+
a+ 1

2
p⊗ ∂F

∂p
+

a− 1

2

∂F

∂p
⊗ p. (17e)

The variables h and r are obtained as time-primitive of respectively the deformation rate
tensor D(v) and the curvature rate vector k (see Cauchy's problem (6)), both of them
depending on the velocity �eld.

When ∂Ψ
∂∇p

= 0, the constitutive equations (15) gathered with the conservation laws from

section 2.1 present an additional source of dissipation from the term W (∂Φ
∂k
), absent in the

previous problem.
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Problem 2. Find v, ρ, c and p de�ned in Ω× ]0,+∞[ such that

ρ
.

v − divσT = ρb in Ω× ]0,+∞[, (18a)
∂ρ

∂t
+ div(ρv) = 0 in Ω× ]0,+∞[, (18b)

∂Φ

∂
.

c
+ ρ

∂Ψ

∂c
− div

(
ρ
∂Ψ

∂∇c

)
∋ 0 in Ω× ]0,+∞[, (18c)

∂Φ

∂
□
p
+ ρ

∂Ψ

∂p
∋ 0 in Ω× ]0,+∞[, (18d)

where the stress tensor σ is given by

σ ∈ ∂(ρΨ)

∂h
+

∂Φ

∂D(v)
− 1

2
W

(
ρ
∂Ψ

∂r

)
− 1

2
W

(
∂Φ

∂k

)
−∇c⊗ ρ

∂Ψ

∂∇c
+ ap⊗ ρ

∂Ψ

∂p
. (18e)

3.4. Energy estimate

Energy estimates are useful for establishing existence results for solutions. A de�nite advantage
of introducing our abstract framework is the ability of proving an energy estimate in the general
case, that is for any free energy Ψ and any dissipation potential Φ.

Theorem 2 � Energy estimate

Assume constitutive equations (11) (or (15) when ∂Ψ
∂∇p

= 0) are satis�ed with a dissipation
potential Φ convex and positive, which satis�es Φ(D = 0;A) = 0 for any A. Then, the
energy estimate writes

d

dt
[Ek(v) + F (h, r, c,p)] + D = (ρb | v) +

∫
∂Ω(t)

(σ • v + l× ω) • n ds. (19)

The notation Ek(v) stands for the kinetic energy, de�ned by

Ek(v) :=

∫
Ω(t)

1

2
ρ|v|2 dx. (20)

The quantity D is called the dissipation and is positive. It is de�ned by

D := (σp |D(v))− 2(lp | k) + (cp | .

c) +
(
pp

∣∣∣ □
p
)
, (21)

where σp ∈ ∂Φ
∂D(v)

, lp ∈ −1
2
∂Φ
∂k
, cp ∈ ∂Φ

∂
.

c
and pp ∈ ∂Φ

∂
□
p
. When ∂Ψ

∂∇p
̸= 0, the boundary term

(l× ω) • n in (19) and the second term in (21) vanish.

Proof. See appendix B.3. ■

Here, Ek(v) + F (h, r, c,p) represents the total mechanical energy of the system. The dissi-
pation D tends to decrease it while the right hand side of equation (19) can decrease the energy
as well as increase it. In some cases, therefore, this right hand side may be a source of energy
that tends to put the system out of equilibrium, and this source of energy may be injected
either in the bulk or across the boundary.
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3.5. Discussion

To recap, we have proposed a new thermodynamic framework to derive constitutive equa-
tions (11) and (15) for general polar �uids. This framework combines the uni�ed dissipation
potential formalism developed in [Sar24] (section 2.2) and the skew-symmetric couple stress
theory (section 2.1) [HHD15]. From the free energy of the system Ψ (7) � which is allowed to
depend on gradients of thermodynamic variables, such as the polarity, unlike continuum me-
chanics � and the dissipation potential Φ, our formalism makes it possible to obtain objective
constitutive equations that satisfy the second principle of thermodynamics (theorem 1) and a
rigorous cloupling of the various physical �elds involved, such as polarity, density, concentra-
tion of a chemical agent. . . In particular, equation (17d) shows that choosing Ψ quadratic in ∇p
leads to a Laplacian of the polarity �eld in the polarity equation. Also, the dissipation function
makes it possible to generalize Onsager's relations to the nonlinear case, and thus to describe
many nonlinear rheologies such as plasticity. For this, we can refer, for example, to sections 2.6
and 3.1 in [Sar16], which give examples of dissipation potentials adapted to Quasi-Newtonian
and viscoplastic �uids.
Furthermore, our framework di�ers from that of active gels in that it adds an explicit de-

pendence of the stress tensor on two measures of strain (17e): the Hencky strain tensor h and
the mean curvature vector r. The dependence on h allows to consider rigourous coupling with
the density ρ, thanks to the formula (8). When the free energy is independ from the polarity
gradient, the stress tensor has an additional dependence on the mean curvature rate vector
k (18e): this terms adds another dissipation source but cannot appear in equations if the free
energy has this dependence.
Finally, our approach naturally results in a general energy estimate (theorem 2), i.e. one

that can be expressed for any free energy and any dissipation potential. It could be useful for
establishing existence results for solutions or for analyzing the stability of our equations, for
instance.

3.6. Examples

In this section, we give some examples of the application of our framework, with the aim of
demonstrating its ability to derive models already known in the literature and to determine
their energy estimates. We start o� with an incompressible viscous couple-stress �uid to high-
light the fact our framework is indeed a generalization of the nonpolar skew-symmetric couple
stress theory. Then, we present the coupling of Allen�Cahn and incompressible Navier-Stokes
equations to show a case where the free energy depends on the gradient of a given �eld. Non-
linear rheologies such as plasticity are not discussed here but some relevant examples can be
found in sections 2.6 and 3.1 in [Sar16], as mentioned in the previous discussion section.

3.6.1. Incompressible viscous couple-stress �uid

To illustrate the impact of the couple stress theory on the classical incompressible Navier-
Stokes equations, let us consider the example of an incompressible viscous couple-stress �uid, as
discussed in section 7 in [HHD15]. In contrast to the classical approach using the Navier-Stokes
equations, such a description makes it possible to explain �ow phenomena in microchannels, for
instance. Indeed, when the size of the molecules making up the �uid under study is comparable
to that of the channel, their spinning signi�cantly a�ects the macroscopic dynamics [CLL10],
a phenomenon that can be captured by the couple-stress theory.
We assume no dependence of the system on any concentration �eld c nor polarity �eld p,

thus the couple stress tensor µ can present a dissipative part whatever the chosen couple stress
theory. Then, we choose a zero free energy Ψ and a quasi-quadratic dissipation potential Φ in
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D(v) and in k, under the form

Φ(D(v),k) = Iker(tr)(D(v)) + η|D(v)|2 + 8ν|k|2, (22)

where η is the shear viscosity and ν is a viscosity-like coe�cient, speci�c to couple-stress �uids.
Note that the ratio ν/η = ℓ2 highlights the presence of a length scale ℓ, absent in classical �uid
dynamics. The notation Iker(tr)(D(v)) stands for the indicator of the convex set ker(tr) = {τ |
tr τ = 0}, which takes the value 0 when div v = 0 and +∞ otherwise. This term does not admit
a di�erential with respect to D(v) but a subdi�erential, which will lead to the existence of the
pressure �eld Π, here seen as a Lagrangian multiplier to the free-divergence constraint [Sar16,
section 5.3.3].
By remarking that k = −1

4
∆v from the incompressibility condition and by the relation (18e),

the stress tensor writes
σ = −Πδ + 2ηD(v) + 2ν∆W (v), (23)

where δ is the identity matrix. Injecting this expression into the conservation of momen-
tum (18a), we �nally get the

Problem 3. Find v and Π de�ned in Ω× ]0,+∞[ such that

ρ
.

v − η∆v + ν∆2v +∇Π = ρb in Ω× ]0,+∞[, (24a)

div(v) = 0 in Ω× ]0,+∞[, (24b)

where ∆2 = ∆∆ is the bilaplacian operator.

Using theorem 2, the energy estimate associated to this problem writes

d

dt
[Ek(v)] + 2η∥D(v)∥2 + 16ν∥k∥2 = (ρb | v) +

∫
∂Ω(t)

n • σ • v ds. (25)

3.6.2. Coupling of Allen�Cahn and incompressible Navier-Stokes equations

Let us consider the example of the coupling of the Allen�Cahn equation [AC79] with the
previous incompressible couple-stress Navier-Stokes equations. Compared to the previous case,
we assume in addition a dependence of the system on a dimensionless order parameter c, to
take into account a possible phase separation: the free energy is given by

ρΨ(c,∇c) = mβW (c) +mβ
ε2

2
|∇c|2, (26)

where W is the so-called double-well potential (see �gure 1) de�ned for any real number u by

W (u) =
1

4
(u2 − 1)2, (27)

while the dissipation potential is simply quadratic in .

c:

Φ(D(v),k,
.

c) = Iker(tr)(D(v)) + η|D(v)|2 + 8ν|k|2 + β

2
| .c|2, (28)

where β is a given coe�cient, m is the mobility (which has the dimension of the inverse of
a time) and ε is a correlation length. As in the previous case, the absence of dependence of
the system on the gradient of the polarity �eld allows us to consider a dissipative part in the
expression of the couple stress tensor µ, whatever the chosen couple stress theory.
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Figure 1: Double-well potential.

By remarking that k = −1
4
∆v from the incompressibility condition and by the relation (18e),

the stress tensor writes

σ = −Πδ + 2ηD(v) + 2ηl2∆W (v)−mβε2∇c⊗∇c. (29)

Injecting this expression into the conservation of momentum (18a), we �nally get the

Problem 4. Find v, Π and c de�ned in Ω× ]0,+∞[ such that

ρ
.

v − η∆v + ηl2∆2v +∇Π+mβε2div(∇c⊗∇c) = ρb in Ω× ]0,+∞[, (30a)

div v = 0 in Ω× ]0,+∞[, (30b)
∂c

∂t
+ (v • ∇)c+m(c2 − 1)c−mε2∆c = 0 in Ω× ]0,+∞[. (30c)

Using theorem 2, the energy estimate associated to this problem writes

d

dt
[Ek(v) + F (c)] + 2η∥D(v)∥2 + 16ν∥k∥2 + β

∥∥m(c2 − 1)c−mε2∆c
∥∥2

= (ρb | v) +
∫
∂Ω(t)

n • σ • v ds, (31)

where

F (c) :=

∫
Ω(t)

ρΨ(c,∇c) dx. (32)

4. A new framework for active gel theory. Application to

collective cell migration

In this section, we describe a new method for constructing hydrodynamic equations from the
theory of active gels (nematic or polar), as de�ned in section 1.3.1, based on the framework
presented in the section 3. The resulting equations satisfy, by construction, the second prin-
ciple of thermodynamics. As shown at the end of this section, in Corollary 2, this is major
improvement with respect to former active gels theories [Kru+04; Mar+13; JGS18].
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4.1. Conservation laws

Here, we adopt the assumptions given in section 1.2. From this point of view, tools from
continuum mechanics, and in particular the framework developed in the section 3, can be used
to build a continuous model of the collective cell migration.
From points (i) and (ii), the mass conservation (3c) reduces to

div(v) = 0 in Ω× ]0,+∞[. (33)

From point (iii), the momentum conservation (3a) reduces to

−div
(
σT

)
= ρb in Ω× ]0,+∞[. (34)

The couples exerted by the cells to align their polarities with each other are represented by the
couple stress tensor µ, which satis�es the conservation of angular momentum (3b)

−div
(
µT

)
= ϵ : σ in Ω× ]0,+∞[. (35)

4.2. Constitutive equations

Following [Mar+13], we assume the bulk active behavior of the active gels �laments comes
from a nonequilibrium chemical reaction such as the consumption of ATP. Formally, it means
the free energy F can depend on the advancement ξ of this reaction, that is the number of
ATP molecules consumed per unit volume, in addition to the polarity �eld p (we assume no
dependence on h nor r):

F (p, ξ) =

∫
Ω(t)

ρΨ(p,∇p, ξ) dx. (36)

As for the choice of Ψ, we synthesize the classical approaches developed for example in
[ZSA12; Mar14; Not+16; Cza+18; AT19]. We essentially introduce three physical ingredients:

(i) In order to ensure motion, we consider a double-well energy generalizing to the vector
case the one used by the Allen-Cahn model (27):

W (p) =
1

4

(
|p|2 − 1

)2
. (37)

It de�nes the polarized |p| = 1 state as stable (the energy is minimal for this state), in
contrast to the |p| = 0 state, which is unstable (see �gure 1).

(ii) Spatial variations in polarity are penalized, so that polarity vectors in the same neigh-
borhood tend to align.

(iii) Advancement of the reaction and polarity are not coupled.

Thus, the free energy Ψ is given by

ρΨ(p,∇p, ξ) = αW (p) +
KF

2
|∇p|2 + ρΨa(ξ), (38)

where |τ |2 = τ : τ , α is the modulus of the polar restoring force, KF is the so-called Frank
constant and Ψa is the free energy stored by the consumption of ATP molecules. The ratio of
KF and α de�nes the polar correlation length Lp =

√
KF/α, a characteristic scale of spatial

variations of the polarity. It also can be seen as a characteristic scale of alignment between
polarities.
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Let

Φ(D(v),
□
p,

.

ξ;p) = Iker(tr)(D(v)) + η|D(v)|2 + γ

2
|□p|2 + 1

2Λ

[
ζp⊗ p :D(v)−

.

ξ
]2

(39)

be the dissipation potential, where γ is the rotational viscosity, ζ has the same dimension as
the inverse of a volume and Λ is an ad-hoc coe�cient. Then, the constitutive equations write

σ = − Πδ + 2ηD(v)−KF∇pT • ∇p

+
a+ 1

2
p⊗m(p) +

a− 1

2
m(p)⊗ p+ σa,

(40a)

γ
□
p+m(p) = 0, (40b)

where Π is the pressure �eld, δ is the identity matrix,

m(p) =
∂F

∂p
= α

(
|p|2 − 1

)
p−KF∆p (41)

is the so-called molecular �eld (up to a minus sign) and σa is the active stress tensor de�ned
by (2), that is

σa = −ζ∆µp⊗ p, (42a)

with

∆µ = −ρ
∂Ψ

∂ξ
. (42b)

In this context, we have in addition the following relation:

.

ξ = Λ∆µ+ ζp⊗ p :D(v). (43)

With these constitutive equations, the second principle of thermodynamics is satis�ed according
to theorem 1. However, in practice, the energy term ∆µ is assumed known and uniform in space
and time, so that equation (43) is not necessary to solve the model, and ξ can be computed
during a post-processing step. With this assumption, the second principle of thermodynamics
is not satis�ed anymore, and the active stress should act as a nonequilibrium term. Thus, this
active stress could have been equivalently introduced as an exterior force, through the relation

ρb = divσa, (44)

for instance.

Remark IV: Because of the incompressibility condition div v = 0, the last term in the def-

inition of the dissipation potential (39) could be replaced by 1
2Λ

[
ζQ : D(v) −

.

ξ
]2

so that

σa = −ζ∆µQ, where Q = dev(p ⊗ p) = p ⊗ p − 1
d
|p|2δ, and d = 2 or 3 is the space di-

mension. In practice, this does not change the nature of the equations, as the pressure adjusts
accordingly, Π being a Lagrange multiplier to the constraint of incompressibility. Similarly, the
dissipation potential can be modi�ed to make appear the isotropic parts of the various tensors
present in the stress tensor expression (40a), so that the pressure corresponds exactly to the
isotropic part of the stress tensor. In other words, we could equivalently have

σ = −Πδ + 2ηD(v) + σa −KF dev
(
∇pT • ∇p

)
+

a+ 1

2
p⊗m(p) +

a− 1

2
m(p)⊗ p− a

d
p • m(p)δ, (45)

with σa = −ζ∆µQ and Π = −1
d
trσ.
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4.3. Application to collective cell migration

Let us consider a monolayer epithelium freely spreading on a substrate, whose geometry is
described at time t by the set Ω(t) ⊂ R2. Following [Bla+17], we assume the migration occurs
at time scales longer than the relaxation time scales of intracellular and intercellular kinetics,
so that the e�ects of the cells elasticity can be neglected: the tissue spreading can be described
on a macroscopic scale as an active viscopolar material. Cells are in particular able to exert
active tractions on the substrate in order to spread, in the direction of their polarity.
As discussed in section 1.3.1, hydrodynamics equations of collective cell migration can be

obtained from the theory of polar active gels. Thus, we assume the tissue spreading can be
described by conservation laws (33), (34) and (35), and constitutive equations (40).
Let us assume the external forces are composed of a passive friction kv of the tissue with the

substrate, of an active traction fap exerted by the cells on the substrate to move and of the
active stress introduced previously in (42a), that is

ρb = fap− kv + divσa, (46)

where fa is the modulus of the active force and k is the friction coe�cient, as considered for
instance in [BC17; AT19]; see �gure 2. The ratio of the viscosity η and the friction coe�cient
k de�nes another length, the friction length LF =

√
η/k, in addition to the polar correlation

length Lp. Similarly, it can be seen as a characteristic scale of spatial variations of the velocity.

•
focal adhesion intercellular junction

substrate

σ + σa

−ρb

−kv fap

Figure 2: Forces and stress in a spreading epithelium. As de�ned in equation (46), the traction
−ρb exerted by the cells on the substrate (black arrows) is composed of an active
force fap due to cell polarization (two headed red arrows), the divergence of the active
stress σa de�ned by (42a) and a viscous friction term kv (dashed blue arrows). It is
balanced locally by the divergence of the stress: divσT = −ρb (see equation (34)).
Adapted from [BM19, �gure 1].

To close the system, we consider the following natural boundary conditions:

(σT)nt = 0 on ∂Ω× ]0,+∞[, (47a)

v • n = 0 on ∂Ω× ]0,+∞[, (47b)
∂p

∂n
= 0 on ∂Ω× ]0,+∞[, (47c)

where χnt = χ • n − (n • χ • n)n. The �rst boundary condition accounts for zero tangential
traction force, the second one to slip boundary condition and the last one to homogeneous
Neumann condition for the polarity.
This leads to
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Problem 5 � Coherent active gel model applied to collective cell migration.

Given the initial polarity p0, �nd v, Π and p de�ned in Ω× ]0,+∞[ such that

−div
(
σT

)
+ kv = fap+ divσa in Ω× ]0,+∞[, (48a)

div v = 0 in Ω× ]0,+∞[, (48b)

λp
□
p+ (|p|2 − 1)p− L2

p∆p = 0 in Ω× ]0,+∞[, (48c)

where λp = γ/α is the polar time relaxation, and satisfying the boundary conditions (47).
The Cauchy stress tensor is given by

σ = −Πδ + 2ηD(v)−KF∇pT • ∇p+
a+ 1

2
p⊗m(p) +

a− 1

2
m(p)⊗ p (48d)

and

□
p = ∂tp+ (v • ∇)p− (W (v) + aD(v)) • p, (48e)

m(p) = α
(
|p|2 − 1

)
p−KF∆p, (48f)

σa = −ζ∆µp⊗ p. (48g)

The physical ingredients introduced in section 4.2 and repeated here can be exactly found
in [Not+16; BC17]. In the most general case, up to �ve ingredients can be found if we add a
dependence on cell density [AT19, equation (11)], or even more if we introduce new �elds to
describe other physico-chemical quantities, such as myosin concentration [Not+16; BM19], cell
shape anisotropy [Cza+18] or the activity of ERK (Extracellular signal-Regulated Kinases), an
enzyme in�uencing the actomyosin complex, and thus active force [Boo+21].
Finally, a major advantage of our framework, as already pointed out in section 3.4, is its

ability to naturally lead to an energy estimate of the proposed model, which is crucial to obtain
more advanced theoretical results such as the existence of a solution to problem 5.

Corollary 1 � Coherent model 5 in its passive form satis�es the 2nd principle

Let ∆ be the dissipation-like term de�ned for any vector �elds w and q by

∆(w, q) =
k

2
∥w∥2 + η∥D(w)∥2 + 1

γ
∥m(q)∥2. (49)

If v, Π and p are solution of problem 5, then

d

dt
(F (p)) + ∆(v,p) ⩽

f 2
a

2k
∥p∥2 + |ζ∆µ|2

4η

∫
Ω

|p|4. (50)

The dissipation-like term ∆(v,p) is nonnegative. In consequence, coherent model 5 of
collective cell migration, without activity (fa = 0 and ζ = 0), satis�es the second principle
of thermodynamics.

Proof. See appendix B.3. ■

Remark V � Dissipation: The dissipation obtained from (21) writes

D = 2η∥D(v)∥2 + 1

γ
∥m(p)∥2. (51)
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Adding the damping term results in the dissipation associated to model 5:

D̂ = D + k∥v∥2. (52)

It is di�erent from (49) because the equality resulting from equation (19) has been transformed
into an inequality (see the proof above).

4.4. On former active gel theories

Compared to models found in active gel theory [Mar+13] or in collective cell migration [BC17;
AT19], our stress tensor (48d) has in addition the symmetric term KF∇pT • ∇p, which looks
like the Ericksen stress tensor introduced in the liquid crystal theory [GP93]. In this section,
we show why it is necessary to guarantee the second principle of thermodynamics in the passive
case.

Problem 6 � Former active gel model applied to collective cell migration. This
problem is obtained from problem 5 by dropping the third term in the expression (48d) of
the Cauchy stress tensor σ.

Corollary 2 � Former model 6 in its passive form violates the 2nd principle

Let ∆̃ be the dissipation-like term de�ned for any vector �elds w and q by

∆̃(w, q) =
k

2
∥w∥2 + η∥D(w)∥2 + 1

γ
∥m(q)∥2 +KF

(
∇qT • ∇q

∣∣D(w)
)
. (53)

If v, Π and p are solution of problem 6, then

d

dt
(F (p)) + ∆̃(v,p) ⩽

f 2
a

2k
∥p∥2 + |ζ∆µ|2

4η

∫
Ω

|p|4. (54)

There exists a velocity �eld v and a polarity �eld p such that ∆̃(v,p) < 0. In con-
sequence, former model of collective cell migration 6, violates the second principle of
thermodynamics, even in a purely passive case (fa = 0 and ζ = 0).

Proof. See appendix B.3. ■

Remark VI � Coherent vs former active gel models applied to collective cell migration: Intro-
ducing the stress term KF∇pT • ∇p into (48d) as in problem 5 constitutes a major improvement
of former active gel model 6: the coherent model fully satis�es the second principle of thermody-
namics and leads to an energy estimate (corollary 1), while the former violates it (corollary 2).

5. Numerical illustration: resolution of the model on a

disk

5.1. Problem speci�cations

Let us consider a monolayer epithelium swarming on a �xed disk Ω ⊂ R2 of radius R. In other
words, Ω does not evolve over time. The tissue is assumed to be con�ned on this substrate, so
that v • n = 0 and (σT)nt = 0 on ∂Ω × ]0,+∞[. Here, we completely neglect the third space
dimension.
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With this problem, we aim to demonstrate our ability to solve numerically the 2D problem 5,
and to interpret the evolution of the free energy (38) in relation to the energy estimate (50).
We also aim to show the ability of this model to create collective motion spontaneously. To do
so, we start from a randomly distributed polarity, close to zero. Speci�cally, we build the initial
polarity p0 as a unit vector of angle drawn uniformly between 0 and 2π, and of norm weighted
by a number following a normal distribution of mean zero and standard deviation equal to 0.1.
In practice, we solve a dimensionless version of problem 5. Let V , T = R/V and Σ = ηV/R

be the characteristic cell velocity, swarming time and stress, respectively. Keeping the notations
of problem 5 for the dimensionless problem, for the sake of economy of notations, we obtain
the

Problem 7. Given the initial polarity p0, �nd v, Π and p de�ned in Ω × ]0,+∞[ such
that

−div
(
σT

)
+ CFv = Tap+ divσa in Ω× ]0,+∞[, (55a)

div v = 0 in Ω× ]0,+∞[, (55b)

Pe
□
p+ (|p|2 − 1)p− κ2∆p = 0 in Ω× ]0,+∞[, (55c)

where Ω = {x ∈ R2 | |x| < 1} is the open unit disk in this context, and satisfying the
boundary conditions (47). The Cauchy stress tensor is given by

σ = −Πδ + 2D(v)− κ2B∇pT • ∇p+
a+ 1

2
p⊗m(p) +

a− 1

2
m(p)⊗ p (55d)

and

□
p = ∂tp+ (v • ∇)p− (W (v) + aD(v)) • p, (55e)

m(p) = B
(
|p|2 − 1

)
p− κ2B∆p, (55f)

σa = −Sap⊗ p. (55g)

In total, problem 7 has seven dimensionless numbers, whose de�nitions we give in order of
appearance below.

� Pe = λpV/R: in accordance with current nomenclature, this is the Péclet number, but
it can be interpreted more as a polar or vector Weissenberg number, by analogy with
viscoelastic �uids. It's the ratio of the polar relaxation time to the characteristic swarming
time. Multiplying up and down by α, we obtain Pe = (γV/L)/α, which is then interpreted
as the ratio between rotational viscous forces and polar restoring forces

� κ = Lp/R: alignement coe�cient, or relative size of �uctuations in the polarity �eld.

� a: parameter of the objective Gordon-Schowalter time rate (55e).

� B = αR/(ηV ): ratio between polar restoring forces and viscous forces. An alternative
parameter is the Ericksen number, de�ned by Er = (ηV R)/KF , so that B = 1/(κ2 Er).
For practical reasons, we prefer to use B directly. When B is large, i.e. when the
viscous forces are small compared with the polar restoring forces, the polarity has a strong
resistance to variations in tissue deformation. In short, the parameter B characterizes
the polarity's resistance to viscous forces.

� CF = kR2/η: the coe�cient of friction compares the relative contributions of viscosity
and friction to dissipation.
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� Sa = ζ∆µR/(ηV ): the dimensionless active stress coe�cient.

� Ta = faR/(ηV ): active traction materializes the competition between active and viscous
forces.

Note that two non-polar quantities play a dissipative role, tending to slow down the movement
of the tissue: the characteristic stress Σ and the characteristic friction stress kV . Instead, we
could have introduced the total dissipation Σ + kV R and de�ned the dimensionless number
β = kV R/(Σ+kV R) = R2/(L2

F +R2) ∈ ]0, 1[, which represents the proportion of friction in the
total dissipation. Scaling using Σ or Σ+kV R as the characteristic stress are equivalent, and it is
possible to switch from one to the other by noting that CF = β/(1−β) or β = CF/(1+CF ). In
the same way, we could have equivalently considered κF = LF/R, the relative size of �uctuations
in the velocity �eld, instead of CF , as CF = 1/κ2

F ; in this case, β = 1/(1 + κ2
F ). Continuing

this reasoning, β̃ = 1/(1 + κF ) =
√
β/(

√
1− β +

√
β) could have been used.

For this study, we retain the following set of parameters:

CF = Ta = 19, Pe = 0.5, κ = 0.03, B = 0.1, a = 1. (56)

Here, we take β = 0.95 and κ = 0.03 to create signi�cant size e�ects. Indeed, the closer β is to
1, i.e. CF → +∞, the smaller the friction length LF , corresponding to a case where the size of
the domain dominates that of the velocity structures; the same reasoning applies to κ. From
a certain point of view, our aim is to model the collective motion of a large number of cells
con�ned on a disk, if we interpret correlation lengths as e�ective interaction distances between
cells.
In the following, we study the in�uence of the active stress coe�cient Sa, taking it successively

equal to 0, 1 and 3.

5.2. Resolution method

The problem 7 is a strongly coupled nonlinear problem, whose polarity evolution equation
involves a transport term, a Laplacian and the nonlinear double-well term. It also includes an
incompressibility constraint and a nonlinear and nonsymmetric stress tensor, which contains
higher-order derivatives of polarity. To solve it on any bidimensional geometry, we use an semi-
implicit time scheme, made fully implicit via the �xed-point method, and the discontinuous
Galerkin method to solve the polarity evolution equation. The full numerical resolution method
is out of the scope of this article and will be discussed in another publication [SCS].
To accurately capture the e�ective size of the structures represented by κF and κ, we need to

mesh the computation domain Ω su�ciently �nely. Ideally, these lengths cover 3 to 4 elements
of the mesh, which means imposing a relationship of the form

h ⩽
1

3
min(κF , κ), (57)

where h is the meshsize. For a �rst study and to avoid too �ne meshes, we relax this constraint
slightly by asking only

h ≈ min(κF , κ). (58)

The mesh of the disk Ω is built as a N -sided polygon using BAMG [Hec06]. The meshsize is
therefore of the order of h ≈ 2π/N . In our case, the relation (58) then gives N ≈ 2π/κ, i.e.
N = 210. The result is shown on the �gure 3.
Finally, we set the timestep to ∆t = 10−2, the maximum number of iterations of the �xed-

point method to 10 and its tolerance threshold to 10−5.
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Figure 3: Mesh of the computation domain Ω, built as a regular polygon with N = 210 sides.
It is made up of 7554 triangles.

5.3. Results

5.3.1. Maps of velocity and polarity �elds

The absence of active stress (Sa = 0) does not mean the total absence of activity: remember
that the active force Tap is always present. However, without active stress, if the system creates
a semblance of spontaneous motion, it does not last, and velocity tends towards 0 (�gure 4,
left-hand column). Indeed, if we look at the structure of the energy estimate (50), we notice
that the term derived from the active force is only in O(|p|2), whereas the term derived from
the active stress is in O(|p|4), hence its lesser capacity to push the system out of equilibrium.
Still when Sa = 0, polarity tends to stabilize in an isotropic con�guration (�gure 5, left-hand

column). It is globally of norm 1, and its changes in direction create boundary layers (white
�laments), similar to the topological defects found in liquid crystals and active gels [Mar+13;
TS17; Lin+18], although these are more likely to be punctual and not �lamentary. We should
point out that what we are observing is only similar to topological defects: they are not really,
since in our case the polarity is of variable norm and can vanish. When Sa = 0, these boundary
layers gradually merge (�gure 5, left-hand column), leaving only two singular points. We have
not taken the calculation any further, but we conjecture that these two points will eventually
merge into a single singular point that will stabilize at the center of the disk and from which
the polarity will radiate.
On the contrary, the presence of active stress (Sa ∈ {1, 3}) does create spontaneous move-

ment, and even sustains it (�gure 4, center and right columns). It also maintains or shapes
those �laments that look like topological defects, all the more so as Sa is large (�gure 5, center
and right columns).

5.3.2. Evolution of the free energy as a function of Sa

These calculations are prone to many �uctuations, so quantitative representations using cross-
sections along speci�c axes are not relevant, especially in the prospect of comparisons with
experimental data. Statistical physics tools could undoubtedly prove useful here, especially for
future comparisons with experimental data. We propose here to compare e�ective quantities
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Figure 4: Velocity maps at di�erent times, depending on the active stress coe�cient Sa. Other
parameters are given by (56).
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Figure 5: Polarity maps at di�erent times, depending on the active stress coe�cient Sa. Other
parameters are given by (56).
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over the whole domain, and in particular the in�uence of the active stress coe�cient Sa on the
time evolution of the free energy.
Note that theorem 1 still holds in our study, even if Ω does not evolve over time, because the

tissue is assumed con�ned; we still have

dF

dt
=

∫
Ω

ρ
∂Ψ

∂t
dx =

∫
Ω

(
ρ
.

Ψ− div(ρΨv)
)
dx =

∫
Ω

ρ
.

Ψdx−
∫
∂Ω

ρ(v • n)Ψds =

∫
Ω

ρ
.

Ψdx,

from the incompressibility condition and the boundary condition v • n = 0. In this energy
estimate, the active stress plays a crucial role and, in particular, competes with the deformation
rate tensor D(v), one tending to destabilize the system (i.e. increase energy), the other to
stabilize it (i.e. decrease energy). The �gure 6 actually shows that the free energy tends
towards a constant (probably zero) for Sa = 0, meaning that the system is tending towards
a state of equilibrium, while it oscillates for Sa > 0, indicating that the system is constantly
being kept out of equilibrium. It con�rms the visual impression from �gures 4 and 5 where
�uctuations increase with Sa.
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Figure 6: Variations over time of the free energy F as a function of the dimensionless active
stress coe�cient Sa. Other parameters are given by (56). The dotted vertical bars
correspond to the instants from which the �gure maps 4 and 5 were extracted.

5.4. Discussion

The in�uence of the active stress has long been known in the literature [Mar+13]. Numer-
ous computations have already been carried out showing the same type of complex struc-
tures [Saw+17; TS17; Lin+18], similar to topological defects, that are obtained here. The
numerical resolutions we carry out in this section are, however, to our knowledge, the �rst to
have been carried out with a continuous model, using the �nite element method. As a result,
we can easily imagine similar calculations on more complex geometries.
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6. Conclusion

In this paper, we have proposed a new thermodynamic framework to derive objective constitu-
tive equations (11) and (15) for general active polar �uids. It combines the uni�ed dissipation
potential formalism developed in [Sar24] (section 2.2) and the skew-symmetric couple stress
theory (section 2.1) [HHD15]. It takes as input only a free energy Ψ and a convex and positive
dissipation potential Φ, reaching its minimum in 0. By construction, the resulting equations
satisfy the second principle of thermodynamics (theorem 1), which is a crucial requirement for
the equations of continuum mechanics.
As in active gel theory and contrary to the framework in [Sar24], the free energy (7) here can

depend on gradients of thermodynamic variables, such as the polarity, allowing its Laplacian
to be incorporated into the equations (see equations (17d) and (48c)). In addition, the use of a
dissipation potential makes it possible to generalize Onsager's relations to the nonlinear case,
and thus to introduce a wide variety of di�erent rheologies, such as plasticity. On the other
hand, the introduction of viscoelastic ingredients was not discussed in this paper, but is possible
as pointed out by remark III. Such ingredients could be used to describe nonlinear elasticity,
which is crucial in morphogenesis for instance. We have also shown how to rigorously couple
the physical �elds with density ρ, through the Hencky strain tensor h (8). The dependence
of the free energy on the Hencky strain tensor, in addition to allowing this coupling with the
density, paves the way for a greater variety of rheologies under large deformations, as shown
in [Sar24], which represents a signi�cant improvement with respect to the pioneering approach
of [Mir+25]. A last but de�nite advantage of introducing our abstract framework is the ability
of proving an energy estimate in the general case (theorem 2), that is for any free energy Ψ and
any dissipation potential Φ. It could be useful for establishing existence results for solutions or
for analyzing the stability of our equations, for instance.
Then, we have demonstrated the ability of our framework to retrieve the equations from

the active gel theory [Mar+13, equations (42) to (46)], adapted to collective cell migration.
To achieve this result, we have considered three classical physical ingredients: a double-well
potential to ensure motion, the penalization of spatial variations of the polarity �eld and the
decoupling of reaction advancement and polarization. By construction, our formalism includes
the stress term KF∇pT • ∇p, known as the Ericksen stress in the liquid crystal theory, up to
the pressure contribution [GP93, equation (3.100) p. 153]. Like the other polar terms, this
polar stress tends to realign polarities to minimize energy, thus helping to establish a spatial
correlation between neighboring polarities. It is a kind of reversible distorsion: it does not
contribute to dissipation. Our framework also leads to the energy estimate (50), which predicts
the decrease of the free energy in the absence of activity, as might be expected. Corollaries 1
and 2 pointed out the necessity of the term KF∇pT • ∇p to be present in the expression of
the Cauchy stress tensor: when present, the second principle of thermodynamics is satis�ed,
when absent, it is violated. Several active gel theory articles omit this term [Kru+05; Mar+13;
BC17; AT19], probably because in simple cases this term barely a�ects the equation solutions;
we strongly recommend to reintroduce it.
Finally, we have solved the model on a simple geometry, illustrating the model's ability to

spontaneously create collective motion, in this case taking the form of a swarm-like behavior,
all the more important as the active stress is.
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A. Functional framework for thermodynamics

In the following, functions are de�ned in Ω, an open subset of Rd, where d ∈ N∗, and are
assumed to be su�ciently smooth to allow di�erentiation and integration operations to be
formally applied to them, without regard to the functional spaces to which they belong. Thus,
a functional is said di�erentiable if it is Gâteaux-di�erentiable.

A.1. Scalar case

In this section, E is the functional de�ned for any ρ ∈ L∞(Ω) and for any su�ciently smooth
scalar �eld c : Ω → R by

E (ρ, c) :=

∫
Ω

ρe(c,∇c) dx, (59)

where e : (c, g) 7−→ e(c, g) is a real-valued function de�ned in R×Rd, di�erentiable with respect
to each of its variables.

Lemma 1 � Di�erential of a gradient-dependent functional

The di�erential ∂E
∂c

is the linear form de�ned for any su�ciently smooth test function
θ : Ω → R by 〈

∂E

∂c
, θ

〉
= (w(ρ, c) | θ) +

∫
∂Ω

ρθ

(
∂e

∂g
(c,∇c) • n

)
ds, (60)

where

w(ρ, c) := ρ
∂e

∂c
(c,∇c)− div

(
ρ
∂e

∂g
(c,∇c)

)
. (61)

The di�erential ∂E
∂ρ

is the linear form de�ned for any z ∈ L∞(Ω) by〈
∂E

∂ρ
, z

〉
= (e(c,∇c) | z). (62)

If the surface integral vanishes, we also note ∂E
∂c

= w(ρ, c) by the Riesz representation
theorem. By virtue of the same theorem, we note ∂E

∂ρ
= e(c,∇c).

Proof. The function e is di�erentiable with respect to each of its variables so by de�nition of
the di�erential, for any su�ciently smooth scalar �elds c and θ and ε > 0, we have

e(c+ εθ,∇c+ ε∇θ)− e(c,∇c) = ε

(
∂e

∂c
θ +

∂e

∂g
(c,∇c) • ∇θ

)
+O(ε2). (*.1)

Thus,

E (ρ, c+ εθ)− E (ρ, c) =

∫
Ω

ρe(c+ εθ,∇c+ ε∇θ) dx−
∫
Ω

ρe(c,∇c) dx

= ε

∫
Ω

ρ

(
∂e

∂c
θ +

∂e

∂g
(c,∇c) • ∇θ

)
dx+O(ε2). (*.2)

Then we integrate by parts and get formula (60) by taking the limit ε → 0:

E (ρ, c+ εθ)− E (ρ, c)

ε
=

∫
Ω

(
ρ
∂e

∂c
(c,∇c)− div

(
ρ
∂e

∂g
(c,∇c)

))
θ dx

+

∫
∂Ω

ρθ

(
∂e

∂g
(c,∇c) • n

)
ds+O(ε). (*.3)

Equation (62) is automatically obtained from the linearity of E with respect to ρ. ■
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Lemma 2 � Integration by parts with a gradient-dependent functional

The following relation holds:

− (e(c,∇c) | div(ρv)) =
〈
∂E

∂c
, (v • ∇)c

〉
−
∫
Ω

ρ

(
∇c⊗ ∂e

∂g
(c,∇c)

)
:∇v dx

−
∫
∂Ω

ρ(v • n)e(c,∇c) ds, (63)

where ∂E
∂c

is de�ned by (60).

Proof. By integration by parts,∫
Ω

−e(c,∇c) div(ρv) dx =

∫
Ω

ρ(v • ∇)[e(c,∇c)] dx−
∫
∂Ω

ρ(v • n)e(c,∇c) ds

=

∫
Ω

ρ
∂e

∂c
(c,∇c) • [(v • ∇)c] dx

+

∫
Ω

ρ
∂e

∂g
(c,∇c) • {(v • ∇)[∇c]} dx

−
∫
∂Ω

ρ(v • n)e(c,∇c) ds.

(*.1)

But ∇[(v • ∇)c] = (v • ∇)[∇c] +∇c • ∇v, therefore∫
Ω

ρ
∂e

∂g
(c,∇c) • {(v • ∇)[∇c]} dx =

∫
Ω

ρ
∂e

∂g
(c,∇c) • ∇[(v • ∇)c] dx

−
∫
Ω

ρ(∇c • ∇v) •
∂e

∂g
(c,∇c) dx

=

∫
Ω

ρ
∂e

∂g
(c,∇c) • ∇[(v • ∇)c] dx−

∫
Ω

ρ

(
∇c⊗ ∂e

∂g
(c,∇c)

)
:∇v dx.

Then, an integration by parts gives∫
Ω

ρ
∂e

∂g
(c,∇c) • {(v • ∇)[∇c]} dx =

∫
∂Ω

ρ

(
∂e

∂g
(c,∇c) • n

)
[(v • ∇)c] ds

−
∫
Ω

div

(
ρ
∂e

∂g
(c,∇c)

)
• [(v • ∇)c] dx

−
∫
Ω

ρ

(
∇c⊗ ∂e

∂g
(c,∇c)

)
:∇v dx (*.2)

Combining this result, (*.1) and (60), we �nally get the desired result. ■

Lemma 3 � Time rate of a gradient-dependent functional

Let us assume that Ω is a volume transported by the velocity �eld v and that ρ is the
density. For any su�ciently smooth time-dependent scalar �eld c : Ω× ]0,+∞[ → R, the
following relation holds:

d

dt
(E (ρ, c)) =

〈
∂E

∂c
(ρ, c),

.

c

〉
−
∫
Ω(t)

ρ

(
∇c⊗ ∂e

∂g
(c,∇c)

)
:∇v dx. (64)
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Proof. By the Reynolds formula and integration by parts,

d

dt
(E (ρ, c)) =

∫
Ω(t)

(
∂

∂t
(ρe(c,∇c)) + div(ρe(c,∇c)v)

)
dx

=

∫
Ω(t)

(
ρ
∂

∂t
(e(c,∇c)) + e(c,∇c)

∂ρ

∂t

)
dx+

∫
∂Ω(t)

ρ(v • n)e(c,∇c) ds. (*.1)

By applying the mass conservation (3c) and remarking that∫
Ω(t)

ρ
∂

∂t
(e(c,∇c)) dx =

〈
∂E

∂c
(ρ, c),

∂c

∂t

〉
, (*.2)

we get

d

dt
(E (ρ, c)) =

〈
∂E

∂c
(ρ, c),

∂c

∂t

〉
− (e(c,∇c) | div(ρv)) +

∫
∂Ω(t)

ρ(v • n)e(c,∇c) ds. (*.3)

We can apply the lemma 2 and conclude. ■

A.2. Vector case

In this section, E is the functional de�ned for any ρ ∈ L∞(Ω) and for any su�ciently smooth
vector �eld p : Ω → Rd by

E (ρ,p) :=

∫
Ω

ρe(p,∇p) dx, (65)

where e : (p, τ ) 7−→ e(p, τ ) is a real-valued function de�ned in Rd × Rd×d, di�erentiable with
respect to each of its variables.

Lemma 4 � Di�erential of a gradient-dependent functional

The di�erential ∂E
∂p

is the linear form de�ned for any su�ciently smooth test function
q : Ω → Rd by 〈

∂E

∂p
, q

〉
= (m(ρ,p) | q) +

∫
∂Ω

ρq •
∂e

∂τ
(p,∇p) • n ds, (66)

where

m(ρ,p) := ρ
∂e

∂p
(p,∇p)− div

(
ρ
∂e

∂τ
(p,∇p)

)
. (67)

The di�erential ∂E
∂ρ

is the linear form de�ned for any z ∈ L∞(Ω) by〈
∂E

∂ρ
, z

〉
= (e(p,∇p) | z). (68)

If the surface integral vanishes, we also note ∂E
∂p

= m(ρ,p) by the Riesz representation

theorem. By virtue of the same theorem, we note ∂E
∂ρ

= e(p,∇p).

Proof. The function e is di�erentiable with respect to each of its variables so by de�nition of
the di�erential, for any su�ciently smooth vector �elds p and q and ε > 0, we have

e(p+ εq,∇p+ ε∇q)− e(p,∇p) = ε

(
∂e

∂p
• q +

∂e

∂τ
(p,∇p) :∇q

)
+O(ε2). (*.1)
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Thus,

E (ρ,p+ εq)− E (ρ,p) =

∫
Ω

ρe(p+ εq,∇p+ ε∇q) dx−
∫
Ω

ρe(p,∇p) dx

= ε

∫
Ω

ρ

(
∂e

∂p
• q +

∂e

∂τ
(p,∇p) :∇q

)
dx+O(ε2). (*.2)

Then we integrate by parts and get formula (66) by taking the limit ε → 0:

E (ρ,p+ εq)− E (ρ,p)

ε
=

∫
Ω

(
ρ
∂e

∂p
− div

(
ρ
∂e

∂τ
(p,∇p)

))
• q dx

+

∫
∂Ω

ρq •
∂e

∂τ
(p,∇p) • n ds+O(ε). (*.3)

Equation (68) is automatically obtained from the linearity of E with respect to ρ. ■

Lemma 5 � Integration by parts with a gradient-dependent functional

The following relation holds

− (e(p,∇p) | div(ρv)) =
〈
∂E

∂p
, (v • ∇)p

〉
−
∫
Ω

ρ

(
∇pT •

∂e

∂τ
(p,∇p)

)
:∇v dx

−
∫
∂Ω

ρ(v • n)e(p,∇p) ds, (69)

where ∂E
∂p

is de�ned by (66).

Proof. By integration by parts,∫
Ω

−e(p,∇p) div(ρv) dx =

∫
Ω

ρ(v • ∇)[e(p,∇p)] dx−
∫
∂Ω

ρ(v • n)e(p,∇p) ds

=

∫
Ω

ρ
∂e

∂p
(p,∇p) • [(v • ∇)p] dx

+

∫
Ω

ρ
∂e

∂τ
(p,∇p) : {(v • ∇)[∇p]} dx

−
∫
∂Ω

ρ(v • n)e(p,∇p) ds.

(*.1)

But ∇[(v • ∇)p] = (v • ∇)[∇p] +∇p • ∇v, therefore∫
Ω

ρ
∂e

∂τ
(p,∇p) : {(v • ∇)[∇p]} dx =

∫
Ω

ρ
∂e

∂τ
(p,∇p) :∇[(v • ∇)p] dx

−
∫
Ω

ρ(∇p • ∇v) :
∂e

∂τ
(p,∇p) dx

=

∫
Ω

ρ
∂e

∂τ
(p,∇p) :∇[(v • ∇)p] dx−

∫
Ω

ρ

(
∇pT •

∂e

∂τ
(p,∇p)

)
:∇v dx.
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Then, an integration by parts gives∫
Ω

ρ
∂e

∂τ
(p,∇p) : {(v • ∇)[∇p]} dx =

∫
∂Ω

ρ

(
∂e

∂τ
(p,∇p) • n

)
• [(v • ∇)p] ds

−
∫
Ω

div

(
ρ
∂e

∂τ
(p,∇p)

)
• [(v • ∇)p] dx

−
∫
Ω

ρ

(
∇pT •

∂e

∂τ
(p,∇p)

)
:∇v dx (*.2)

By combining this result, (*.1) and (66), we �nally get the desired result. ■

Lemma 6 � Time rate of a gradient-dependent functional

Let us assume that Ω is a volume transported by the velocity �eld v and that ρ is the
density. For any su�ciently smooth time-dependent vector �eld p : Ω × ]0,+∞[ → Rd,
the following relation holds

d

dt
(E (ρ,p)) =

〈
∂E

∂p
(ρ,p),

.

p

〉
−

∫
Ω(t)

ρ

(
∇pT •

∂e

∂τ
(p,∇p)

)
:∇v dx. (70)

Proof. By the Reynolds formula and integration by parts,

d

dt
(E (ρ,p)) =

∫
Ω(t)

(
∂

∂t
(ρe(p,∇p)) + div(ρe(p,∇p)v)

)
dx

=

∫
Ω(t)

(
ρ
∂

∂t
(e(p,∇p)) + e(p,∇p)

∂ρ

∂t

)
dx+

∫
∂Ω(t)

ρ(v • n)e(p,∇p) ds. (*.1)

By applying the mass conservation (3c) and remarking that∫
Ω(t)

ρ
∂

∂t
(e(p,∇p)) dx =

〈
∂E

∂p
(ρ,p),

∂p

∂t

〉
, (*.2)

we get

d

dt
(E (ρ,p)) =

〈
∂E

∂p
(ρ,p),

∂p

∂t

〉
− (e(p,∇p) | div(ρv)) +

∫
∂Ω(t)

ρ(v • n)e(p,∇p) ds. (*.3)

We can apply the lemma 5 and conclude. ■

A.3. Solving functional inequalities

33



Proposition 1

Let D = (D1, . . . ,Dm) be a set of tensor �elds of arbitrary order de�ned in Ω, an open
subset of Rd, where d ∈ N∗, and Φ be a given real-valued function of D, non necessarily
di�erentiable. If Φ is convex and positive, and satis�es Φ(D = 0) = 0, then inequality

m∑
i=1

⟨Ji,Di⟩ ⩾ 0 (71)

is satis�ed for any J = (J1, . . . , Jm) such that Ji ∈ ∂Di
Φ(D), where ∂Di

Φ(D) is the subd-
i�erential of Φ with respect to Di, for any i = 1, . . . ,m.

Proof. The proof is adapted from [Sar16, Theorem 5.5]. Let J = (J1, . . . , Jm) such that
Ji ∈ ∂Di

Φ(D), for any i = 1, . . . ,m. In that case, we also have J ∈ ∂Φ(D). By de�nition of the
subdi�erential for a convex function, inequality

Φ(D) + ⟨J, D̃− D⟩ ⩽ Φ(D̃) (*.1)

holds for any D̃. In particular, for D̃ = 0 and by hypothesis, Φ(D) ⩽ ⟨J,D⟩, but Φ is a positive
function, hence the result (71). ■

B. Proofs of theorems 1 and 2

As explained at the beginning of the section 3.1, we start o� by expanding the Lagrangian rate
of the global free energy F with respect to the thermodynamic variables A, then we inject the
resulting expression in the Clausius-Duhem inequality (3d) integrated over the whole domaine
Ω, which is dependent on time, and we �nally deduce the constitutive equations.

B.1. Time rate of the global free energy

Let us start o� by integrating the Clausius-Duhem inequality (3f) over the domain Ω. From
the Reynolds formula and the continuity equation (3c), we get

dF

dt
=

∫
Ω(t)

(
∂

∂t
(ρΨ) + div(ρΨv)

)
dx =

∫
Ω(t)

ρ
.

Ψdx. (72)

Hence this reformulation of the Clausius-Duhem inequality:

−dF

dt
+ (symσ |D(v))− 2(l | k) ⩾ 0. (73)

Now, we shall expand the time rate of the free energy dF
dt
.
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Lemma 7 � Time rate of the global free energy F

If the free energy Ψ is objective-isotropic with respect to each of its variables, then

d

dt
(F (h, r, c,p)) =(

∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
− ρ∇pT •

∂Ψ

∂∇p
+ a sym(p⊗m(h,p))

∣∣∣∣D(v)

)
+

(
1

2
W

(
ρ
∂Ψ

∂r

)
+ skw(m(h,p)⊗ p)

∣∣∣∣W (v)

)
+ (w(h, c) | .

c) +
(
m(h,p)

∣∣∣ □
p
)
+

∫
∂Ω(t)

ρ

{
1

2
ω × ∂Ψ

∂r
+

.

c
∂Ψ

∂∇c
+

.

p •
∂Ψ

∂∇p

}
• n ds,

(74a)

or if ∂Ψ
∂∇p

= 0,

d

dt
(F (h, r, c,p)) =

(
∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
+ ap⊗ ρ

∂Ψ

∂p

∣∣∣∣D(v)

)
+

(
ρ
∂Ψ

∂r

∣∣∣∣ k)+ (w(h, c) | .

c) +

(
ρ
∂Ψ

∂p

∣∣∣∣ □
p

)
+

∫
∂Ω(t)

ρ
.

c
∂Ψ

∂∇c
• n ds, (74b)

where

w(h, c) := ρ
∂Ψ

∂c
− div

(
ρ
∂Ψ

∂∇c

)
, m(h,p) := ρ

∂Ψ

∂p
− div

(
ρ
∂Ψ

∂∇p

)
. (75)

Proof. From the chain rule and lemmas 3 and 6, we get

d

dt
(F (h, r, c,p)) =

〈
∂F

∂h
,
.

h

〉
+

〈
∂F

∂r
,
.

r

〉
+

〈
∂F

∂c
,
.

c

〉
+

〈
∂F

∂p
,
.

p

〉
−

∫
Ω(t)

ρ

(
∇c⊗ ∂Ψ

∂∇c

)
:∇v dx−

∫
Ω(t)

ρ

(
∇pT •

∂Ψ

∂∇p

)
:∇v dx (*.1)

where, according to lemmas 1 and 4,〈
∂F

∂h
,χ

〉
=

(
∂(ρΨ)

∂h

∣∣∣∣ χ) (*.2a)〈
∂F

∂r
, q

〉
=

(
ρ
∂Ψ

∂r

∣∣∣∣ q) (*.2b)〈
∂F

∂c
, θ

〉
= (w(h, c) | θ) +

∫
∂Ω(t)

ρθ
∂Ψ

∂∇c
• n ds, (*.2c)〈

∂F

∂p
, q

〉
= (m(h,p) | q) +

∫
∂Ω(t)

ρq •
∂Ψ

∂∇p
• n ds, (*.2d)

with w(h, c) and m(h,p) being de�ned by (75). From the objective-isotropy of Ψ with respect
to each of its variables, we have necessarily the following consequences:

�
∂Ψ
∂h

commutes with h and ∂Ψ
∂h

:
.

h = ∂Ψ
∂h

:D(v), according to [Sar24, corollary 3.27];

�
∂Ψ
∂r

is colinear to r and ∂Ψ
∂r

•
.

r = ∂Ψ
∂r

•
◦
r, then ∂Ψ

∂r
•
.

r = ∂Ψ
∂r

• k, by de�nition of r (6);
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�
∂Ψ
∂∇c

is colinear to ∇c, therefore ∇c⊗ ∂Ψ
∂∇c

is symmetric;

�
∂Ψ
∂∇p

commutes with ∇p, therefore ∇pT • ∂Ψ
∂∇p

is symmetric.

Thus,

d

dt
(F (h, r, c,p)) =

(
∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
− ρ∇pT •

∂Ψ

∂∇p

∣∣∣∣D(v)

)
+

(
ρ
∂Ψ

∂r

∣∣∣∣ k)+ (w(h, c) | .

c) + (m(h,p) | .

p)

+

∫
∂Ω(t)

ρ
.

c
∂Ψ

∂∇c
• n ds+

∫
∂Ω(t)

ρ
.

p •
∂Ψ

∂∇p
• n ds. (*.3)

Then, from the de�nition of the Gordon-Schowalter objective rate

d

dt
(F (h, r, c,p)) =(

∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
− ρ∇pT •

∂Ψ

∂∇p
+ a sym(m(h,p)⊗ p)

∣∣∣∣D(v)

)
+

(
ρ
∂Ψ

∂r

∣∣∣∣ k)+ (skw(m(h,p)⊗ p) |W (v)) + (w(h, c) | .

c) +
(
m(h,p)

∣∣∣ □
p
)

+

∫
∂Ω(t)

ρ
.

c
∂Ψ

∂∇c
• n ds+

∫
∂Ω(t)

ρ
.

p •
∂Ψ

∂∇p
• n ds. (*.4)

When ∂Ψ
∂∇p

= 0, we directly obtain relation (74b). Otherwise, to get (74a), all that remains is

to transform the term
(
ρ∂Ψ

∂r

∣∣ k)+ (skw(m(h,p)⊗ p) |W (v)) to conclude.
It turns out that integration by parts leads directly to the desired result (74a), since(

ρ
∂Ψ

∂r

∣∣∣∣ k) =

∫
Ω(t)

1

2
ρ
∂Ψ

∂r
• ∇ × ω dx =

∫
Ω(t)

1

2
ρ
∂Ψ

∂ri
ϵijkωk,j dx

=

∫
Ω(t)

−1

2

(
ρ
∂Ψ

∂ri

)
,j

ϵijkωk dx+

∫
∂Ω(t)

1

2
ρ
∂Ψ

∂ri
ϵijkωknj ds

=

∫
Ω(t)

−1

2
∇
(
ρ
∂Ψ

∂r

)
: ϵ • ω dx+

∫
∂Ω(t)

1

2
ρ
∂Ψ

∂ri
ϵijkωknj ds

=

∫
Ω(t)

1

2
W

(
ρ
∂Ψ

∂r

)
:W (v) dx+

∫
∂Ω(t)

(
ω × 1

2
ρ
∂Ψ

∂r

)
• n ds,

where Einstein summation convention has been adopted. We have also used the relation
W (v) = −ϵ • ω. ■

B.2. Proof of theorem 1

Lemma 8 � Skew-symmetric part of the stress tensor

In the skew-symmetric couple stress theory, the skew-symmetric part of the stress tensor
satis�es

skwσ = W (l). (76)

Proof. This proof is an adaptation of the calculations performed in [HHD15, page 12].
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By de�nition of the couple stress vector l, we have

µ = −ϵ • l. (*.1)

Then, from the conservation law of angular momentum (3b), we get

ϵ :
(
∇lT + σ

)
= 0. (*.2)

Thus, ∇lT + σ is symmetric, therefore its skew-symmetric part −W (l) + skwσ vanishes,
hence (76). ■

Lemma 9

−2(l | k) = −(skwσ |W (v)) +

∫
∂Ω(t)

(l× ω) • n ds. (77)

Proof. From k = 1
2
∇× ω, we �rst get

−2(l | k) = −
∫
Ω(t)

l • ∇ × ω dx = −
∫
Ω(t)

ϵijkliωk,j dx, (*.1)

where Einstein summation convention is adopted. Then an integration by parts gives

−2(l | k) =
∫
Ω(t)

ϵijkli,jωk dx−
∫
∂Ω(t)

ϵijklinjωk ds. (*.2)

We conclude with the relation W (v) = −ϵ • ω and lemma 8. ■

Proof of theorem 1. Injecting the �rst version of the time rate of the global free energy (74a)
in the global Clausius-Duhem inequality (73) and using the lemma 9 leads to(

symσ − ∂(ρΨ)

∂h
+∇c⊗ ρ

∂Ψ

∂∇c
+ ρ∇pT •

∂Ψ

∂∇p
− a sym(m(h,p)⊗ p)

∣∣∣∣D(v)

)
−

(
skwσ +

1

2
W

(
ρ
∂Ψ

∂r

)
+ skw(m(h,p)⊗ p)

∣∣∣∣W (v)

)
− (w(h, c) | .

c)−
(
m(h,p)

∣∣∣ □
p
)

+

∫
∂Ω(t)

{
l× ω − ρ

[
1

2
ω × ∂Ψ

∂r
+

.

c •
∂Ψ

∂∇c
+

.

p •
∂Ψ

∂∇p

]}
• n ds ⩾ 0. (*.1)

Because W (v) cannot be expressed as the corotational rate of a tensor, the terms involving it
must vanish [CN63], hence equation (11b).
Taking into account the boundary conditions (10), inequality (*.1) writes equivalently(

symσ − ∂(ρΨ)

∂h
+∇c⊗ ρ

∂Ψ

∂∇c
+ ρ∇pT •

∂Ψ

∂∇p
− a sym(m(h,p)⊗ p)

∣∣∣∣D(v)

)
− (w(h, c) | .

c)−
(
m(h,p)

∣∣∣ □
p
)
⩾ 0. (*.2)

If constitutive equations (11) are satis�ed, then by hypothesis on Φ, the Clausius-Duhem in-
equality is satis�ed, according to proposition 1. ■
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Proof of theorem 1 when ∂Ψ
∂∇p

= 0. When ∂Ψ
∂∇p

= 0, injecting the second version of the time
rate of the global free energy (74b) in the global Clausius-Duhem inequality (73) and taking
into account the boundary condition (14) leads to(

symσ − ∂(ρΨ)

∂h
+∇c⊗ ρ

∂Ψ

∂∇c
− ap⊗ ρ

∂Ψ

∂p

∣∣∣∣D(v)

)
− 2

(
l +

1

2
ρ
∂Ψ

∂r

∣∣∣∣ k)
− (w(h, c) | .

c)−
(
ρ
∂Ψ

∂p

∣∣∣∣ □
p

)
⩾ 0. (*.1)

If constitutive equations (15) are satis�ed, then by hypothesis on Φ, the Clausius-Duhem in-
equality is satis�ed, according to proposition 1. ■

Remark VII � Boundary conditions: If the boundary conditions (10) (respectively (14)) are
not imposed, surface integrals remain in inequality (*.1) (respectively (*.1)), but because ω, .

c
and

.

p are arbitrary and independent, the positivity of the inequality is not guaranteed anymore.

B.3. Energy estimates

Proof of theorem 2. Let us introduce the elastic stress σe de�ned by

σe :=
∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
+ a sym

(
p⊗ ∂F

∂p

)
− ρ∇pT •

∂Ψ

∂∇p
. (*.1)

By hypothesis, constitutive equations (11) are satis�ed, and with this newly introduced variable,
they write

symσ − σe ∈
∂Φ

∂D(v)
, (*.2a)

skwσ = −1

2
W

(
ρ
∂Ψ

∂r

)
+ skw(p⊗m(h,p)), (*.2b)

−w(h, c) ∈ ∂Φ

∂
.

c
, (*.2c)

−m(h,p) ∈ ∂Φ

∂
□
p
, (*.2d)

where w(h, c) and m(h,p) are de�ned by (75). By de�nition of the subdi�erential, there exists
σp ∈ ∂Φ

∂D(v)
, cp ∈ ∂Φ

∂
.

c
and pp ∈ ∂Φ

∂
□
p
such that

symσ − σe = σp, (*.3a)

skwσ = −1

2
W

(
ρ
∂Ψ

∂r

)
+ skw(p⊗m(h,p)), (*.3b)

−w(h, c) = cp, (*.3c)

−m(h,p) = pp. (*.3d)

Injecting these relations into the �rst version of the time rate of the global free energy (74a)
leads to

dF

dt
+ D = (symσ |D(v))− (skwσ |W (v)) =

(
σT

∣∣∇v
)
, (*.4)

where D is de�ned by (21), but without the second term. The last term is transformed thanks
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to an integration by parts and the conservation of momentum (3a):

(
σT

∣∣∇v
)
= −

(
div

(
σT

) ∣∣ v)+ ∫
∂Ω(t)

n • σ • v ds

= −(ρ
.

v | v) + (ρb | v) +
∫
∂Ω(t)

n • σ • v ds.

Finally, the term (ρ
.

v|v) is classically changed into d
dt
(Ek(v)) using the conservation of mass (3c),

where Ek(v) is the kinetic energy de�ned by (20), hence the result.
To conclude, by construction of D and according to proposition 1, we have D ⩾ 0. ■

Proof of theorem 2 when ∂Ψ
∂∇p

= 0. Let us introduce the elastic stress σe and the elastic
couple stress le, respectively de�ned by

σe :=
∂(ρΨ)

∂h
−∇c⊗ ρ

∂Ψ

∂∇c
+ ap⊗ ρ

∂Ψ

∂p
, (*.1a)

le := −1

2
ρ
∂Ψ

∂r
. (*.1b)

By hypothesis, constitutive equations (15) are satis�ed, and with those newly introduced vari-
ables, they write

symσ − σe ∈
∂Φ

∂D(v)
, (*.2a)

l− le ∈ −1

2

∂Φ

∂k
, (*.2b)

−w(h, c) ∈ ∂Φ

∂
.

c
, (*.2c)

−m(h,p) ∈ ∂Φ

∂
□
p
, (*.2d)

where w(h, c) and m(h,p) are de�ned by (75). By de�nition of the subdi�erential, there exists
σp ∈ ∂Φ

∂D(v)
, lp ∈ −1

2
∂Φ
∂k
, cp ∈ ∂Φ

∂
.

c
and pp ∈ ∂Φ

∂
□
p
such that

symσ − σe = σp, (*.3a)

l− le = lp, (*.3b)

−w(h, c) = cp, (*.3c)

−m(h,p) = pp. (*.3d)

Injecting these relations into the second version of the time rate of the global free energy (74b)
leads to

dF

dt
+ D = (symσ |D(v))− 2(l | k), (*.4)

where D is de�ned by (21). Then, using lemma 9 and the boundary condition (14), we get

dF

dt
+ D = (symσ |D(v))− (skwσ |W (v)) +

∫
∂Ω(t)

(l× ω) • n ds. (*.5)

We conclude in the same way as in the previous proof. ■
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Proof of corollary 1. From theorem (2), we have by hypothesis

d

dt
(F (p))− (Π | div v) + 2η∥D(v)∥2 + γ∥□p∥2 + k∥v∥2 + (σa |D(v))

= fa(p | v) +
∫
∂Ω(t)

n • σ • v ds. (*.1)

Then, we apply the incompressibility condition (48b), the constitutive equation (40b), the
boundary condition (47) and the Cauchy-Schwarz inequality, which gives

d

dt
(F (p)) + 2η∥D(v)∥2 + 1

γ
∥m(p)∥2 + k∥v∥2 ⩽ fa∥p∥∥v∥+ |ζ∆µ|∥p⊗ p∥∥D(v)∥. (*.2)

Finally, applying two times the Young inequality

ab ⩽
a2

2ε
+

εb2

2
, (*.3)

valid for any real numbers a and b and any strictly positive real number ε leads to the result (50),
since ∥p⊗ p∥2 =

∫
Ω
|p|4. ■

Lemma 10

There exists a polarity �eld p such that

∥D(wp)∥4 −
2

γ

(
2η∥D(wp)∥2 + k∥wp∥2

)
∥m(p)∥2 > 0, (78)

where wp is the unique solution to the following problem:
(Sp): �nd w and ϖ such that

−div(D(w)) +∇ϖ = −div(Q(p)) in Ω, (79a)

divw = 0 on Ω, (79b)

w = 0 on ∂Ω, (79c)

where Q(p) = KF∇pT • ∇p.

Proof. Assume that |p| = P , where P is a positive real number. Thus there exists θ : Ω → R
such that p = Pnθ, where nθ = (cos θ, sin θ). With this choice, the molecular �eld writes

m(p) = α
(
|p|2 − 1

)
p−KF∆p

= αP 3nθ − P (αnθ +KF∆nθ)

= P 3yθ − Pzθ, (*.1)

where

yθ = αnθ, (*.2a)

zθ = αnθ +KF∆nθ. (*.2b)

As a consequence, its functional norm reads

∥m(p)∥2 = ∥yθ∥2P 6 − 2(yθ | zθ)P
4 + ∥zθ∥2P 2. (*.3)

Let wθ be the unique solution to problem (Snθ
), so that

D(wp) = P 2D(wθ). (*.4)
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Note that from the linearity and unicity of the solution of problem (Sp), we also have wp =
P 2wθ. Then

∥D(wp)∥4 −
2

γ

(
2η∥D(wp)∥2 + k∥wp∥2

)
∥m(p)∥2 > 0,

⇐⇒ Aθ∥yθ∥2P 4 −
[
∥D(wθ)∥4 + 2Aθ(yθ | zθ)

]
P 2 + Aθ∥zθ∥2 < 0, (*.5)

where, for convenience,

Aθ =
2

γ

(
2η∥D(wθ)∥2 + k∥wθ∥2

)
⩾ 0. (*.6)

When Aθ = 0, it means both D(wθ) = 0 and wθ = 0, and inequality (78) is not satis�ed: it
corresponds to ∇θ = 0. So let us assume the function θ is chosen such that Aθ > 0. Introducing
Bθ = 1/Aθ, the previous inequality writes equivalently

∥yθ∥2P 4 −
[
Bθ∥D(wθ)∥4 + 2(yθ | zθ)

]
P 2 + ∥zθ∥2 < 0. (*.7)

This is a biquadratic equation in P . Its discriminant ∆θ is given by

∆θ = Bθ∥D(wθ)∥4 + 2(yθ | zθ)− 4∥yθ∥2∥zθ∥2. (*.8)

With �xed viscosity η, it is possible to choose friction k such that ∆θ = 0, as Aθ is linear in k.
In that case, the unique root P 2 to this biquadratic equation is given by

P 2 =
Bθ

∥yθ∥2
∥D(wθ)∥4 +

(yθ | zθ)

∥yθ∥2
. (*.9)

Note that ∥yθ∥2 = α2 ̸= 0. We �nally choose η and k su�ciently small so that Bθ is su�ciently
large to make the root P 2 positive. Thus, there exists a real value P for which inequality (78)
is satis�ed. In other words, the polarity �eld de�ned by p = Pnθ satis�ed this inequality. ■

Proof of corollary 2. By hypothesis, the stress term KF∇pT • ∇p is absent from the elastic
stress σe (*.1) as de�ned in the proof of theorem 2. Applying the same procedure as in this
proof and taking into account the absence of inertia and the boundary conditions (47) leads to

d

dt
(F (p)) + D +

(
ρ∇pT •

∂Ψ

∂∇p

∣∣∣∣D(v)

)
= (ρb | v), (*.1)

where D is de�ned by (21) and ρb by (46). Then, the explicit form of the dissipation can be
calculated, resulting in (51). Finally applying the same procedure as in the proof of corollary 1
leads to inequality (54).
The dissipation-like term ∆̃ (53) involved in the energy estimate (54) is obviously not quadratic
nor convex: its additional last term is linear with respect to D(v). Clearly, there is some
possibilities for this term to be negative and to dominate all the other positive terms in absolute
value, causing ∆̃(v,p) < 0, which is a violation of the second principle. Let us show that such
a possibility exists.
Following the classical Coleman and Noll argument [CN63, p. 171], at any time t ⩾ 0 and any
position x in Ω, we assume to be able to independently impose some arbitrarily values to D(v)
without changing neither p nor ∇p nor ∆p. Thus, D(v) can be considered thermodynamically
independent from p. Then, it is su�cient to choose D(v) such that the last term becomes
negative and arbitrarily large in absolute value, in order to �nally show that ∆̃(v,p) < 0. Note
that due to the presence of the non-local energy term with ∇p, the dissipation involves a sum
over Ω: the notation ∥·∥ is a functional norm, and inequality (54) is not pointwise but global
over Ω. As a consequence, p, ∇p and ∆p can not be considered as independent variables.
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Let us de�ne
Q(p) = KF∇pT • ∇p (*.2)

and let us consider the following generic Stokes-like linear and elliptic problem:
(Sq): �nd w and ϖ such that

−div(D(w)) +∇ϖ = −div(Q(q)) in Ω, (*.3a)

divw = 0 on Ω, (*.3b)

w = 0 on ∂Ω. (*.3c)

The unique solution to problem (Sp) is denoted by (wp, ϖp); the subscript p emphasizes their
dependence on p. The vector �eld wp satis�es

(D(wp)−Q(p) |D(w)) = 0 (*.4)

for all divergence-free vector �eld w with w = 0 on ∂Ω. In particular, choosing w = wp gives

∥D(wp)∥2 = (Q(p) |D(wp)). (*.5)

As the system is linear, its solution depends linearly on its right-hand-side. Thus, when replac-
ing Q(p) by ξQ(p) in (Sp), ξ being any real number, the solution becomes

vp = ξwp (*.6)

and satis�es
∥D(vp)∥2 = ξ(Q(p) |D(vp)) = ξ2∥D(wp)∥2. (*.7)

The factor ξ will be chosen later.
Choosing vp as the velocity �eld allows to write ∆̃ as

∆̃(vp,p) =
k

2
∥vp∥2 + η∥D(vp)∥2 +

1

γ
∥m(p)∥2 + (Q(p) |D(vp))

=
1

2

(
2η∥D(wp)∥2 + k∥wp∥2

)
ξ2 + ∥D(wp)∥2ξ +

1

γ
∥m(p)∥2. (*.8)

Then ∆̃ appears as a second order polynomial expression in terms of ξ. Its discriminant is
nonnegative if, and only if,

∥D(wp)∥4 −
2

γ

(
2η∥D(wp)∥2 + k∥wp∥2

)
∥m(p)∥2 > 0. (*.9)

Lemma 10 above shows that it is possible to choose the thermodynamic variable p such that
this inequality is satis�ed. Then the second order polynomial equation ∆̃(vp,p) = 0 admits
two distinct real roots ξ1 < ξ2, such that for any ξ ∈ ]ξ1, ξ2[, ∆̃(vp,p) < 0. In consequence, this
model violates the second principle of thermodynamics. ■
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