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Abstract

Abstract
This master’s thesis addresses the mathematical and numerical modelling of collective move-
ment in thin biological tissues, epithelia. It is part of a long-standing project, initiated by a
team of biophysicists, whose aim is to improve knowledge of the biophysical mechanisms in-
volved in developmental biology. From our point of view, the behavior of epithelia is described
by a viscoelastic fluid model. The laws associated with it then lead to the formulation of the
problem as a coupled system of time-dependent partial differential equations. The transition to
a variational formulation is based on the discontinuous Galerkin method and allows to obtain
first results in the inelastic case. These results are compared with the experimental data avail-
able to the above-mentioned team of biophysicists, which gives us the opportunity to identify
the limits of our model and the perspectives to be considered.

Keywords: Collective cell migration in epithelial tissues; shallow viscoelastic fluids; asymp-
totic expansion; thin-layer approximation; variational formulation; discontinuous Galerkin method;
comparison with experimental data.

Résumé
Ce mémoire aborde la modélisation mathématique et numérique du mouvement collectif dans
des tissus biologiques minces, les épithéliums. Elle s’inscrit dans un projet de longue date,
initié par une équipe de biophysiciens, dont le but est d’améliorer les connaissances sur les
mécanismes biophysiques qui intervienent en biologie du développement. De notre point de
vue, le comportement des épithéliums est décrit par un modèle de type fluide viscoélastique.
Les lois qui lui sont associées amènent alors à formuler le problème sous la forme d’un système
couplé d’équations aux dérivées partielles dépendantes du temps. Le passage à une formulation
variationnelle s’appuie sur la méthode de Galerkin discontinue et permet d’obtenir de premiers
résultats dans le cas non élastique. Ces résultats sont comparés avec les données expérimen-
tales dont dispose l’équipe de biophysiciens déjà mentionnée, ce qui nous offre la possibilité de
dégager les limites de notre modèle et les perspectives à envisager.

Mots-clés: Migration cellulaire collective dans les épithéliums; fluides viscoélastiques minces;
analyse asymptotique; approximation en couche mince; formulation variationnelle; méthode de
Galerkin discontinue; comparaison avec des données expérimentales.
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Notations

Domain description

Notation Description
Λ(t) flow domain at time t
Γf (t) upper free surface at time t
Γ0 lower horizontal plane substrate in 3D
Γ = Γobstacle ∪ Γwall vertical obstacles and domain limits
Ω lower horizontal plane substrate in 2D
Ωc(t) = h(t, ·)−1([hc,+∞[) tissue domain for the thin layer approximation
n outer unit normal vector in 3D
ν outer unit normal vector in 2D

Material parameters

Notation Description Unit Num. exp.
u cell velocity field m · s−1

ρ fluid density kg ·m−3

h cell height kg ·m−3

σ Cauchy stress tensor N ·m−2

τ elastic stress tensor N ·m−2

p pressure Pa
ηm viscosity of the material Pa · s
ηs viscosity of the solvent Pa · s
η = ηm + ηs total viscosity Pa · s
µ elasticity modulus of the material Pa
λ = ηm/µ relaxation time s
ζ friction coefficient Pa · s ·m−1

fa active force N ·m−2

L characteristic length of the domain m 75 µm
H characteristic height of the domain m
U characteristic planar velocity m · s−1 10/9 µm ·min−1

ε = H/L low aspect ratio of the geometry -
Re = ρUL/η Reynolds number -
We = λU/L Weissenberg number -
α = ε−1Lζ/η dimensionless friction parameter -
β = ηm/η dimensionless viscosity parameter -
xf (t) position of the tissue front at time t m
dmean mean cell surface density kg ·m−2

rmean mean cell radius m
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Notations

Mathematical notations
Notation Description

D(u) = 1
2
(
∇u+∇u>

)
rate of deformation

Dt = ∂t + (u · ∇) Lagrange derivative
∇
τ = ∂tτ + (u · ∇)τ − (∇u)τ − τ (∇u)> upper convected derivative
vn = v · n normal component of v
vt = v − vnn tangential component of v
τnn = (τn) · n normal component of τn
τnt = τn− τnnn tangential component of τn
I identity tensor
bxe = bx+ 1/2c nearest integer to x
Ja, bK = [a, b] ∩ N integer interval where a 6 b are two integers
Pk set of polynomial functions of degree at most k
∇h broken gradient
qext external trace of q
JqK = q − qext jump of q across the associated face
{{q}} = 1

2(q + qext) average of q on the associated face

Numerical parameters

Notation Description Num. exp.
tf final time 20/3
ξ = ln h log-height -
nmax number of time iterations 5000
∆t(n) (n+ 1)th time step -
∆tinit = tf/nmax canonical time step -
∆tref reference time step -
∆t0 a possible initial time step 10−7

n? number of adaptations of the time step -
κ parameter used for the purpose of the aforementioned adaptation 1.1
Th finite element mesh -
N number of elements in the mesh Th 1000
S (i)
h set of internal faces of the mesh Th -

εh lower bound for h when computing the initial velocity 10−2

εr regularization parameter of the boundary condition on the obstacle 10−7

δ error tolerance used as stopping criterion for the fixed-point loop 10−5

kmax number of iterations in the aforementioned loop 100
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Introduction
Epithelia are tissues, i.e. clusters of similar cells, made up of cells juxtaposed by so-called cell
junctions. For example, they cover the walls of the digestive tract or the pulmonary alveoli.
Generally speaking, epithelial tissues are involved in many biological processes, whether it is
embryonic development, tumor proliferation or wound healing. This intervention will result in a
flow of tissue, a phenomenon more commonly known as collective cell migration and illustrated
in Figure 0.1.

Figure 0.1: Epithelium is seen from above and cells are migrating from left to right. Extracted
from Tlili et al. [2018b, Supporting Movie S1].

Here we are faced with an active material that is at the origin of complex dynamics. The
tissue can undergo large deformations and the cells do not necessarily remain attached to their
neighbors. In particular, the following effects will be observed:

• friction: the cells slide against the substrate on which they evolve;

• elasticity: the cells are not rigid and can stretch;

• and viscosity: the cells slide against each other, slowing down any movement.

All these characteristics, present on a microscopic scale, make the epithelium a material that
can be described on a macroscopic scale as a viscoelastic fluid. A more complete description
would also take into account the ability of the cells to exert a force on the substrate on their
own in order to migrate, known as the active force. Finally, the cells are capable of adopting
a privileged direction, or polarity, which will condition their movements, the forces they exert,
the stresses they undergo, etc. The observed movement is then collective: the cells interact
with each other, they exchange various mechanical constraints and their polarities tend to align
with those of their neighbors. A summary is shown in Figure 0.2.

This coupling between viscoelastic fluid mechanics and polarity is very rich, especially from
the point of view that interests us here: continuous mathematical and numerical modelling.
Together with the work of biophysicists, the project in which this internship is part could lead
to a better understanding of the phenomenon presented here. Tlili et al. [2018b] and Tlili et al.
[2018a] have carried out experiments highlighting these phenomena of migration and polarity
and have designed them with a view to what this report intends to begin to lead to: the
mathematical modelling of collective epithelial migration and the numerical resolution of the
resulting problem.

We will start in section 1 by setting up a first model, formulated by a system of partial
differential equations, decoupled from any polarity, whose mathematical writing is still an

Nathan Shourick MSIAM – Ensimag & UGA 1



Introduction

Cell velocity u

Cell polarity θ

Active force fa

Cell-substrate friction

Cell-cell stress σ

Substrate

u

θu

θ

Figure 0.2: Forces and interactions of migrating cells. This figure was inspired by Alert and
Trepat [2020, Figure 2].

open question. The thin-layer structure of the considered medium will allow an asymptotic
expansion, a process that will transform the initial system into a simpler approximated system.
Bouchut and Boyaval [2013] were the first to apply this method for viscoelastic fluids. They did
it for turbulent flows where inertial forces are preponderant while we will do it for laminar flows
where viscous forces are more important. In section 2, we will propose a numerical resolution
algorithm for the very special case where elasticity is neglected and leave the other case for
perspective. In particular, we will use a discontinuous Galerkin method to handle transport
terms involving constant functions in pieces. The method developed in this report has been
implemented in C++ using the Rheolef (Saramito [2020]) C++ finite element library. Finally, in
section 3, we will present the results obtained and will then be able to compare them with the
database developed in the two papers cited in the previous paragraph. In particular, we will
try to highlight the limits of the model and the perspectives that are available to us.

2 MSIAM – Ensimag & UGA Nathan Shourick
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1 Mathematical modelling of collective epithelial migra-
tion and asymptotic expansion

1.1 Introduction

As announced in the introduction, we choose to continuously model the collective behavior of
epithelia on a macroscopic scale. The aggregate of cells is then represented by a viscoelastic
fluid. This type of fluid is already well studied and we will therefore be able to use the tools of
continuum mechanics to describe its behavior mathematically.

Like any fluid, ours is governed by well-known principles such as the laws of conservation. We
are particularly interested in the conservation laws of mass and linear momentum1. That should
bring us to our first two equations. However, a viscoelastic fluid has its own characteristics
that must be exhibited by means of laws of mechanical behavior, called constitutive equations,
of which there will be two. Finally, the boundary and initial conditions will completely close
the system.

Before we begin, let us first introduce some notations that we will use throughout this
document. The tissue geometry, or flow domain, Λ(t) ⊂ R3 is an open bounded subset of the
three-dimensional physical space, depending on time t ∈ R+; the initial set Λ(0) is assumed to
be known. The domain has an evolving free surface Γf (t) over time on its upper part and an
horizontal plane substrate Γ0 on its lower part on which cells are moving. Eventually, vertical
obstacles and domain limits, represented by Γ, lead to very general and thus possibly complex
geometries. Figure 1.1 shows an example of such a domain.

To characterize the cell flow, we will use the Eulerian description. The framework that the
latter offers automatically places the velocity as unknown in the equations. The velocity field2,
namely a real vector with three components is denoted by u = (ux, uy, uz). The fluid density
ρ > 0 is supposed to be constant on Λ(t), at any time t > 0. The last variable we will use to
fully set our model up is the height of the tissue, a real scalar field denoted by h. Both of them
are assumed to be sufficiently smooth so that each invoked calculus result can be applied.

1.2 Conservation laws

Let t > 0 and ω ⊂ Λ(t) be an open connected elementary volume, strictly interior to the flow
domain. Let us introduce the characteristic curveX(t,x; ·) passing through position x ∈ Λ(t)3.
Then, let ω(t) = X(0, ω; t) be the set of positions at time t of particles which were initially
in ω4. In other words, we follow in its movement an elementary volume transported by the
velocity field u.

1See Germain and Muller [1995, First part, III], Saramito [2016, Chapter 1] and Maitre [2010, Section 3] for
more details.

2Here, a field is a function of (t,x) ∈ R+ × Λ(t), which are the Eulerian variables.
3See appendix A.0.1 for a definition.
4I borrowed this notation in Maitre [2010, Section 2].

Nathan Shourick MSIAM – Ensimag & UGA 3
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x

y

z

h = 0 t

Γ0 tf

Γ(t)

Γf (t)

u(t,x)
Λ(t)

Figure 1.1: Simplest possible geometry of the tissue domain.

1.2.1 Conservation of mass

The postulate is as follows: the mass
∫
ω(t) ρ dx of the fluid is conserved in time inside ω(t).

Mathematically, since ρ is constant, we have

∀t > 0, d
dt

∫
ω(t)

ρ dx = ρ
d |ω|
dt (t) = 0 (1.2.1)

where |ω(t)| is the Lebesgue measure of ω(t). Thanks to Reynolds formula (B.0.2) and by argu-
ments of density, or by what is referred to as the fundamental lemma of continuum mechanics,
we can rewrite this law of conservation in local form:

divu = 0 in R+ × Λ(t) (1.2.2)

Remark. Whenever ρ is constant, we say the flow is incompressible. Thus, the latter equation
only describes this property.

1.2.2 Conservation of linear momentum

The postulate is as follows: in any inertial frame of reference, the time derivative of the linear
momentum

∫
ω(t) ρu(t,x) dx of ω(t) is equal to the sum of the forces applied to it. Actually, it

is nothing but the Newton’s second law of motion applied to an elementary volume of a fluid.
On one side are the volume forces, on the other side are the surface forces. In our case, we
assume that only the latter apply to our elementary volume. The density of surface forces, of
the form σn, where σ is the (symmetric) Cauchy stress tensor and n is the outer unit normal
vector to the boundary ∂ω(t) at position x, reflects local contact actions at the interface of
ω(t). Mathematically, since ρ is constant, we have

∀t > 0, d
dt

∫
ω(t)

ρu(t,x) dx =
∫
∂ω(t)

σ(t,x)n(t,x) ds (1.2.3)

4 MSIAM – Ensimag & UGA Nathan Shourick
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Again, thanks to Reynolds transport formula (B.0.3) and by the fundamental lemma of con-
tinuum mechanics, we can rewrite this law of conservation in local form:

ρ(∂tu+ (u · ∇)u)− divσ = 0 in R+ × Λ(t) (1.2.4)

Remark. This principle applies more generally to a screw, a pair formed by the linear and
angular momentum.

1.3 Constitutive equations
On a microscopic scale, a tissue is an aggregate of cells assumed to be an elastic material. On
a macroscopic scale, the cell-cell friction is described by a viscous mechanism and the tissue
could be represented as a continuum by a viscoelastic fluid model. The latter is characterized
by an elastic stress tensor τ satisfying the following partial differential equation:

λDtτ + τ = 2ηmD(u) in R+ × Λ(t) (1.3.1)

where Dt = ∂t + (u · ∇) is the so-called Lagrangian or particle derivative – it represents the
time derivative in the Eulerian description – and

D(u) = 1
2
(
∇u+∇u>

)
(1.3.2)

is the rate of deformation. It is a symmetric tensor. λ = ηm/µ is the relaxation time. It is
the time it takes for the material to return to its equilibrium configuration when it is no longer
under stress. ηm is the viscosity of the material. It quantifies the frictional forces between
polymers and solvent molecules. Finally, µ is the elastic modulus of the material. It is a
quantity that reflects the elastic deformation of the material subjected to certain stresses.

Unfortunately, the Lagrangian derivative is not an objective tensor derivative5: it depends
on the frame of reference. Even though the latter is in translation or rotation, the intrinsic
properties of the material must not change. A widely used solution is to replace the particle
derivation Dt with the upper convected or covariant derivative, denoted by ∇· and defined for
any sufficiently regular symmetric tensor τ by

∇
τ = ∂tτ + (u · ∇)τ − (∇u)τ − τ (∇u)> (1.3.3)

As a consequence, the constitutive (1.3.1) becomes

λ
∇
τ + τ = 2ηmD(u) in R+ × Λ(t) (1.3.4)

The Cauchy stress tensor σ must depend on the rate of deformation; this is what mathe-
matically differentiates a fluid from any other continuum medium. In the case of viscoelastic
fluids, a possible relation is

σ = τ + 2ηsD(u)− pI in R+ × Λ(t) (1.3.5)

where p is the pressure, ηs is the viscosity of the solvent and I is the identity tensor.
5See [Saramito, 2016, Chapter 4] for more details.

Nathan Shourick MSIAM – Ensimag & UGA 5



1 Mathematical modelling of collective epithelial migration and asymptotic expansion

1.4 Boundary conditions
Let Ω be the plane on which the substrate rests, in such a way that, for every t ∈ R+, we have

Λ(t) = Ω× {z ∈ [0, h(t, x, y)], (x, y) ∈ Ω}
Γf (t) = Ω× {h(t, x, y), (x, y) ∈ Ω}

Γ = ∂Ω× Iz
Γ0 = Ω× {0}

where Iz ⊂ R+ is a closed interval such that h(t, x, y) ∈ Iz, for any (t, (x, y)) ∈ R+ × Ω.

1.4.1 On the free surface

The free surface is the interface between the tissue and the air. At any time t > 0, a point
x = (x, y, z) ∈ R3 is on the free surface Γf (t) if

h(t, x, y)− z = 0 (1.4.1)

The free surface condition states that a point on Γf (t) at a given time t always remains on it
at any other time. By taking the Lagrangian derivative, we end up with the desired boundary
condition:

∂th+ ux z=h∂xh+ uy z=h∂yh− uz z=h = 0 on R+ × Ω (1.4.2)

In addition, there is no stress, or density of surface forces, at the air-cell interface:

σn = 0 on R+ × Γf (t) (1.4.3)

where, in this particular case,

n = (−∂xh,−∂yh, 1)√
(∂xh)2 + (∂yh)2 + 1

(1.4.4)

1.4.2 On the substrate

Since the substrate Γ0 is a stationary wall through which the fluid cannot flow, we must impose
a no-penetration condition. Mathematically, this consists of writing that the normal component
of velocity is zero:

un = u · n = 0 on R+ × Γ0 (1.4.5)

where, in this particular case, n = (0, 0,−1).
On the substrate, cells are subjected to three external forces, all tangential to Γ0:

• the viscous frictional force, which in our case of laminar flow, i.e. low velocity flow, is
written −ζut, where ζ > 0 is the friction coefficient;

• the tangential part of the density of surface forces, which is written σnt;

• the active force fa, mentioned in the introduction, for which a mathematical expression
has yet to be found.
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where ut and σnt are the tangential components of u and σn respectively, namely

ut = u− unn (1.4.6)
σnt = σn− σnnn (1.4.7)

σnn = (σn) · n being the normal component of σn. The state of equilibrium of the solid on
the substrate is then translated, by invoking Newton’s first law of motion, by the following
relation:

σnt − ζut + fa = 0 on R+ × Γ0 (1.4.8)
In order to set up numerical experiments, we propose below a possible form of the active

force:
fa = −γ h−1 · ∇h1Ωc(t) (1.4.9)

The term h−1 reflects the (assumed) inverse proportionality relation between the height and
the active force. This corresponds to the intuitive idea of active force: if a cell has a constant
volume, the smaller its height, the larger the contact surface of the cell with the substrate and,
therefore, the greater the force it can exert on the substrate. γ > 0 is a supposed physical
coefficient. Then, Ωc(t) = h(t, ·)−1([hc,+∞[) = {(x, y) ∈ Ω | h(t, x, y) > hc} ⊂ Ω represents
the tissue domain. Actually, we assume that the cells cannot spread out indefinitely (the height
cannot tend towards 0), so there is a height, called critical height and noted hc, below which
the tissue cannot sink. Finally, the term −∇h gives the overall direction of the active force, it
is the outer (non-unitary) normal to the front in the plane. The reason we have not taken a
normalized version is that the current form allows the active force to be rewritten in a different
way, opening up the possibility of other proposals involving, in this case, tensors:

fa = −γ div(ln(h)I)1Ωc(t) (1.4.10)

We discuss this choice in subsubsection 3.3.4.

1.4.3 On obstacles and domain limits

For the same reasons as in subsubsection 1.4.2, the condition

un = u · n = 0 on R+ × Γ (1.4.11)

has to be satisfied. When the domain exhibits a curved boundary, which is true in our case with
an obstacle, it is necessary to separate the boundary into two disjoint parts Γwall and Γobstacle,
so that their union is exactly Γ. According to Saramito [2020, section 2.3], we regularize the
previous Dirichlet no-penetration condition on the curved boundary domain as follows:

σnn + ε−1
r u · n = 0 on R+ × Γobstacle (1.4.12)

where εr > 0 is the regularization parameter.
In all cases, a no-grip condition complements the previous one:

σnt = 0 on R+ × Γ (1.4.13)

Note that we did not introduce any friction coefficient here, unlike what we had for the
substrate. In practice, there is no vertical material barrier, only a chemical process prevents
the cells from venturing outside the predefined area.
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1.5 Asymptotic expansion
By combining equations (1.2.2), (1.2.4), (1.3.4), (1.3.5), (1.4.2), (1.4.3), (1.4.5), (1.4.8), (1.4.11)
and (1.4.13), we end up with the following coupled system of evolutionary equations:
(P ): Find τ and u defined in ]0, tf [×Λ(t) and h defined in ]0, tf [×Γ0 such that



ρ (∂tu+ (u · ∇)u)− divσ = 0 in ]0, tf [×Λ(t)
−divu = 0 in ]0, tf [×Λ(t)

σ = τ + 2ηsD(u)− pI in ]0, tf [×Λ(t)

λ
∇
τ + τ − 2ηmD(u) = 0 in ]0, tf [×Λ(t)

∂th+ ux∂xh+ uy∂yh− uz = 0 and σn = 0 on ]0, tf [×Γf (t)
u · n = 0 and σnt − ζut + fa = 0 on ]0, tf [×Γ0

u · n = 0 and σnt = 0 on ]0, tf [×Γ
h(0, ·) = h0 on Γ0

u(0, ·) = u0 and τ (0, ·) = τ 0 in Λ(0)

(1.5.1a)
(1.5.1b)
(1.5.1c)

(1.5.1d)
(1.5.1e)
(1.5.1f)
(1.5.1g)
(1.5.1h)
(1.5.1i)

where u0, τ 0 and h0 are the initial conditions and tf is the final time.

1.5.1 Thin-layer approximation

As it stands, the model cannot be expected to be solved numerically in a reasonable time.
The idea would therefore be to perform a thin-layer approximation (the height is very small
compared to the length of the substrate) to get back to a two-dimensional system in the
horizontal plane of the substrate, process known as asymptotic expansion. To this end, let us
introduce the following notations, before we state the thin-layer approximation as a theorem:

Definitions 1.1. Let x = (x, y, z) ∈ R3 be a point, φ be a smooth scalar field, v be a smooth
vector field and τ be a smooth symmetric tensor field. We define

• s =
(
x
y

)
the planar components of x;

• vs =
(
vx
vy

)
the planar components of v;

• τ s =
(
τxx τxy
τxy τyy

)
the planar components

of τ , and τ sz =
(
τxz
τyz

)
;

• ∇sφ =
(
∂xφ
∂yφ

)
the planar gradient of φ;

• ∇svs =
(
∂xvx ∂yvx
∂xvy ∂yvy

)
the planar gradi-

ent of v;

• divsvs = ∂xvx + ∂yvy the planar diver-
gence of v;

• divsτ s =
(
∂xτxx + ∂yτxy
∂xτxy + ∂yτyy

)
the planar di-

vergence of τ ;

• Ds(vs) = 1
2
(
∇svs + (∇svs)>

)
the pla-

nar rate of deformation of v;

• Dt,s = ∂t + (us · ∇s) the planar particle
derivative;

• ∇s
τ s = Dt,sτ s−(∇sus)τ s−τ s(∇sus)> the
planar upper convected derivative of τ .
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Theorem 1.1 (Thin-layer approximation). Let L be the characteristic length, H the char-
acteristic height, U the characteristic planar velocity U , V the characteristic vertical velocity
V , T = L/U = H/V the characteristic time and Σ = ηU/L the characteristic stress. Let
also η = ηm + ηs be the total viscosity, Re = ρUL/η the Reynolds number, We = λU/L the
Weissenberg number, α = ε−1ζU/Σ, β = ηm/η and ε = H/L � 1 the low aspect ratio of the
geometry.

Let us make the following changes of variable, called nondimensionalization:

s̃ = s

L
z̃ = z

H
t̃ = t

T
ũs = us

U
ũz = uz

V

h̃ = h

H
τ̃ s = τ s

Σ τ̃ sz = τ sz
Σ τ̃zz = τzz

Σ p̃ = p

Σ
σ̃s = σs

Σ σ̃sz = σsz
Σ σ̃zz = σ̃zz

Σ f̃a = fa
Σ

As a result, we shall note X̃ the associated dimensionless set to X , which is any set involved in
the problem.

If we assume that
(i) u, τ , σ, p and fa are asymptotically expandable, with respect to ε, up to order 1, i.e. we

assume there exist smooth fields u(i), τ (i), σ(i), p(i) and f (i)
a , i ∈ {0, 1}, such that

u = u(0) + εu(1) +O(ε2) τ = τ (0) + ετ (1) +O(ε2)
σ = σ(0) + εσ(1) +O(ε2) p = p(0) + εp(1) +O(ε2)
fa = f (0)

a + εf (1)
a +O(ε2);

(ii) ∂zũ(1)
s = 0 on ]0, tf [×Λ(t);

(iii) n =
(
ν 0

)>
(i.e. nz = 0) on ∂Ω, where ν is the outer unit normal vector to Ω on ∂Ω;

(iv) the flow is laminar, i.e. Re� 1;

(v) and u, τ and h are solution of the system (1.5.1a)–(1.5.1i)
then the 0th order dimensionless terms satisfy the following coupled system of evolutionary
equations:
(P ): Find τ (0)

s , τ (0)
zz , ũ(0)

s and h̃ defined in ]0, tf [×Ω such that

−divs
(
h̃ σ(0)

s

)
+ αũ(0)

s − f̃a
(1) = 0 in ]0, tf [×Ω

∂th̃+ divs(h̃ũ(0)
s ) = 0 in ]0, tf [×Ω

σ(0)
s =

(
τ (0)
s − τ (0)

zz I
)

+ 2(1− β)(Ds(ũ(0)
s ) + divs(ũ(0)

s )I) in ]0, tf [×Ω

We
∇̃(0)

s

τ (0)
s + τ (0)

s − 2βDs(ũ(0)
s ) = 0 in ]0, tf [×Ω

We
(
D̃

(0)
t,s τ

(0)
zz + 2divs(ũ(0)

s )τ (0)
zz

)
+ τ (0)

zz + 2βdivs ũ(0)
s = 0 in ]0, tf [×Ω

ũ(0)
s · ν = 0 and σ(0)

s,νt = 0 on ]0, tf [×∂Ω
h̃(0, ·) = h̃0 in Ω

τ (0)
s (0, ·) = τ

(0)
s,0 and τ (0)

zz (0, ·) = τ
(0)
zz,0 in Ω

(1.5.2a)

(1.5.2b)
(1.5.2c)

(1.5.2d)
(1.5.2e)

(1.5.2f)
(1.5.2g)
(1.5.2h)
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where

D̃
(0)
t,s = ∂t +

(
ũ(0)
s · ∇s

)
and

∇̃(0)
s

τ (0)
s = D̃

(0)
t,s τ

(0)
s − (∇sũ(0)

s )τ (0)
s − τ (0)

s (∇sũ(0)
s )>

are ad hoc notations and

σ(0)
s = 1

h̃

∫ h̃

0
σ̃(0)
s dz, τ (0)

s = 1
h̃

∫ h̃

0
τ̃ (0)
s dz and τ (0)

zz = 1
h̃

∫ h̃

0
τ̃ (0)
zz dz

are depth averages.

Remarks.

1. This model is asymptotic because the smaller ε is, the more accurate it becomes.

2. The 0-th order dimensionless planar velocity is not averaged in depth because it does
not depend on z̃, as shown in the proof (appendix C). It suggests that the cells move
as a block, i.e. all the points on a given vertical move at the same velocity. Hypothesis
(ii) reinforces this idea. We show that when β ∈ {0, 1}, the hypothesis is no longer
necessary. It is from this observation, and from the physical meaning behind it, that we
allow ourselves to assume it.

3. ζ is assumed to be of the same order of magnitude as ε−1, otherwise α could no longer
be a physical constant independent of the geometry.

4. It could seem surprising that (1.5.2a) depends on f̃a
(1) and not on f̃a

(0) – meaning that
the latter disappears from the equations. Actually, it is not. In the proof, we show that

f̃a
(0) = 0

which means that f̃a = O(ε). This here that the hypotheses we made on the friction
coefficient ζ and on the characteristic stresses come into play. If we had rather decided
that ζ is not of the same order of magnitude as ε, then we would have α = ζU/Σ and the
conservation law (1.5.2a) would have read

−divs
(
h̃ σ(0)

s

)
+ αũ(1)

s − f̃a
(1) = 0

We would still have the first-order term of the active force but the friction force wouldn’t
have to do with the zero-order term of the velocity, but it would have to do with its
first-order term. The new coupled system of evolutionary equations would then contain
both ũ(0)

s and ũ(1)
s , which are unknowns. Therefore, it would complicate the resolution of

the system too much. On the contrary, if we had wanted to make appear the zero-order
term of the active force, we would have make for instance the following hypothesis:

fa = F f̃a

where the characteristic stress F is of the same order of magnitude as ε, and we would
have to assume that f̃a = O(ε), unlike the previous case where this fact is deduced from
the assumptions already in place and from the equations. It is difficult to affirm that one
hypothesis is better than the other, especially when the result is the same in all cases.
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5. With hypothesis (iv), we do not need the initial condition for the velocity anymore: it
should be possible to determine ũ(0)

s entirely from the equations.

6. Whenever β = 1, we show that
τ (0)
zz = p(0)

Idea of proof, complete proof in appendix C. The proof was made for the first time in Chakraborty
[2019]. We have added in our version the asymptotic expansion of the boundary conditions on
Γ. The proof consists mainly in four steps. Since we would like to reduce our point of view
to the plane of the substrate, we will first distinguish the roles of the planar and vertical com-
ponents (subsection C.1). Then, we will nondimensionalize the obtained equations so that the
dependencies on physical parameters are simplified (subsection C.2). The core idea of asymp-
totic expansion is to approximate the variables of the problem with respect to ε in order to
only keep the more significant ones (typically the order 0 terms and the first-order terms).
This key step (subsection C.3) allows to make appear the new form of the system. Finally,
by combining the obtained equations together, we are able, in a sense, to project the result
onto the (0, x, y)-plane, by integrating in the depth (i.e. with respect to the variable z) of the
three-dimensional domain Λ(t) (subsection C.4). The complete proof is not presented here – it
is way too long! refer to appendix C if you are interested Rather, we prefer to give an idea of
the main steps by focusing on a specific equation: the conservation of linear momentum.

Splitting planar and vertical components By simple identification, we have in ]0, tf [×Λ(t)

ρ (∂tus + (us · ∇s)us)− divs(σs)− ∂zσsz = 0 (1.5.3a)
ρ (∂tuz + (us · ∇s)uz)− divs(σsz)− ∂zσzz = 0 (1.5.3b)

Dimensional Analysis By applying the changes of variable, the previous equations become

ρ

(
U

T
∂tũs + U2

L
(ũs · ∇s)ũs + V U

H
ũz∂zũs

)
− Σ
L

divs(σ̃s)−
Σ
H
∂zσ̃sz = 0

ρ

(
V

T
∂tũz + UV

L
(ũs · ∇s)ũz + V 2

H
ũz∂zũz

)
− Σ
L

divs(σ̃sz)−
Σ
H
∂zσ̃zz = 0

in ]0, t̃f [×Λ̃(t).
By expressing everything in terms of U , L, ε and η, we end up with

ρ

(
U2

L
∂tũs + U2

L
(ũs · ∇s)ũs + U2

L
ũz∂zũs

)
− ηU

L2 divs(σ̃s)−
ηU

εL2∂zσ̃sz = 0

ρ

(
εU2

L
∂tũz + εU2

L
(ũs · ∇s)ũz + εU2

L
ũz∂zũz

)
− ηU

L2 divs(σ̃sz)−
ηU

εL2∂zσ̃zz = 0

By multiplying both sides in each equation by ε L2

Uη
, we finally get

εRe (∂tũs + (ũs · ∇s)ũs + ũz∂zũs)− εdivs(σ̃s)− ∂zσ̃sz = 0 (1.5.4a)
ε2Re (∂tũz + (ũs · ∇s)ũz + ũz∂zũz)− εdivs(σ̃sz)− ∂zσ̃zz = 0 (1.5.4b)
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Asymptotic expansion By using hypothesis (i) and the linearity of the differential operators,
by remarking that any differential operator in time or space applied on a O(ε2) remains
a O(ε2) and by considering the previous equality as a polynomial equality in ε, we obtain
the following system of equations, valid in ]0, t̃f [×Λ̃(t):

∂zσ̃
(0)
sz = 0

Re
(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s + ũ(0)

z ∂zũ
(0)
s

)
− divs(σ̃(0)

s )− ∂zσ̃(1)
sz = 0

∂zσ̃
(0)
zz = 0

divs
(
σ̃(0)
sz

)
+ ∂zσ̃

(1)
zz = 0

(1.5.5a)
(1.5.5b)
(1.5.5c)
(1.5.5d)

Reduction In ]0, t̃f [×Ω̃, by injecting the independence of ũ(0)
s from z̃ into the momentum

conservation law (1.5.5b), we get by integrating over [0, h̃]

Re
∫ h̃

0

(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s

)
dz +Re

∫ h̃

0
u(0)
z ��

��*
0

∂zũ
(0)
s dz −

∫ h̃

0
divs(σ̃(0)

s )dz −
∫ h̃

0
∂zσ̃

(1)
sz dz = 0

h̃Re
(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s

)
− divs

∫ h̃

0
σ̃(0)
s dz + σ̃(0)

s z=h̃∇sh̃−
[
σ̃(1)
sz

]z=h̃
z=0

= 0

h̃Re
(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s

)
− divs

∫ h̃

0
σ̃(0)
s dz + σ̃(0)

s z=h̃∇sh̃− σ̃
(1)
sz z=h̃ + σ̃(1)

sz z=0 = 0

where to pass from the first line to the the second one we used the Leibniz’s Integral Rule
(B.0.9) from corollary B.2.3. In the complete proof, we show with the same three first
steps that the following boundary conditions hold:

−σ̃(0)
s (∇sh̃) + σ̃(1)

sz = 0 on ]0, t̃f [×Γ̃f (t)

σ̃(1)
sz − αũ(0)

s + f̃a
(1) = 0 on ]0, t̃f [×Γ̃0

Therefore, we obtain in ]0, t̃f [×Ω̃

h̃Re
(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s

)
− divs

(
h̃ σ(0)

s

)
+�����σ̃(1)

sz z=h̃ −���
��σ̃(1)

sz z=h̃ + αũ(0)
s − f (1)

a = 0

h̃Re
(
∂tũ

(0)
s + (ũ(0)

s · ∇s)ũ(0)
s

)
− divs

(
h̃ σ(0)

s

)
+ αũ(0)

s − f (1)
a = 0
(1.5.6)

Finally, the very last equation combined with hypothesis (iv) gives us (1.5.2a).

In the rest of this document, we will drop orders (0) and (1), subscripts s and bars and
tildes, for notation convenience.

1.5.2 To sum up

Thin-layer approximation allowed us to transform our initial system of equations into a simpler
one, valid asymptotically, i.e. when the aspect ratio of the geometry ε = H/L tends to 0.
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(P ): Find τ , τzz, u and h defined in ]0, tf [×Ω such that


−div(h σ) + αu− fa = 0 in ]0, tf [×Ω
∂th+ div(hu) = 0 in ]0, tf [×Ω

σ = (τ − τzzI) + 2(1− β)(D(u) + div(u)I) in ]0, tf [×Ω

We
∇
τ + τ − 2βD(u) = 0 in ]0, tf [×Ω

We(Dtτzz + 2div(u)τzz) + τzz + 2βdiv(u) = 0 in ]0, tf [×Ω
u · ν = 0 and σνt = 0 on ]0, tf [×∂Ω

h(0, ·) = h0 in Ω
τ (0, ·) = τ 0 and τzz(0, ·) = τzz,0 in Ω

(1.5.7a)
(1.5.7b)
(1.5.7c)

(1.5.7d)
(1.5.7e)
(1.5.7f)
(1.5.7g)
(1.5.7h)

1.5.3 Slip boundary conditions for obstacles

The proposed regularization in subsubsection 1.4.3 for the obstacle condition is purely numeri-
cal. The same steps of proof cannot be applied to it in order to deduce an appropriate thin-layer
form. Instead, we propose to apply the same regularization analogously to the boundary con-
ditions obtained after asymptotic expansion. They read:

σνν + ε−1
r u · ν = 0 on R+ × Ωobstacle (1.5.8)

where εr > 0 is the regularization parameter and Ωobstacle is the boundary part representing the
obstacle.

1.5.4 Re-scaled system

To allow a better physical interpretation, we redimensionalize the equations, with the same
characteristic quantities. At the end of the process, only the linear momentum conservation
law is going to change to become

ρ Dtu− div(hσ) + ζu− εfa = 0 (1.5.9)

We note that the low aspect ratio ε appeared in front of the active force and this is the unique
and major difference compared to the equation we had before.
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2 Numerical resolution in pure viscous case
To start with, it is interesting to look at the case where the tissue is modeled as a Newtonian
fluid, namely when We = 0 – i.e. λ = 0, β = 0, ηm = 0 and η = ηs. This has the advantage
that we do not have to face all the intrinsic difficulties of the problem from the outset; in
particular, we will not have to deal with tensor transport terms; the case We > 0 is therefore
left for perspective, as said in introduction. It leads to the following Stokes problem for a thin
layer approximation:

(P ): Find u and h defined in ]0, tf [×Ω such that



−div(2h(D(u) + div(u)I)) + αu+ γdiv(ln(h)I)1Ωc(t) = 0 in ]0, tf [×Ω
∂th+ div(hu) = 0 in ]0, tf [×Ω

u · ν = 0 and D(u)νt = 0 on ]0, tf [×∂Ω
h(0, ·) = h0 in Ω

(2.0.1a)
(2.0.1b)
(2.0.1c)
(2.0.1d)

We remark that the system does not explicitly depend on the viscosity η = ηs. This fact comes
from the nondimensionalization we made in the proof of Theorem 1.1.

2.1 Reformulation of the problem
2.1.1 A log-height reformulation

During numerical computations, the approximate height do not necessarily remains positive,
even if its exact counterpart height h is always positive. Indeed, when the initial height h0 is
positive, then, the exact height h remains always positive at any time.

The proof is short and, moreover, suggests a possible remedy. Let us introduce the charac-
teristic curve passing through position x ∈ Ω at time t ∈ [0, tf ].6 Let (t,x) ∈ ]0, tf [×Ω be fixed
and let us define Z(t,x; s) = h(s,X(t,x; s)), for every s ∈]0, tf [. Then for every s ∈]0, tf [, we
have

∂s(Z(t,x; ·))(s) = ∂sh(s,X(t,x; s)) + ∂sX(t,x; s) · ∇h(s,X(t,x; s))
= ∂sh(s,X(t,x; s)) + u(s,X(t,x; s)) · ∇h(s,X(t,x; s))
= −div(u)(s,X(t,x; s))Z(t,x; s)

Using the relation Z(0,x; 0) = h0(x), coming from the initial condition (2.0.1d), we find that
this ordinal differential equation has for solution

Z(t,x; s) = h0(x) exp
(
−
∫ s

0
div(u)(s′,X(t,x; s′)) ds′

)
(2.1.1)

In particular, for s = t, we end up with the relation

h(t,x) = h0(x) exp
(
−
∫ t

0
div(u)(s,X(t,x; s)) ds

)
(2.1.2)

Assuming h0 > 0, we get h > 0 everywhere at any time. Moreover, the solution is explicit,
thanks to an integration along the the trajectories.

6See appendix A.0.1 for a definition.
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To ensure the positivity property, we consider the change of variable ξ = ln h. The sys-
tem (2.0.1b) & (2.0.1d) writes equivalently:

{
∂tξ + (u · ∇)ξ + div(u) = 0 in ]0, tf [×Ω

ξ(0, ·) = ln h0 in Ω
(2.1.3a)
(2.1.3b)

With this change of variable, we are now sure that h = exp ξ > 0, even after discretization. In
conclusion, using a log-height formulation at the discrete level should solve the positivity issue.

2.1.2 Time discretization

The time interval [0, tf ] is discretized into sub-intervals of variable length ∆t(n), n ∈ J0, nmax − 1K7,
where nmax > 0 is the number of time iterations, satisfying the following rules:

∆t(n) = κ∆t(n−1) if n ∈ J1, n?K
∆t(n) = ∆tref if n ∈ Jn? + 1, nmax − 1K

∆t(0) = min(∆t0,∆tinit)

(2.1.4)
(2.1.5)
(2.1.6)

where n? ∈ J1, nmax − 2K is the number of adaptations of the time step, ∆t0 is an initial
time step assumed to be sufficiently small (it should make the scheme converge), ∆tinit =
(tf − t0)/nmax is the canonical time step, ∆tref is the reference time step that we will define
below, and κ > 1 is a numerical parameter close to 1. The idea is to help the algorithm to
start with possible discontinuous initial conditions.

Let us introduce tn the time at step n > 0. It is defined by the recursive relation

tn = tn−1 + ∆t(n−1), n ∈ J1, nmaxK (2.1.7)

with t0 ∈ R+ being given (here, t0 = 0). By the definitions of ∆t(n) and tn, we find out that,
for any n ∈ J0, nmaxK, we can express tn as follows:

tn =


∆t(0)κ

n − 1
κ− 1 + t0 if n 6 n?

(n− n?)∆tref + ∆t(0)κ
n? − 1
κ− 1 + t0 otherwise

(2.1.8)

In particular, when n? = 0, we have tn = n∆tref + t0, as expected. We then consider two cases:

• when ∆tinit 6 ∆t0, we take n? = 0 and then the time steps are constant, with respect to
n, equal to ∆tref, which is taken equal to ∆tinit;

• when ∆tinit > ∆t0, we take n? = b(log(∆tinit) − log(∆t0))/ log(κ)e (i.e. κn?∆t0 = ∆tinit)
and set ∆tref so that tnmax = tf . We assume that (tf − t0)(κ− 1) > ∆t0(κn? − 1) and find
that

∆tref =
(
tf − t0 −∆t0

κn
? − 1
κ− 1

)
· 1
nmax − n?

≈ tf − t0
nmax

= ∆tinit (2.1.9)

is suitable. Moreover, we have ∆t(n) > ∆t(n−1), for any n ∈ J1, nmaxK.
7The notation Ja, bK, where a 6 b are both integers, corresponds to an integer interval, i.e. Ja, bK = [a, b]∩N.
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2 Numerical resolution in pure viscous case

The time derivative is approximated by a first order finite difference scheme:

∂tξ(tn, ·) = ξ(n) − ξ(n−1)

∆t(n−1) +O(∆t(n−1)) (2.1.10)

for any n ∈ J1, nmaxK and where ξ(n) = ξ(tn, ·). In particular, ξ(0) = ln h0 ∈ L∞(Ω) is known by
the initial condition. We will also use the notation u(n) = u(tn, ·).

When n > 1, assume by recurrence that both u(n−1) and ξ(n−1) are known. Then, a possible
time-discretized problem at time tn we should now solve is the following:
(P ): Find u(n) and h(n) defined in ]0, tf [×Ω such that

− div
(
2 eξ(n−1)(D(u(n)) + div(u(n))I)

)
+ αu(n)

+ γdiv(ξ(n)I)1Ωc(t) = 0 in ]0, tf [×Ω
ξ(n) − ξ(n−1)

∆t(n−1) +
(
u(n−1) · ∇

)
ξ(n−1) + div(u(n)) = 0 in ]0, tf [×Ω

u(n) · ν = 0 and D(u(n))νt = 0 on ]0, tf [×∂Ω

(2.1.11a)

(2.1.11b)

(2.1.11c)

2.2 Variational formulation
2.2.1 General variational formulation

Since it is difficult to deal with the term 1Ωc(t)
8, coming from the active force, we propose to

divide the algorithm in two parts. First, we will solve the previous problem by omitting this
term. Then we will post-process the solutions so that u(t, ·) = u(0) and h(t, ·) = h0 in Ωc(t)c,
at any time t ∈]0, tf [.

When n > 1, assume by recurrence that ξ(n−1) ∈ L∞(Ω) and u(n−1) are known. Then, u(n)

and ξ(n) ∈ L∞(Ω) are obtained from a variational formulation of the time-discretized problem
at time tn. By using the property9

Property 2.1. For any sufficiently regular vector field v and symmetric tensor field τ , defined
in Ω, we have ∫

Ω
D(v) : τ dx+

∫
Ω
v · div(τ ) dx =

∫
∂Ω
v · (τn) ds (2.2.1)

combined with the boundary conditions and by remarking that D(v) : I = div(v), for any
sufficiently regular vector field v, we come up with the following possible variational formulation
of this problem:
(V F ): Find u(n) ∈ V and ξ(n) ∈ L∞(Ω) such that

∫
Ω

(
2 eξ(n−1) [

D(u(n)) : D(v) + div(u(n))div(v)
]

+ αu(n) · v
)

dx

−
∫

Ω
div(v)ξ(n) dx = 0 ∀v ∈ V

−
∫

Ω
div(u(n))ζ dx−

∫
Ω

ξ(n)ζ

∆t(n−1) dx =
∫

Ω

(
− ξ(n−1)

∆t(n−1) + u(n−1) · ∇ξ(n−1)
)
ζ dx ∀ζ ∈ L∞(Ω)

8We discuss this point in subsubsection 3.3.4.
9See Saramito [2016, section 1.8] for a possible proof.
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where V = {v ∈ H1(Ω)2 | v · ν = 0 on ∂Ω}. Let us introduce the following forms

a(ξ;u,v) =
∫

Ω

(
2 eξ [D(u) : D(v) + div(u)div(v)] + αu · v

)
dx

b1(u, ζ) = −
∫

Ω
γdiv(u)ζ dx

b2(u, ζ) = −
∫

Ω
div(u)ζ dx

c(ξ, ζ) = 1
∆t

∫
Ω
ξζ dx

`(ξ,u; ζ) =
∫

Ω

(
− ξ

∆t + u · ∇ξ
)
ζ dx

defined for any u,v ∈ V and any ξ, ζ ∈ L∞(Ω). The forms a(ξ; ·, ·), b1, b2 and c are bilinear
while the form `(ξ,u; ·) is linear. The form a(ξ; ·, ·) is also symmetric. Note that b1 and b2 are
conceptually very close: whenever γ = 1, then b1 = b2, in which case the problem is symmetric.
Nevertheless, it seems very unlikely that we will be confronted with this case. The previous
variational formulation then writes equivalently:
(V F ): Find u(n) ∈ V and ξ(n) ∈ L∞(Ω) such that

a
(
ξ(n−1);u(n),v

)
+ b1

(
v, ξ(n)

)
= 0 ∀v ∈ V

b2
(
u(n), ζ

)
− c

(
ξ(n), ζ

)
= `

(
ξ(n−1),u(n−1); ζ

)
∀ζ ∈ L∞(Ω)

(2.2.2)

2.2.2 No-penetration boundary conditions for obstacles

The introduction of a curved obstacle modifies a little the variational formulation. We change
the associated space into V = {v ∈ H1(Ω)2 | v · ν = 0 on Ωwall}. From property 2.1, we have
for any v ∈ V :

−
∫

Ω
v · div(σ) dx =

∫
Ω
D(v) : σ dx−

∫
∂Ω
v · (σν) ds

where σ = 2h(D(u) + div(u)I). Then we split the term σn into its tangential and its normal
components and apply the Neumann no-grip boundary condition to get

−
∫

Ω
v · div(σ) dx =

∫
Ω
D(v) : σ dx+ ε−1

r

∫
Ωobstacle

(u · ν)(v · ν) ds

As a consequence, the form a in the variational formulation (2.2.2) becomes

a(ξ;u,v) =
∫

Ω

(
2 eξ [D(u) : D(v) + div(u)div(v)] + αu · v

)
dx

+ ε−1
r

∫
Ωobstacle

(u · ν)(v · ν) ds
(2.2.3)

defined for any u,v ∈ V and any ξ ∈ L∞(Ω).
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2 Numerical resolution in pure viscous case

2.2.3 A discretized variational formulation using the discontinuous Galerkin method

For discretization, we may combine continuous and piecewise Pk+1–approximation for the ve-
locity and discontinuous and piecewise Pk–approximation for the height, where k > 0 is the
discretization order. For instance, when k = 0, the velocity would be continuous and piecewise
affine while the height would be discontinuous and piecewise constant. However, the gradient
has no more sense for discontinuous functions. To counteract this complication, the discontin-
uous Galerkin method could be used to discretize the transport term u · ∇ξ involved in the
right-hand-side `.

Let Th be a finite element mesh, with N > 0 elements, of the flow domain Ω. We introduce
the following finite dimensional spaces

Xh = {v ∈ C0
(
Ω
)2
| v/K ∈ P2

k+1, ∀K ∈ Th} ⊂ H1(Ω)2

Vh = Xh ∩ V = {v ∈ Xh | v · ν = 0 on ∂Ω}
Qh = {q ∈ L∞(Ω) | q/K ∈ Pk, ∀K ∈ Th} ⊂ L∞(Ω)

∇q has, indeed, no more sense when q ∈ Qh, but has one when q is restricted to any element of
the mesh. For this purpose, we will use as a convenient notation the so-called broken gradient
∇h defined by

(∇hq)/K = ∇(q/K) ∀K ∈ Th (2.2.4)

According to Saramito [2016, section 4.10], the discontinuous Galerkin method extends the
upwind scheme to the finite element context. It is typically used for problems which involve
transport term, as in our case. As a consequence, we will replace the exact linear form `(ξ,u; ·)
by a discretized version expressed as a sum of integrals over each element of the mesh (by
splitting the initial integral over them). Formally, we will only need to substitute the gradient
by the broken one in the integral over Ω, by definition. In addition, for each of them, we will
add an upwind term of the form

`K(h,u; q) =
∑
S⊂∂K

∫
S

(
|u · ν| − u · ν

2

)
(h− hext)q ds (2.2.5)

where h ∈ Qh is the trial function, q ∈ Qh is the test function and hext is the external trace of
h in K, whose definition is given in appendix A.0.2. In other words, `(ξ,u; ζ) will be replaced
by

`h(ξ,u; ζ) =
∑
K∈Th

(∫
K

(
− ξ

∆t + u · ∇ξ
)
ζ dx+ `K(ξ,u; ζ)

)
(2.2.6)

where ξ, ζ ∈ Qh and u ∈ Vh. Let us specifically take a look at the term inside the sum of `K .
When S is a boundary face, i.e. S ⊂ ∂Ω, then this term is zero because u ∈ Vh. On the other
hand, when S is an internal face between two neighbor elements K− and K+, it will be counted
twice. However, only one of the two possibly terms is non-zero, due to the change of sign of the
outer normal when changing of neighbor element. Let ν− (resp. ν+) be the outer unit normal
vector on ∂K− (resp. ∂K+). We have ν− = −ν+. We arbitrarily choose ν = ν− as the outer
unit normal vector of S. h± (resp. q±) will be the restriction of h (resp. q) to K±. When the
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two terms which involve S are summed together, we get
∫
S∩∂K−

(
|u · ν−| − u · ν−

2

)
(h− − h+)q− ds+

∫
S∩∂K+

(
|u · ν+| − u · ν+

2

)
(h+ − h−)q+ ds

=
∫
S

(
|u · ν|

2 (h− − h+)(q− − q+)− (u · ν)(h− − h+)
(
q− + q+

2

))
ds

=
∫
S

JhK
(
|u · ν|

2 JqK− (u · ν) {{q}}
)

ds

and then

∑
K∈Th

`K(h,u; q) =
∑
K∈Th

∑
S⊂∂K

∫
S

(
|u · ν| − u · ν

2

)
(h− hext)q ds

=
∑

S∈S
(i)
h

∫
S

JhK
(
|u · ν|

2 JqK− (u · ν) {{q}}
)

ds (2.2.7)

where JqK = q−− q+ is the jump of q across the face, {{q}} = (q−+ q+)/2 is its average and S (i)
h

is the set of internal faces of the mesh Th.
Finally, the discretized version of ` reads

`h(ξ,u; ζ) =
∫

Ω

(
− ξ

∆t + u · ∇hξ

)
ζ dx+

∑
S∈S

(i)
h

∫
S

JξK
(
|u · ν|

2 JζK− (u · ν) {{ζ}}
)

ds (2.2.8)

where ξ, ζ ∈ Qh and u ∈ Vh, and leads to the following discretized variational formulation of
the time-discretized problem:
(V F )h: Find u(n) ∈ Vh and ξ(n) ∈ Qh such that

a
(
ξ(n−1);u(n),v

)
+ b1

(
ξ(n−1);v, ξ(n)

)
= 0 ∀v ∈ Vh

b2
(
ξ(n−1);u(n), ζ

)
− c

(
ξ(n), ζ

)
= `h

(
ξ(n−1),u(n−1); ζ

)
∀ζ ∈ Qh

(2.2.9)

2.2.4 Case of the initial velocity

When n = 0, u(0) is defined as the solution of the following problem:
(P ): Find u(0) defined in ]0, tf [×Ω such that
−div

[
2h0

(
D(u(0)) + div(u(0))I

)]
+ αu(0) = −γdiv(ln h0I)1Ωc(t) in ]0, tf [×Ω

−div(h0 u
(0)) = 0 in ]0, tf [×Ω

u(0) · ν = 0 and D(u(0))νt = 0 on ]0, tf [×∂Ω

(2.2.10a)
(2.2.10b)
(2.2.10c)

In the same way we derived the general variational formulation, we come up with the one
associated to the previous problem:
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2 Numerical resolution in pure viscous case

(V F ): Find u(0) ∈ V such that∫
Ω

(
2h0

[
D(u(0)) : D(v) + div(u(0))div(v)

]
+ αu(0) · v

)
dx =

∫
Ω
γ ln h0 div(v) dx ∀v ∈ V

(2.2.11)

Since we might have some troubles when dealing with points where h0 is zero, because,
among others, of the term ln h0, we propose to add a kind of protection: h0 is replaced by
max(h0, εh), where εh > 0 is small and we add the term 1[ln εh,+∞[{ln[max(h0, εh)]} in the
right-hand side.

2.3 Fully implicit time scheme
The previous time discretization is a semi-implicit scheme; it is expected to be conditionally
stable: ∆t should be small enough to make it converge. Unfortunately, we do not known any
explicit stability condition in order to choose this time step. Thus, we turn here to a more
robust scheme by introducing an inner fixed-point loop, i.e to a fully implicit variant. We
slightly modify the previous notations by introducing a new form for `:

`(ξ?, ξ,u; ζ) =
∫

Ω

(
− ξ

?

∆t + u · ∇ξ
)
ζ dx (2.3.1)

defined for any ξ?, ξ, ζ ∈ L∞(Ω) and any u ∈ V . Here, ξ? represents the value at the previous
time step while ξ corresponds to the current iterate in the inner fixed-point loop that we expect
to converge towards a good candidate for the value at the current time step. In addition to the
notations already introduced at then end of subsubsection 2.1.2, we will use

(
u(n,k), ξ(n,k)

)
to

denote the k-th iterate in the inner fixed-point loop at the n-th time step. In particular, the
fixed point iteration is initialized as follows:(

u(n,0), ξ(n,0)
)

=
(
u(n−1), ξ(n−1)

)
(2.3.2)

When the fixed-point converges, we set(
u(n), ξ(n)

)
= lim

k→+∞

(
u(n,k), ξ(n,k)

)
(2.3.3)

At time step n and iteration k of the inner fixed-point loop, assuming by recurrence that both
ξ(n−1) and

(
u(n,k−1), ξ(n,k−1)

)
are known, the variational formulation of the implicitly time-

discretized problem writes
(V F ): Find u(n,k) ∈ V and ξ(n,k) ∈ L∞(Ω) such that

a
(
ξ(n,k−1);u(n,k),v

)
+ b1

(
v, ξ(n,k)

)
= 0 ∀v ∈ V

b2
(
u(n,k), ζ

)
− c

(
ξ(n,k), ζ

)
= `

(
ξ(n−1), ξ(n,k−1),u(n,k−1); ζ

)
∀ζ ∈ L∞(Ω)

(2.3.4)

Discretization is then straightforward by applying the discontinuous Galerkin method on the
form ` as we did in subsubsection 2.2.3.
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Remarks.

• If the implicit time scheme had been done without an inner fixed-point loop, the problem
to be solved would have been nonlinear and then more difficult.

• In practice, the fixed-point inner loop with index k is stopped when

1
∆t(n−1)

∥∥∥(u(n,k), ξ(n,k)
)
−
(
u(n,k−1), ξ(n,k−1)

)∥∥∥
L2(Ω)2×L∞(Ω)

6 δ or k > kmax (2.3.5)

where δ > 0 represents an error tolerance, kmax > 0 is the maximal number of iterations
in the inner loop and ‖(u, ξ)‖2

L2(Ω)2×L∞(Ω) = ‖u‖2
L2(Ω)2 + ‖ξ‖2

L∞(Ω). When kmax = 1, we
recognize the previous semi-implicit time scheme.
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3 Results

3 Results

3.1 Numerical settings and visualization
All the simulations we are going to show here were made with the following numerical settings:

• hc = 0.3;

• h0(x) = H(−x), for any x = (x, y) ∈ Ω,
where H is the Heaviside function;

• ∆t0 = 10−7;

• κ = 1.1;

• εr = 10−7;

• k = 0 (discretization order);

• εh = 10−2;

• δ = 10−5;

• kmax = 100 but the loop globally con-
verged with less than 10 iterations, de-
pending on the discretization accuracy.

To graphically represent the height profiles, we perform a L2 orthogonal projection of the
piecewise constant height approximation onto the space Q(1)

h = {q ∈ C0
(
Ω̄
)
| q/K ∈ P1, ∀K ∈

Th} of continuous and piecewise affine functions. Formally, h? is defined as

h? = arg min
q∈Q(1)

h

1
2 ‖h− q‖

2
L2(Ω) (3.1.1)

A weak formulation of this problem would read

(V F ): Find h? ∈ Q(1)
h such that∫

Ω
h?q dx =

∫
Ω
hq dx ∀q ∈ Q(1)

h (3.1.2)

3.2 Numerical convergence
We propose here to show the numerical convergence of our algorithm in 1D. We start from an
initial mesh with initial space and time steps. Then, iteratively, we refine the mesh by dividing
simultaneously the space and time steps by 2. Let us remark that, at the same time, dividing
the initial time step ∆t(0) by 2 and doubling the number of time steps nmax is sufficient to
divide the time steps by 2 at each iteration, even with our time step adaptation. Likewise,
dividing the space step by 2 is equivalent to doubling the number of elements N .

We decide to make three iterations of the previous method and for each case, we choose
tf = 5 and α = γ = 1. The first simulation is done with N1 = (N, nmax,∆t0) = (2.50 ·103, 2.50 ·
103, 1.00 · 10−5), the second one with N2 = (N, nmax,∆t0) = (5.00 · 103, 5.00 · 103, 5.00 · 10−6),
the third one with N3 = (N, nmax,∆t0) = (1.00 ·104, 1.00 ·104, 2.50 ·10−6) and the last one with
N4 = (N, nmax,∆t0) = (2.00 · 104, 2.00 · 104, 1.25 · 10−6). To give an idea, we have in all cases
n? = 56 and successively, ∆tref ≈ 2.04 · 10−3, ∆tref ≈ 1.01 · 10−3, ∆tref ≈ 5.02 · 10−4 and finally
∆tref ≈ 2.51 · 10−4. The convergence is shown in figures 3.1 and 3.2 by presenting the resulting
log-heights ξ at times t = 1.5 and t = 4 (not post-processed) and front profiles xf , defined on
[0, tf ] as the position in Ω such that h(t, xf (t)) = hc, of each simulation.
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(a) At time t = 1.5. (b) At time t = 4.

Figure 3.1: Log-height with the different levels of discretization (Ni)i∈J1,4K, both in space and
time. From left to right in each plot, the first curve is shifted 1/2 to the left, the second one
1/4 to the left, the third one 1/4 to the right and the last one 1/2 to the right to allow their
distinction, otherwise they would completely overlap.

Figure 3.2: Front profile with the different levels of discretization, both in space and time.

Nathan Shourick MSIAM – Ensimag & UGA 23



3 Results

3.3 Exploration
3.3.1 Experimental data

As mentioned in introduction, we based our simulations on the data in Tlili et al. [2018b]
(oriented 1D) and in Tlili et al. [2018a] (oriented 2D with obstacle). We present here the
material we will work with along this section.

The experiences in the first article were done on a 2D domain but the authors averaged in
width so that they came up with 1D data, along the x-axis. Indeed, according to Figure 3.3,
the velocity field u is globally independent of y. When there is no obstacle, it suggests that 1D
simulations are sufficient to describe the cell flow.

Figure 3.3: Cell migration without obstacle. (a) What is experimentally observed. (b) Corre-
sponding velocity and density. Extracted from Tlili et al. [2018b, Figure 1.].

Still in this article we can find figures 3.4a and 3.4b that show specifically the velocity
and the radius profiles against time and position. Here, height, density and radius are closely
related. Indeed, the density, or more precisely the mean surface density, denoted dmean is defined
by

dmean = ρ h, on [0, tf ]× Ω (3.3.1)

Then, by assuming that on average, the surface of a cell is nothing but a disc of radius rmean
and the mass of a cell m = πr2

meandmean is constant in time and space, we can express the mean
radius as a function of the height:

rmean =
√
m

πρ
h−

1/2 ∝ h−
1/2, on [0, tf ]× Ω (3.3.2)

More surprising, Figure 3.4c illustrates the linear relation that exists between the radius
and the velocity, on average. This is a very important point we will focus on a bit further in
this section.
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(a) Space-time diagram of cell
velocity u.

(b) Space-time diagram of ef-
fective cell radius rmean.

(c) Cell velocity–cell radius
correlation.

Figure 3.4: Experimental radius and velocity diagrams. Extracted from Tlili et al. [2018b]

We are also able to retrieve the position of the tissue front from the mean density, given in
the supplemental material. The front xf is time-dependent function. It is defined on [0, tf ] as
the position in Ω such that h(t, xf (t)) = hc. Figure 3.5 shows some corresponding experimental
curves. Assuming ρ is constant, the height h can be obtained by the measurement of dmean,
according to equality (3.3.1).

(a) (b) Log-log scale

-

Figure 3.5: Experimental front profiles, generated with data from Tlili et al. [2018b]

In Tlili et al. [2018a], the experiences were done on a 2D domain where there is an obstacle,
as illustrated in Figure 3.6. The authors performed ten similar experimental runs in order to
study the sensibility of the results. Arbitrarily, we choose to base our comparisons on the data
associated to the first experimental run.

By extracting the relevant information, we find that the strip length is 4000 µm, the strip
width 750 µm, the obstacle diameter 150 µm. We choose the characteristic length to be the
obstacle radius, namely L = 75 µm. Following the nondimensionalization we made in the proof
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Figure 3.6: Cell migration with obstacle. (a) At t = 0 h. (b) At t = 12 h. Extracted from Tlili
et al. [2018a, Figure 1.].

of Theorem 1.1 and by putting the origin at the center of the domain, the computation domain
is then Ω = [−80/3, 80/3]× [0, 5], y = 0 being an axis of symmetry for both u and h in our model.
Still in this paper, we learn that “the typical time for cells to migrate over a distance equivalent
to the obstacle diameter of 200 µm is 3 h”. It means that the the typical time for cells to
migrate over a distance of 75 µm is 1.125 h. As a result, this is the value we choose for the
characteristic time, namely T = 67.5 min. To give an idea, the characteristic velocity is then
U = L/T = 10/9 µm ·min−1. Finally, the center of the obstacle coincides with the origin. We
choose tf = 20/3 as final dimensionless time. We shall discuss this value in subsubsection 3.3.4.
It corresponds to a time of 7.5 h. At the end of this allotted time, the cells should have migrated
over a distance of L/4 = 500 µm. For the 1D case, we will keep those characteristic quantities
and will take as computation domain Ω = [−80/3, 80/3].

3.3.2 Objective and strategy

Through qualitative comparisons with experimental data, we will be able to refine and highlight
the limitations of the model in pure viscous case, as we focused on it in section 2. Ideally, the
numerical results will provide another perspective on the biophysical mechanisms involved.

For that purpose, we aim at finding the physical parameters α and γ involved in the model
that best fit the experimental data. Our first point of entry for the comparison is in the model
solutions. Indeed, they directly give the velocity field and the height. Then, we will be able to
compare them with the figures presented previously. To go further in the comparison, we will
use two additional experimental measures:

• the position of the front with respect to time (Figure 3.5): given the final time we have
chosen, we should have xf (tf ) = L/4;

• the local relation between velocity and cell radius: all values gather on a master linear
curve (Figure 3.4c).

We will select each couple (α, γ) that will fulfill both conditions. In particular, we will try to
highlight the values of α most representative of what can be observed among all the values that
this parameter can take. The final couple that will be described as the best will be the one
for which the asymptotic behavior of the position of the front or the master curve (which will
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not necessarily be linear) will be the closest to what is experimentally observed. Finally, we
will propose a 2D simulation and will compare it with what was obtained in Tlili et al. [2018a].
The numerical experiments then conducted in 1D should make it possible to consider only the
best case in 2D.

3.3.3 Raw results

Let us make the exploration of the possible couples (α, γ). We run our simulations with tf =
20/3, N = 1000 and nmax = 5000. Table 3.1 gives a brief summary of couples that fit the
condition xf (tf ) = L/4; they were found by trial and error. Let us take a look at the following
representative cases:

• α = 10 will represent the class of large α;

• α = 0 will represent the class of small α;

• α = 10−1 will represent the other ones.

α 0 10−2 10−1 1 10 102 1099

γ 3 · 10−2 7 · 10−2 7.8 · 10−1 1.17 · 10 1.175 · 102 1.175 · 103 1.175 · 10100

Table 3.1: Some couples (α, γ) for which xf (tf ) ≈ L/4.

Let us begin with α = 10. A summary of the obtained results is given by Figure 3.7. In
figures (a) and (b), we see that the velocity decreases in intensity at the front over time. More
precisely, we first have a ramp with strong growth, localized at the front (short times), which
then tends to sag and spread more and more evenly over the tissue domain Ωc(t) (longer times).
As a result, in figure (c), values (rmean(tn, xi), u(tn, xi))n,i indeed gather on a master curve, that
seems to be a square root. The tissue height, in figures (d) and (e), on the other hand, sags,
i.e. reaches the critical height hc, quite quickly. Finally, figure (f) shows the front position with
respect to time in log-log scale. What we observe in it is actually a square root curve times
a constant. It is possible to prove it formally. Indeed, for large α, the viscous effects can be
neglected in front of the friction and the active force. If we assume for the moment10 that h
decreases just fast enough not to be affected by the no-penetration condition u · ν = 0 then,
according to appendix D, since , u and h are explicit and there exists a constant Cf such that

xf (t) = Cf

(
γ

α

)1/2√
t (3.3.3)

A summary of the obtained results with α = 0 is given by Figure 3.8. In figure (a), the
velocity seems to be an increasing linear function in the tissue domain, at any time. On
the other hand, there is no great variation in amplitude. As a result, in figure (c), values
(rmean(tn, xi), u(tn, xi))n,i does not gather on a master curve. On a the contrary, at a given
time, the effective cell radius is globally constant. Therefore, the tissue height, in figures (d)
and (e), is globally constant in space, it slightly sags only near the front. This last effect and
the loss of height over time show the presence of movement. In particular, the time it reaches
the critical height hc must be very large. Finally, figure (f) shows the front position with respect
to time in log-log scale. We observe a linear curve close to y = x.

10More details in subsubsection 3.3.4.
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Figure 3.7: Summary of numerical results obtained with α = 10 and γ = 1.175 · 102. Figure
(c) represents the velocity against the mean radius (expressed as rmean = h−

1/2, as we saw in
subsubsection 3.3.1) and a color corresponds to a specific time. Figure (f) shows the evolution
of the front position over time, in log-log scale.

Figure 3.8: Summary of numerical results obtained with α = 0 and γ = 0.03. Figure (c)
represents the velocity against the mean radius (expressed as rmean = h−

1/2, as we saw in
subsubsection 3.3.1) and a color corresponds to a specific time. Figure (f) shows the evolution
of the front position over time, in log-log scale.
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A summary of the obtained results with α = 10−1 is given by Figure 3.9. In figures (a) and
(b), we see that the velocity decreases in intensity at the front over time. More precisely, we
first have a ramp with little growth (compared to what we had for α = 10), localized at the
front (short times), which then tends to sag and spread more and more evenly over the tissue
domain Ωc(t) (longer times). As a result, in figure (c), values (rmean(tn, xi), u(tn, xi))n,i indeed
gather on a master curve, that seems to be a square root. The tissue height, in figures (d) and
(e), on the other hand, sags quickly, but not as much as for α = 10. Finally, figure (f) shows
the front position with respect to time in log-log scale. It can be seen as a juxtaposition of two
curves, a sign of the existence of two regimes for this specific case, as shown in Figure 3.10. In
particular, the second regime corresponds to an affine evolution of the front position.

Figure 3.9: Summary of numerical results obtained with α = 10−1 and γ = 7.8 · 10−1. Figure
(c) represents the velocity against the mean radius (expressed as rmean = h−

1/2, as we saw in
subsubsection 3.3.1) and a color corresponds to a specific time. Figure (f) shows the evolution
of the front position over time, in log-log scale.

3.3.4 Discussion

Before discussing the solutions selected, we should return to the very validity of these solu-
tions. Indeed, Figure 3.11 shows that the non post-processed height is likely to reach the right
boundary of the domain before the end of the simulation. It also shows that if the solution
is valid for sufficiently large α, which corresponds to a borderline case for which the dynamics
do not change from one α to another, it will also be valid for the others, since the cells spread
all the faster the larger α. Even though the α = 10 solution sees the right boundary of the
domain, this is not very troublesome if we compare to what we obtain with the large α model,
presented in the appendix D.

The problem highlighted here is indeed a problem insofar as, as soon as the boundary is
reached, the behavior of the solutions changes to satisfy the no-penetration condition. From a
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Figure 3.10: Front position with respect to time, obtained with α = 10−1 and γ = 7.8 · 10−1.
The vertical dashed line separate the two identified regimes.

Figure 3.11: Numerical log-height ξ obtained with the three representative α at time t = 5.
The curve reaches the right boundary of the domain before the end of the simulation and the
solution is then influenced by the no-penetration condition. Black curve corresponds to the
exact non post-processed height solution of the large α model, presented in appendix D.
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physical point of view, this is unsatisfactory: the mechanics of the phenomenon will not change
if the cells come critically close to the boundary. There are several possible causes for this
effect. First of all, we could think about the critical height. Indeed, if it was directly processed
by the numerical resolution, and not in post-processing, the cells would not reach the boundary
in the time interval we have chosen. But that would only partially solve the problem. We could
also think about the edge condition itself, which is obviously not suitable.

Let us come back to the simulations we made previously. They have highlighted three main
types of behavior:

• When α is large, case previously represented by α = 10, friction dominates over viscosity
and the solutions converge toward the large α model, presented in appendix D. We can
write the front position with respect to time as Cf

√
t, where Cf is a nonzero constant.

Moreover, points (rmean(tn, xi), u(tn, xi))n,i gather on a master curve.

• Conversely, when α is small enough, the friction is negligible with respect to viscosity and
the solutions converge toward the limit case α = 0. The front has a linear profile over
time and no relation between the effective cell radius and the velocity can be deduced.

• Eventually, the hybrid case, previously represented by α = 10−1, highlights the existence
of two regimes: a relatively short transitional regime and a permanent regime, in which
the position of the front depends upon time in an affine way. Like the large α limit, points
(rmean(tn, xi), u(tn, xi))n,i gather on a master curve.

However, the small α case is not satisfactory as the friction cannot be neglected. The large α
case can be ruled out as well. Indeed, Figure 3.12 (see also Figure 3.5) suggests us that, after
an initial flow regime, the front position behaves as xf (t) = Cf t

a, with Cf ≈ 0.6 and a > 1. As
a result, we consider the case α = 10−1 as the one that best fits the requirements we identified
as important in subsubsection 3.3.2.

However, this case is far from perfect. First of all, the requirements are not fully fulfilled.
Also, we notice that the velocity decreases in intensity at the front over time, unlike what we
observe in Figure 3.4a. Either the active force generates a dynamic forcing the cells to slow
down, or the absence of elasticity prevents an increase in this intensity, the two cases not being
mutually exclusive. We said in subsubsection 1.4.2 it was convenient not to normalize the
gradient of the height. On the other hand, the active force is sensitive to the gradient norm.
Thus, except when α is small, although its norm increases as one approaches the front, helping
to make speed an increasing function in space, at a fixed position close to the front it decreases
due to the spread of the solution. As suggested during an internal discussion, a possible remedy
would be to normalize the gradient in order to have a pure direction.

More generally, the model is not robust as shown at the beginning of the discussion. We
suggested that we could have directly processed the height in the variational formulation. But
this not that simple. Actually, we tried to put the indicator function directly into the form
b1 (see 2.2). For that purpose, we used a regularized Heaviside function. Unfortunately, the
solution looked like a step function modeled on the mesh and was too sensitive to how to
regulate the Heaviside’s function, leading to convergence problems. This is why we have chosen
to add a post-processing stage. This solution is not perfect because it induces a loss of height
mass (understanding the area under the height curve) over time. For the final time chosen, the
losses are not too important, of the order of 10 %, but for longer times, it would be prohibitive.
That said, the model is not as bad as it could have been, given its simplicity.
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(a) (b) Log-log scale

Figure 3.12: Front positions over time for the different couples (α, γ) we have chosen and from
the experimental data.

3.3.5 2D simulation

Since a 2D simulation is costly in computing time, we propose to run only one, with the best
couple (α, γ) we identified, namely α = 10−1 and γ = 0.78. The resulting height at final time
is presented in Figure 3.13 for the part of the domain where there are variations. It shows an
increase in height upwind the obstacle. Probably, this means that the cells compress and get
denser as they are slowed down by the obstacle. Finally, 3.14 illustrates the cell flow in 3D .
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Figure 3.13: Numerical velocity and height around the obstacle at t ≈ tf = 20/3, with nmax =
5000 and N = 5527. The height is represented by the color gradient and the velocity by the
vector field. There are also streamlines to show the flow movement.
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(a) t = 0 (b) t ≈ 1.24

(c) t ≈ 2.59 (d) t ≈ 3.95

(e) t ≈ 5.31 (f) t ≈ 6.67 ≈ tf = 20/3

Figure 3.14: 3D view of the cell flow with the presence of an obstacle, where nmax = 5000 and
N = 5527.
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Conclusion
In section 1, we set out the laws governing the viscoelastic behavior of epithelial tissues (1.2, 1.3
and 1.4). The resulting equations were then asymptotically approximated by a simpler model,
invoking the low aspect ratio of the geometry. The numerical resolution of the resulting system
was conducted in section 2 for the special case where elastic effects are neglected (i.e. We = 0).
We discretized the problem in time using a fully implicit upwind scheme with variable time
steps, to ensure stability of the latter if the initial condition is not sufficiently smooth (2.1.2
and 2.3). We also changed the variable for the height to ensure its positivity at any stage of
the discretization (2.1.1). The space variable was done through a variational formulation of the
problem discretized in time (2.2). In order to be able to approach the height by a discontinuous
function, we used in particular a discontinuous Galerkin method (2.2.3). We then showed
empirically in section 3 the convergence of our algorithm (3.2) before proposing a strategy
of 1D comparison of the numerical results with the experimental data (3.3.2). This strategy
consisted in using two experimental measurements: the position of the front with respect to
time and the local relation between cell radius and cell velocity suggesting an alignment of
the values on a master curve. We were then able to identify the set of parameters that best
corresponded to the aforementioned constraints, given the experimental curves available to us
(3.3.4).

These numerical experiments were able to highlight the limitations of the model and the
numerical problems encountered. We have endeavored to cover the entire modelling chain:
equation generation, transposition into algorithms and experimental validation. This overview
allowed us to identify new perspectives or to clarify existing ones. The developments envisaged
therefore affect both the mathematical model and its numerical resolution. As it stands, the
model has failed to faithfully reproduce the experimental data, particularly the two points of
interest to us. On the one hand, we can regret the lack of elasticity, an effect that requires
further development. Working with We > 0 would lead to consider a tensor transport term.
Numerically, we would come back to using the discontinuous Galerkin method but this is not
a foregone conclusion: we would then have the height/elastic stress tensor coupling and, as
suggested in Saramito [2020, subsection 5.3], we would surely have to consider a θ-scheme
for discretization in time. On the other hand, the active force must greatly influence the
dynamics, and its writing cannot be left to intuition alone. It must be chosen and handled with
care. If possible, it must avoid the use of post-processing, among other things, so as not to
cause a loss of mass over time. But this allowed us to see (3.3.4) that the actual no-penetration
condition is unsatisfactory because the cells “see” the boundary coming, which tends to influence
the behavior of the solution. A possible remedy would be to consider absorbing boundary
conditions. That being said, it is clear that more complex effects must be taken into account in
its expression. As mentioned in the introduction, one could think of polarity. Its coupling with
the current viscoelastic model is in any case inevitable but remains an open question. Finally,
a more in-depth study of migration behavior in the presence of an obstacle or in the context
of a more exotic geometry would be beneficial. We have shown results in the particular case
of a circular obstacle in a rectangular domain (3.3.5), but the ideal would be to consider any
geometry and especially, if possible, complex geometries.
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A Definitions
A.0.1 Characteristic curve

Let Ω be an open set of Rd, d ∈ N∗.
Definition A.1. The characteristic curveX(t,x; ·) passing through position x ∈ Ω at time t ∈
[0, tf ] is the function satisfying the following ordinary differential equation:∂sX(t,x; s) = u(s,X(t,x; s)), ∀s ∈ ]0, tf [

X(t,x; t) = x
(A.0.1)

From the Cauchy-Lipschitz theorem, this problem is well-posed, assuming at least that u
is Lipschitzian, therefore the characteristic curve is uniquely defined.

A.0.2 External trace

We will use here the notations introduced in subsubsection 2.2.3.
Definition A.2. Let q ∈ Qh and K ∈ Th be an element of the mesh. The external trace of q
in K is the function qext defined on any face S ⊂ ∂K by

∀xS ∈ S, qext(xS) =


lim
x→xS

q/K(x) if S ⊂ ∂Ω
lim
x→xS

q/K′(x) if S ∈ S (i)
h

(A.0.2)

where K ′ ∈ Th is the unique neighbor element of K such that S = ∂K ∩ ∂K ′.
This definition is actually an adaptation of the general one to our particular case. Saramito

[2016, Section 4.10] proposes another specific definition when the trace of function is imposed
by a Dirichlet boundary condition while you can find a more general one in Gérald [2013,
§ I.2.3.4.1].

B Integral rules
Theorem B.1 (Reynolds transport formulas). Let Ω be an open set of Rd, d ∈ N∗ and ω be
an open, connected and bounded subset of Ω. Let ω(t) = X(0, ω; t), where X(0,x; ·) is the
characteristic curve passing through position x ∈ ω at time t = 0 and u be a vector field defined
in R+ ×Ω. For any differentiable scalar field, vector field or tensor field defined in R+ ×Ω, in
all cases denoted by f , we have

d
dt

∫
ω(t)

f dx =
∫
ω(t)

∂tf dx+
∫
∂ω(t)

(u · n)f dx (B.0.1)

In particular, by applying the Green formula, we have
d
dt

∫
ω(t)

f dx =
∫
ω(t)

(∂tf + div(fu)) dx (B.0.2)

when f is a scalar field and
d
dt

∫
ω(t)

f dx =
∫
ω(t)

(∂tf + div(f ⊗ u)) dx (B.0.3)

when f is a vector field.
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Theorem B.2 (Leibniz’s Integral Rule). Let I and Ω be intervals of R. Let f : I × Ω −→ Rd

be a function such that

• ∂xf exists and is defined on I × Ω;

• both f and ∂xf are continuous on I × Ω;

• there exists an integrable function g : I −→ R+ such that for every (t, x) ∈ I × Ω,∥∥∥∥∥∂f∂x (t, x)
∥∥∥∥∥ 6 g(t).

Let a : Ω −→ I and b : Ω −→ I be two differentiable functions on Ω. Then the following
parametrized integral function F , defined on Ω by

F (x) =
∫ b(x)

a(x)
f(t, x)dt

is differentiable and

F ′(x) = f(b(x), x)b′(x)− f(a(x), x)a′(x) +
∫ b(x)

a(x)

∂f

∂x
(t, x)dt (B.0.4)

Proof. Let G : R3 −→ Rd be the function defined by

G(u, v, x) =
∫ v

u
f(t, x)dt

We remark that
F (x) = G(a(x), b(x), x)

Since G is differentiable with respect to each of its variables (thanks to the first fundamental
theorem of calculus and the basic form of Leibniz’s Integral Rule), F is also differentiable as
function composed of differentiable functions. To compute the derivative of F , we thus have to
apply the chain rule on G:

F ′(x) = ∂G

∂u
(a(x), b(x), x)a′(x) + ∂G

∂v
(a(x), b(x), x)b′(x) + ∂G

∂x
(a(x), b(x), x)

Let us compute the partial derivatives of G. From the first fundamental theorem of calculus,
we have

∂G

∂u
(u, v, x) = −f(u, x)

∂G

∂v
(u, v, x) = f(v, x)

and by the basic form of Leibniz’s Integral Rule

∂G

∂x
(u, v, x) =

∫ v

u

∂f

∂x
(t, x)dt

By replacing those quantities in the relation linking F ′ and the partial derivatives of G, we end
up with the result.
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Corollary B.2.1. Let I be an interval of R, Ω be an interval of R and P be a rectangle of
R2. Let u : P −→ R2 be a vector field and ϕ : I × P −→ R be a scalar field which satisfies
all the hypotheses of Leibniz’s Integral Rule with respect to both x and y. Let a : P −→ I and
b : P −→ I be two differentiable functions on P . Then, for any (x, y) ∈ P

(u · ∇)
∫ b(x,y)

a(x,y)
ϕ(t, x, y)dt =

∫ b(x,y)

a(x,y)
(u · ∇)ϕ(t, x, y)dt+ [(u · ∇)b(x, y)]ϕ(b(x, y), x, y)

− [(u · ∇)a(x, y)]ϕ(a(x, y), x, y)

(B.0.5)

Proof. From Leibniz’s Integral Rule B.2 applied to ϕ, we have

ux∂x

∫ b(x,y)

a(x,y)
ϕ(t, x, y)dt =

∫ b(x,y)

a(x,y)
ux∂xϕ(t, x, y)dt+ ϕ(b(x, y), x, y)ux∂xb(x, y)

− ϕ(a(x, y), x, y)ux∂xa(x, y)
We obtain the same kind of relation by differentiating with respect to y. Summing the two
relations in x and y yields the result.
Corollary B.2.2. Let I be an interval of R, Ω be an interval of R and P be a rectangle of
R2. Let u : P −→ R2 be a vector field and v : I × P −→ R2 be a vector field which satisfies
all the hypotheses of Leibniz’s Integral Rule with respect to both x and y. Let a : P −→ I and
b : P −→ I be two differentiable functions on P . Then, for any (x, y) ∈ P

(u · ∇)
∫ b(x,y)

a(x,y)
v(t, x, y)dt =

∫ b(x,y)

a(x,y)
(u · ∇)v(t, x, y)dt+ [(u · ∇)b(x, y)]v(b(x, y), x, y)

− [(u · ∇)a(x, y)]v(a(x, y), x, y)

(B.0.6)

div
∫ b(x,y)

a(x,y)
v(t, x, y)dt =

∫ b(x,y)

a(x,y)
div(v)(t, x, y)dt+ v(b(x, y), x, y) · ∇b(x, y)

− v(a(x, y), x, y) · ∇a(x, y)

(B.0.7)

Proof.
• The first result is directly obtained from the corollary B.2.1 by using as ϕ any component

of v and then summing.

• The second result is directly obtained from the corollary B.2.1 by using first ϕ = vx and
u =

(
1 0

)>
then ϕ = vy and u =

(
0 1

)>
. Summing the two relations in x and y yields

the result.

Corollary B.2.3. Let I be an interval of R, Ω be an interval of R and P be a rectangle of R2.
Let u : P −→ R2 be a vector field and τ be a second-order tensor defined on I×P which satisfies
all the hypotheses of Leibniz’s Integral Rule with respect to both x and y. Let a : P −→ I and
b : P −→ I be two differentiable functions on P . Then, for any (x, y) ∈ P

(u · ∇)
∫ b(x,y)

a(x,y)
τ (t, x, y)dt =

∫ b(x,y)

a(x,y)
(u · ∇)τ (t, x, y)dt+ [(u · ∇)b(x, y)] τ (b(x, y), x, y)

− [(u · ∇)a(x, y)] τ (a(x, y), x, y)

(B.0.8)

div
∫ b(x,y)

a(x,y)
τ (t, x, y)dt =

∫ b(x,y)

a(x,y)
div(τ )(t, x, y)dt+ τ (b(x, y), x, y) · ∇b(x, y)

− τ (a(x, y), x, y) · ∇a(x, y)

(B.0.9)
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Proof.

• The first result is directly obtained from the relation (B.0.6) of the corollary B.2.2 by
using as v any line vector of τ and then summing.

• The second result is obtained in exactly the same way from relation (B.0.6) of the corollary
B.2.2.

C Proof of Theorem 1.1 – Thin-layer approximation
In what follows, a will be a generic scalar field, a a generic vector field and α a generic tensor.

This proof leads to a lot of equations and it quickly becomes difficult to find their way
around. To help the reader, every step distinguishes four types of equation: conservation
laws, constitutive equations, boundary conditions and initial conditions. Moreover, there is a
pattern – that starts at subsection C.1 and stops at subsection C.4 – in the equation numbering.
Globally, an equation is numbered according to this pattern:

(C.<step>.<type_of_equation>x)

where x is a letter used to distinguish equations inside a same category. Here is the correspon-
dence between the categories and the numbers:

Step Splitting planar and vertical components Dimensional analysis Asymptotic expansion
number 1 2 3

Type of eq. Conservation laws Constitutive eq. Boundary cond. Initial cond.
number 1; 2 3; 4 5; 6; 7 8

C.1 Splitting planar and vertical components
The idea here is to prepare the forthcoming projection11 of the three-dimensional Λ(t) domain
onto its two-dimensional counterpart Ω. We would like to find new relations for our variables,
viewed as projections of those we have for the initial coupled system of evolutionary equations,
i.e. that do not depend on the vertical component z. This will essentially be achieved by first
splitting planar and vertical components then by integrating over [0, h] the different equations
we will obtain in the next subsections.

C.1.1 Conservation laws

divs(us) + ∂uz
∂z

= 0 (C.1.1)

11not in a geometrical sense but in a topological sense
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ρ

(
∂us
∂t

+ (us · ∇s)us
)
− divs(σs)−

∂σsz
∂z

= 0 (C.1.2a)

ρ

(
∂uz
∂t

+ (us · ∇s)uz
)
− divs(σsz)−

∂σzz
∂z

= 0 (C.1.2b)

C.1.2 Constitutive equations

σs = τ s + 2ηsDs(us)− pIs (C.1.3a)

σsz = τ sz + ηs

(
∂us
∂z

+∇suz
)

(C.1.3b)

σzz = τzz + 2ηs
∂uz
∂z
− p (C.1.3c)

λ

[
∂τ s
∂t

+ (us · ∇s)τ s − (∇sus)τ s − τ s(∇sus)>

−∂us
∂z
⊗ τ sz − τ sz ⊗

∂us
∂z

]
+ τ s = 2ηmDs(us)

λ

[
∂τ sz
∂t

+ (us · ∇s)τ sz − (∇sus)τ sz − τ s(∇suz)

− ∂us
∂z

τzz − τ sz
∂uz
∂z

]
+ τ sz = ηm

(
∂us
∂z

+∇suz
)

λ

[
∂τzz
∂t

+ (us · ∇s)τzz − 2∇suz · τ sz − 2∂uz
∂z

τzz

]
+ τzz = 2ηm

∂uz
∂z

(C.1.4a)

(C.1.4b)

(C.1.4c)

C.1.3 Boundary conditions

On ]0, tf [×Γf (t):

∂h

∂t
+ (us · ∇s)h− uz = 0 (C.1.5a)

−σs(∇sh) + σsz = 0 (C.1.5b)
−σsz · ∇sh+ σzz = 0 (C.1.5c)

On ]0, tf [×Γ0:

−uz = 0 (C.1.6a)
−σsz + ζus = fa (C.1.6b)

On ]0, tf [×Γ(t):
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(σsns)t,s + ((σsz)t,s − (σsz · ns)ns − σzznzns)nz = 0
σsz · ns + (σzz − (σsns) · ns)nz + (σzznz − 2σsz · ns)n2

z = 0

If Γ(t) is regular enough, then n is collinear to
(
ν 0

)>
, where ν is the outer unit normal

vector to Ω on ∂Ω. As a consequence, ns does not depend on z. Then, it exists a scalar field
C > 0 such that

ns = Cν

Actually, we can give an explicit form to C. Indeed, since ‖n‖2 = ‖ν‖2 = 1, we end up with
C2 +n2

z = 1 then C =
√

1− n2
z ∈]0, 1] since nz ∈ [0, 1[. By replacing ns in the previous relations

and adding the boundary condition for the velocity, we obtain

us · ν = 0 (C.1.7a)
Cσsν − C3((σsν) · ν)ν +

(
σsz − 2C2(σsz · ν)ν − Cσzznzν

)
nz = 0 (C.1.7b)

Cσsz · ν + (σzz − C2(σsν) · ν)nz + (σzznz − 2Cσsz · ν)n2
z = 0 (C.1.7c)

C.1.4 Initial conditions

On Γ0 :
h(0, ·) = h0 (C.1.8a)

In Λ(0) :
us(0, ·) = u0,s (C.1.8b)
uz(0, ·) = u0,z (C.1.8c)

In Λ(0) :
τ s(0, ·) = τ 0,s (C.1.8d)
τ sz(0, ·) = τ 0,sz (C.1.8e)
τzz(0, ·) = τ0,zz (C.1.8f)

C.2 Dimensional Analysis
For notation convenience, we will drop the tilde in what follows. The following table shows
how we proceed the nondimensionalization of the equations in practice:

With dimension Without dimension
a Aa
∂ta A/T ∂ta
∂za A/H ∂za
∇sa 1/L∇sa

divsa 1/L divsa

where A is the characteristic quantity associated with the scalar field a. These relations can
be easily generalized for a vector field or a tensor.

C.2.1 Conservation laws

divs(us) + ∂uz
∂z

= 0 (C.2.1)
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ρ

(
U

T

∂us
∂t

+ U2

L
(us · ∇s)us + V U

H
uz
∂us
∂z

)
− Σ
L

divs(σs)−
Σ
H

∂σsz
∂z

= 0

ρ

(
V

T

∂uz
∂t

+ UV

L
(us · ∇s)uz + V 2

H
uz
∂uz
∂z

)
− Σ
L

divs(σsz)−
Σ
H

∂σzz
∂z

= 0

By expressing everything in terms of U , L, ε and η, we end up with

ρ

(
U2

L

∂us
∂t

+ U2

L
(us · ∇s)us + U2

L
uz
∂us
∂z

)
− ηU

L2 divs(σs)−
ηU

εL2
∂σsz
∂z

= 0

ρ

(
εU2

L

∂uz
∂t

+ εU2

L
(us · ∇s)uz + εU2

L
uz
∂uz
∂z

)
− ηU

L2 divs(σsz)−
ηU

εL2
∂σzz
∂z

= 0

By multiplying both sides in each equation by ε L2

Uη
, we finally get

εRe

(
∂us
∂t

+ (us · ∇s)us + uz
∂us
∂z

)
− εdivs(σs)−

∂σsz
∂z

= 0 (C.2.2a)

ε2Re

(
∂uz
∂t

+ (us · ∇s)uz + uz
∂uz
∂z

)
− εdivs(σsz)−

∂σzz
∂z

= 0 (C.2.2b)

C.2.2 Constitutive equations

σs = τ s + 2(1− β)Ds(us)− pIs (C.2.3a)

εσsz = ετ sz + (1− β)
(
∂us
∂z

+ ε2∇suz
)

(C.2.3b)

σzz = τzz + 2(1− β)∂uz
∂z
− p (C.2.3c)

εWe

[
∂τ s
∂t

+ (us · ∇s)τ s

− (∇sus)τ s − τ s(∇sus)>
]
−We

(
∂us
∂z
⊗ τ sz + τ sz ⊗

∂us
∂z

)
+ ετ s = 2εβDs(us)

εWe

[
∂τ sz
∂t

+ (us · ∇s)τ sz

−
(
∇sus + ∂uz

∂z
Is
)
τ sz − ετ s(∇suz)

]
−We

∂us
∂z

τzz

+ ετ sz = β

(
∂us
∂z

+ ε2∇suz
)

We

[
∂τzz
∂t

+ (us · ∇s)τzz − 2ε∇suz · τ sz − 2∂uz
∂z

τzz

]
+ τzz = 2β∂uz

∂z

(C.2.4a)

(C.2.4b)

(C.2.4c)
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C.2.3 Boundary conditions

On ]0, tf [×Γf (t):

∂h

∂t
+ (us · ∇s)h− uz = 0 (C.2.5a)

−εσs(∇sh) + σsz = 0 (C.2.5b)
−εσsz · ∇sh+ σzz = 0 (C.2.5c)

On ]0, tf [×Γ0:

−uz = 0 (C.2.6a)
−σsz + εαus = fa (C.2.6b)

On ]0, tf [×Γ(t):

us · ν = 0 (C.2.7a)
Cσsν − C3((σsν) · ν)ν +

(
σsz − 2C2(σsz · ν)ν − Cσzznzν

)
nz = 0 (C.2.7b)

Cσsz · ν + (σzz − C2(σsν) · ν)nz + (σzznz − 2Cσsz · ν)n2
z = 0 (C.2.7c)

C.2.4 Initial conditions

On Γ0 :
h(0, ·) = h0 (C.2.8a)

In Λ(0) :
us(0, ·) = u0,s (C.2.8b)
uz(0, ·) = u0,z (C.2.8c)

In Λ(0) :
τ s(0, ·) = τ 0,s (C.2.8d)
τ sz(0, ·) = τ 0,sz (C.2.8e)
τzz(0, ·) = τ0,zz (C.2.8f)

C.3 Asymptotic expansion
C.3.1 Conservation laws

divs(u(0)
s + εu(1)

s +O(ε2)) +
∂
(
u(0)
z + εu(1)

z +O(ε2)
)

∂z
= 0

By using hypothesis (i) and the linearity of the differential operators, by remarking that any
differential operator in time or space applied on a O(ε2) remains a O(ε2) and by considering
the previous equality as a polynomial equality whose variable is ε, we obtain the system of
equations

divs(u(0)
s ) + ∂u(0)

z

∂z
= 0

divs(u(1)
s ) + ∂u(1)

z

∂z
= 0

(C.3.1a)

(C.3.1b)
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∂σ(0)
sz

∂z
= 0

Re

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s + u(0)

z

∂u(0)
s

∂z

)
− divs(σ(0)

s )− ∂σ(1)
sz

∂z
= 0

∂σ(0)
zz

∂z
= 0

divs
(
σ(0)
sz

)
+ ∂σ(1)

zz

∂z
= 0

(C.3.2a)

(C.3.2b)

(C.3.2c)

(C.3.2d)

C.3.2 Constitutive equations

σ(0)
s − τ (0)

s − 2(1− β)Ds(u(0)
s ) + p(0)Is = 0

σ(1)
s − τ (1)

s − 2(1− β)Ds(u(1)
s ) + p(1)Is = 0

(1− β)∂u
(0)
s

∂z
= 0

σ(0)
sz − τ (0)

sz − (1− β)∂u
(1)
s

∂z
= 0

σ(0)
zz − τ (0)

zz − 2(1− β)∂u
(0)
z

∂z
+ p(0) = 0

σ(1)
zz − τ (1)

zz − 2(1− β)∂u
(1)
z

∂z
+ p(1) = 0

(C.3.3a)
(C.3.3b)

(C.3.3c)

(C.3.3d)

(C.3.3e)

(C.3.3f)
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−We

(
∂u(0)

s

∂z
⊗ τ (0)

sz + τ (0)
sz ⊗

∂u(0)
s

∂z

)
= 0

We

[
∂τ (0)

s

∂t
+
(
u(0)
s · ∇s + u(0)

z

∂

∂z

)
τ (0)
s − (∇su(0)

s )τ (0)
s − τ (0)

s (∇su(0)
s )>

]

−We

(
∂u(1)

s

∂z
⊗ τ (0)

sz + ∂u(0)
s

∂z
⊗ τ (1)

sz + τ (1)
sz ⊗

∂u(0)
s

∂z
+ τ (0)

sz ⊗
∂u(1)

s

∂z

)
+ τ (0)

s − 2βDs(u(0)
s ) = 0

−We
∂u(0)

s

∂z
τ (0)
zz − β

∂u(0)
s

∂z
= 0

We

[
∂τ (0)

sz

∂t
+
(
u(0)
s · ∇s + u(0)

z

∂

∂z

)
τ (0)
sz −

(
∇su(0)

s + ∂u(0)
z

∂z
Is
)
τ (0)
sz

]

−We

(
∂u(1)

s

∂z
τ (0)
zz + ∂u(0)

s

∂z
τ (1)
zz

)
+ τ (0)

sz − β
∂u(1)

s

∂z
= 0

We

[
∂τ (0)

zz

∂t
+
(
u(0)
s · ∇s + u(0)

z

∂

∂z

)
τ (0)
zz − 2∂u

(0)
z

∂z
τ (0)
zz

]
+ τ (0)

zz − 2β∂u
(0)
z

∂z
= 0

We

[
∂τ (1)

zz

∂t
+
(
u(1)
s · ∇s + u(1)

z

∂

∂z

)
τ (0)
zz

+
(
u(0)
s · ∇s + u(0)

z

∂

∂z

)
τ (1)
zz − 2∇su(0)

z · τ (0)
sz

− 2∂u
(1)
z

∂z
τ (0)
zz − 2∂u

(0)
z

∂z
τ (1)
zz

]
− τ (1)

zz − 2β∂u
(1)
z

∂z
= 0

(C.3.4a)

(C.3.4b)

(C.3.4c)

(C.3.4d)

(C.3.4e)

(C.3.4f)

C.3.3 Boundary conditions

On ]0, tf [×Γf (t):

∂h

∂t
+ (u(0)

s · ∇s)h− u(0)
z = 0

σ(0)
sz = 0

−σ(0)
s (∇sh) + σ(1)

sz = 0
σ(0)
zz = 0

−σ(0)
sz · ∇sh+ σ(1)

zz = 0

(C.3.5a)

(C.3.5b)
(C.3.5c)
(C.3.5d)
(C.3.5e)

46 MSIAM – Ensimag & UGA Nathan Shourick



Asymptotic expansion and numerical simulation in viscoelastic fluids

On ]0, tf [×Γ0:

−u(0)
z = 0

−u(1)
z = 0

σ(0)
sz + f (0)

a = 0
σ(1)
sz − αu(0)

s + f (1)
a = 0

(C.3.6a)
(C.3.6b)
(C.3.6c)
(C.3.6d)

On ]0, tf [×Γ(t):

u(0)
s · ν = 0
u(1)
s · ν = 0

Cσ(0)
s ν − C3((σ(0)

s ν) · ν)ν +
(
σ(0)
sz − 2C2(σ(0)

sz · ν)ν − Cσ(0)
zz nzν

)
nz = 0

Cσ(0)
sz · ν + (σ(0)

zz − C2(σ(0)
s ν) · ν)nz + (σ(0)

zz nz − 2Cσ(0)
sz · ν)n2

z = 0

(C.3.7a)
(C.3.7b)
(C.3.7c)
(C.3.7d)

C.3.4 Initial conditions

On Γ0 :
h(0, ·) = h0 (C.3.8a)

In Λ(0) :
u(0)
s (0, ·) = u

(0)
0,s (C.3.8b)

u(1)
s (0, ·) = u

(1)
0,s (C.3.8c)

u(0)
z (0, ·) = u

(0)
0,z (C.3.8d)

u(1)
z (0, ·) = u

(1)
0,z (C.3.8e)

In Λ(0) :
τ (0)
s (0, ·) = τ

(0)
0,s (C.3.8f)

τ (1)
s (0, ·) = τ

(1)
0,s (C.3.8g)

τ (0)
sz (0, ·) = τ

(0)
0,sz (C.3.8h)

τ (1)
sz (0, ·) = τ

(1)
0,sz (C.3.8i)

τ (0)
zz (0, ·) = τ

(0)
0,zz (C.3.8j)

τ (1)
zz (0, ·) = τ

(1)
0,zz (C.3.8k)

C.4 Reduction
As said in subsection C.1, the idea is now to find new relations for our variables by combining
and integrating over [0, h] the different equations we obtained in the previous subsection.

From the constitutive equation (C.3.3c), whenever β 6= 1, we have

∂u(0)
s

∂z
= 0 (C.4.1)

which means u(0)
s is independent on z. Whenever β = 1, we retrieve this result from equation

(C.3.4c) as We(τ (0)
zz + β) 6= 0 whenever β 6= 0. Indeed, if we assume the opposite, equation

(C.3.4e) tells us that τ (0)
zz = −β/We = 0, which is absurd since we have assumed that β 6= 0.

Thus, by integrating over [0, h] the mass conservation law (C.3.1a) and by using the boundary
condition (C.3.6a), we obtain the relation

u(0)
z z=h = −h divs(u(0)

s ) (C.4.2)

which is valid in the whole domain Ω.
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Remark. Equality (C.4.1) suggests that the cells move as a block, i.e. all the points on a given
vertical move at the same velocity.

From the momentum conservation laws (C.3.2a) and (C.3.2c) and from the boundary con-
ditions (C.3.5b) and (C.3.5d), we deduce that in ]0, tf [×Λ(t),

σ(0)
sz = 0 (C.4.3)
σ(0)
zz = 0 (C.4.4)

By plugging (C.4.3) in the momentum conservation law (C.3.2d) and in the boundary
condition (C.3.5e), we deduce

σ(1)
zz = 0 (C.4.5)

Remark. Equations (C.4.4) and (C.4.5) show that σzz = O(ε2). Thus, approximately, the cell
monolayer is not subject to any tension or compression in the vertical direction. From the
equation (C.4.3), we could also say that the cells are subject to a vertical shear that is of the
same order as ε. And indeed the boundary condition (C.3.6d) shows that the first-order term
is non-negligible.

C.4.1 Conservation laws

From equation (C.4.2) and from the free surface kinematic condition (C.3.5a) we deduce that
in ]0, tf [×Ω

∂h

∂t
+ (u(0)

s · ∇s)h+ h divs(u(0)
s ) = 0

∂h

∂t
+ u(0)

s · ∇sh+ h divs(u(0)
s ) = 0

∂h

∂t
+ divs(hu(0)

s ) = 0 (C.4.6)

By injecting the relation (C.4.1) into the momentum conservation law (C.3.2b), we get by
integrating over [0, h]

Re
∫ h

0

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
dz +Re

∫ h

0
u(0)
z
�
�
���

0
∂u(0)

s

∂z
dz −

∫ h

0
divs(σ(0)

s )dz −
∫ h

0

∂σ(1)
sz

∂z
dz = 0

hRe

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
− divs

∫ h

0
σ(0)
s dz + σ(0)

s z=h∇sh−
[
σ(1)
sz

]z=h
z=0

= 0

hRe

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
− divs

∫ h

0
σ(0)
s dz + σ(0)

s z=h∇sh− σ
(1)
sz z=h + σ(1)

sz z=0 = 0

where to pass from the first line to the the second one we used the Leibniz’s Integral Rule
(B.0.9) from corollary B.2.3. Now, by using the boundary conditions (C.3.5c) and (C.3.6d), we
obtain

hRe

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
− divs

(
h σ(0)

s

)
+�����σ(1)

sz z=h −���
��σ(1)

sz z=h + αu(0)
s − f (1)

a = 0

hRe

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
− divs

(
h σ(0)

s

)
+ αu(0)

s − f (1)
a = 0

(C.4.7)
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It could seem surprising that this relation depends on f (1)
a and not on f (0)

a – meaning that the
latter disappears from the equations. Actually, it is not. From the equation (C.4.3) and from
the boundary condition (C.3.6c), we remark that

f (0)
a = 0 (C.4.8)

which means that fa = O(ε): the active force is of the same order as the aspect ratio of the
geometry. This is at this stage that the hypotheses we made on the friction coefficient ζ and on
the characteristic stresses come into play. If we had rather decided that ζ is of the same order
of magnitude as ε0, then we would have α = ζU/Σ and the conservation law (C.4.7) would
have read

hRe

(
∂u(0)

s

∂t
+ (u(0)

s · ∇s)u(0)
s

)
− divs

(
h σ(0)

s

)
+ αu(1)

s − f (1)
a = 0

We would still have the first-order term of the active force but the friction force wouldn’t have
to do with the zero-order term of the velocity, but it would have to do with its first-order term.
The new coupled system of evolutionary equations would then contain both u(0)

s and u(1)
s , which

are unknowns. Therefore, it would complicate the resolution of the system too much. On the
contrary, if we had wanted to make appear the zero-order term of the active force, we would
have make for instance the following hypothesis:

fa = F f̃a

where F is of the same order of magnitude as ε, and we would have the following boundary
condition on ]0, tf [×Γ0:

σ(0)
sz = 0

σ(1)
sz − αu(0)

s + f (0)
a = 0

In this case, we therefore assume that fa = O(ε), unlike the previous case where this fact is
deduced from the assumptions already in place and from the equations. It is difficult to affirm
that one hypothesis is better than the other, especially when the result is the same in all cases.

C.4.2 Constitutive equations

By plugging the relations (C.4.4) and (C.4.5) in the constitutive equations (C.3.3e) and (C.3.3f),
we can express the pressure in terms of the elastic stress tensor and the velocity field:

p(0) = τ (0)
zz + 2(1− β)∂u

(0)
z

∂z
(C.4.9)

p(1) = τ (1)
zz + 2(1− β)∂u

(1)
z

∂z
(C.4.10)

Combining the constitutive equation (C.3.3a) and the above first relation, we get

σ(0)
s = τ (0)

s + 2(1− β)Ds(u(0)
s )−

(
τ (0)
zz + 2(1− β)∂u

(0)
z

∂z

)
Is

and finally thanks to (C.4.1) and (C.4.2)

σ(0)
s =

(
τ (0)
s − τ (0)

zz Is
)

+ 2(1− β)
(
Ds(u(0)

s ) + divs(u(0)
s )Is

)
(C.4.11)
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Remark. Whenever β = 1, we get from the pressure relation (C.4.9) the following equality:

τ (0)
zz = p(0) (C.4.12)

Looking first at the constitutive equation (C.3.4b), we remark for instance the coupled
terms ∂zu(1)

s ⊗ τ (0)
sz . It will make us struggle when we will average on height the constitutive

equation because a priori we do not know any handful information (specifically to this case)
about those terms12, except the constitutive equation (C.3.3d). When β = 0, i.e. when ηm = 0,
it automatically results inWe = 0 since it is proportional to λ which is itself proportional to ηm.
Then we conclude from the constitutive equations that τ (0)

s = 0, τ (0)
sz = 0 and τ (0)

zz = τ (1)
zz = 0.

Thus, the computations we are doing here do not concern the specific case β 6= 0.
By using the equality (C.4.3), we deduce from (C.3.3d)

τ (0)
sz = −(1− β)∂u

(1)
s

∂z

Let us take a look at the case β = 1. From the above equation, we have automatically τ (0)
sz = 0.

Thus from equation (C.4.1) and from the constitutive equation (C.3.4d), we have

(
We τ (0)

zz + 1
)

︸ ︷︷ ︸
6=0

∂u(1)
s

∂z
= 0

hence

∂u(1)
s

∂z
= 0

Now, let us come back to the case β /∈ {0, 1}. By hypothesis (ii), that we can justify either
by mimicry or to make the computations more convenient, we have

∂u(1)
s

∂z
= 0 (C.4.13)

then we get

τ (0)
sz = 0 (C.4.14)

By plugging those relations and the relation (C.4.1) in the constitutive equation (C.3.4b),
we come up with (even in the case β = 1 so)

We

[
∂τ (0)

s

∂t
+
(
u(0)
s · ∇s + u(0)

z

∂

∂z

)
τ (0)
s − (∇su(0)

s )τ (0)
s − τ (0)

s (∇su(0)
s )>

]

−We

(
��

��
�
��*

0
∂u(1)

s

∂z
⊗ τ (0)

sz +
��

��
�
��*

0
∂u(0)

s

∂z
⊗ τ (1)

sz +
��

��
�
��*

0

τ (1)
sz ⊗

∂u(0)
s

∂z
+
��

��
�
��*

0

τ (0)
sz ⊗

∂u(1)
s

∂z

)

+ τ (0)
s − 2βDs(u(0)

s ) = 0

12Even if we had considered higher order terms.
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Then, by integrating over [0, h], we have

We

[ ∫ h

0

∂τ (0)
s

∂t
dz +

∫ h

0
(u(0)

s · ∇s)τ (0)
s dz +

∫ h

0
u(0)
z

∂τ (0)
s

∂z
dz −

∫ h

0
(∇su(0)

s )τ (0)
s dz

−
∫ h

0
τ (0)
s (∇su(0)

s )>dz
]

+
∫ h

0
τ (0)
s dz − 2β

∫ h

0
Ds(u(0)

s )dz = 0

But since u(0)
s is independent on z (C.4.1), we get after having integrated by part the third

term

We

[ ∫ h

0

∂τ (0)
s

∂t
dz +

∫ h

0
(u(0)

s · ∇s)τ (0)
s dz +

[
u(0)
z τ

(0)
s

]z=h
z=0
−
∫ h

0

∂u(0)
z

∂z
τ (0)
s dz

−(∇su(0)
s )

∫ h

0
τ (0)
s dz −

∫ h

0
τ (0)
s dz (∇su(0)

s )>
]

+
∫ h

0
τ (0)
s dz − 2βhDs(u(0)

s ) = 0

Now, by using Leibniz’s Integral Rule B.2, the boundary condition (C.3.6a), the relation (C.4.2)
and once again (C.4.1), we come up with

We

[
∂

∂t

(∫ h

0
τ (0)
s dz

)
− τ (0)

s z=h
∂h

∂t

+ (u(0)
s · ∇s)

∫ h

0
τ (0)
s dz − (u(0)

s · ∇sh)τ (0)
s z=h

− h divs(u(0)
s )τ (0)

s z=h −���
���:

0(
u(0)
z τ

(0)
s

)
z=0

+ divs(u(0)
s )

∫ h

0
τ (0)
s dz

− (∇su(0)
s )

∫ h

0
τ (0)
s dz −

∫ h

0
τ (0)
s dz (∇su(0)

s )>
]

+
∫ h

0
τ (0)
s dz − 2βhDs(u(0)

s ) = 0

then after rearrangement

We

[ (
∂

∂t
+ (u(0)

s · ∇s)
)(∫ h

0
τ (0)
s dz

)
− (∇su(0)

s )
∫ h

0
τ (0)
s dz −

∫ h

0
τ (0)
s dz (∇su(0)

s )>
]

+We divs(u(0)
s )

∫ h

0
τ (0)
s dz −

(
∂h

∂t
+ h divs(u(0)

s ) + (u(0)
s · ∇sh)

)
τ (0)
s z=h

+
∫ h

0
τ (0)
s dz − 2βhDs(u(0)

s ) = 0

From the density conservation law (C.4.6), we get

We

[ (
∂

∂t
+ (u(0)

s · ∇s)
)(

hτ (0)
s

)
− (∇su(0)

s )
(
hτ (0)

s

)
−
(
hτ (0)

s

)
(∇su(0)

s )>
]

+We h divs(u(0)
s )τ (0)

s + hτ (0)
s − 2βhDs(u(0)

s ) = 0
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then

We

[
h

(
∂

∂t
+ (u(0)

s · ∇s)
)
τ (0)
s − (∇su(0)

s )
(
hτ (0)

s

)
−
(
hτ (0)

s

)
(∇su(0)

s )>
]

+We

[
∂h

∂t
+ (u(0)

s · ∇s)h+ h divs(u(0)
s )

]
τ (0)
s

+ hτ (0)
s − 2βhDs(u(0)

s ) = 0

where τ (0)
s = 1

h

∫ h

0
τ (0)
s dz. We conclude thanks to the density conservation law (C.4.6) and by

simplification by h 6= 0:

We
∇s

τ (0)
s + τ (0)

s − 2βDs(u(0)
s ) = 0 (C.4.15)

With a similar reasoning, the constitutive equation (C.3.4e) becomes

We

(
∂τ (0)

zz

∂t
+
(
u(0)
s · ∇s

)
τ (0)
zz + 2divs(u(0)

s )τ (0)
zz

)
+ τ (0)

zz + 2βdivs(u(0)
s ) = 0

We

(
Dsτ

(0)
zz

Dt
+ 2divs(u(0)

s )τ (0)
zz

)
+ τ (0)

zz + 2βdivs(u(0)
s ) = 0 (C.4.16)

C.4.3 Boundary conditions

By using the equations (C.4.3) and (C.4.4), we have

u(0)
s · ν = 0

σ(0)
s ν − C2((σ(0)

s ν) · ν)ν = 0
√

1− C2 ((σ(0)
s ν) · ν) = 0

because C 6= 0. By integrating over [0, h] then simplified by h 6= 0, we obtain the boundary
conditions on ]0, tf [×∂Ω:

u(0)
s · ν = 0

σ(0)
s ν −

((
C2σ

(0)
s ν

)
· ν
)
ν = 0(√

1− C2 σ
(0)
s ν

)
· ν = 0

The simple case C = 1, imposed by hypothesis (iii), gives the following simplified boundary
conditions:

u(0)
s · ν = 0

(σ(0)
s ν)t = 0

(C.4.17a)
(C.4.17b)

C.4.4 Initial conditions

h(0, ·) = h0 in Γ0 (C.4.18a)
u(0)
s (0, ·) = u

(0)
0,s in Γ0 (C.4.18b)

τ (0)
s (0, ·) = τ

(0)
0,s in Γ0 (C.4.18c)

τ (0)
zz (0, ·) = τ

(0)
0,zz in Γ0 (C.4.18d)

52 MSIAM – Ensimag & UGA Nathan Shourick



Asymptotic expansion and numerical simulation in viscoelastic fluids

C.4.5 Conclusion

By combining the conservation laws (C.4.6) and (C.4.7), the constitutive equations (C.4.11),
(C.4.15) and (C.4.16), the boundary conditions (C.4.17a) and (C.4.17b) and the initial condi-
tions (C.4.18a), (C.4.18b), (C.4.18c) and (C.4.18d) and by invoking hypothesis (iv), we obtain
the final system of partial differential equations valid for any β ∈ [0, 1]:
(P1): Find τ , τzz, u and h defined in ]0, tf [×Ω such that

−div(h σ) + αu− fa = 0 in ]0, tf [×Ω
∂h

∂t
+ div(hu) = 0 in ]0, tf [×Ω

σ = (τ − τzzI) + 2(1− β)(D(u) + div(u)I) in ]0, tf [×Ω

We
∇
τ + τ − 2βD(u) = 0 in ]0, tf [×Ω

We
(
Dτzz
Dt

+ 2div(u)τzz
)

+ τzz + 2βdiv(u) = 0 in ]0, tf [×Ω

u · ν = 0 and (σν)t = 0 on ]0, tf [×∂Ω
h(0, ·) = h0 in Ω

τ (0, ·) = τ 0 and τzz(0, ·) = τzz,0 in Ω

(C.4.19a)

(C.4.19b)

(C.4.19c)

(C.4.19d)

(C.4.19e)

(C.4.19f)
(C.4.19g)
(C.4.19h)

where we dropped the orders (0) and (1), the subscripts s and the bars for notation convenience.
The problem amounts to solving a closed system: we have 4 unknowns h, u, τ and p for 4
equations, boundary conditions on the whole boundary ∂Ω of the system domain Ω and initial
conditions for all the unknowns.

D Resolution of the problem in a very specific case
We place ourselves in the case under consideration at the beginning of section 2. When α is
sufficiently large, the viscous term in (2.0.1a) is negligible with respect to the friction and the
active force. Then u and h must satisfy the following system:

αu = −γ h−1 · ∇h1Ωc(t) in ]0, tf [×Ω (D.0.1a)
∂th = −div(hu) in ]0, tf [×Ω (D.0.1b)
u · ν = 0 on ]0, tf [×∂Ω (D.0.1c)
h(0, ·) = h0 in Ω (D.0.1d)

i.e.

∂th = γ/α∆h in ]0, tf [×Ωc(t)
h(t, ·) = h0 in [0, tf [×Ωc(t)c

∂νh = 0 on ]0, tf [×∂Ω
h(0, ·) = h0 in Ωc(0)

We recognize a heat-like equation with diffusivity parameter γ/α. By making the change of
variable s = γ/α t (thus sf = γ/α tf ) and by abusing the notation, we end up with the following
equation:
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(P ): Find h defined in ]0, sf [×Ω such that


∂sh = ∆h in ]0, sf [×Ωc(s)
h(s, ·) = h0 in [0, sf [×Ωc(s)c

∂νh = 0 on ]0, sf [×∂Ω
h(0, ·) = h0 in Ωc(0)

(D.0.2a)
(D.0.2b)
(D.0.2c)
(D.0.2d)

It is possible to explicitly write the solution of this problem when Ω = R. Indeed, one can
check that

h(s, x) =

 c1 − c2 erf
(

x

2
√
s

)
if s > 0 and c1 − c2 erf

(
x

2
√
s

)
> hc

h0(x) otherwise
(D.0.3)

where c1 ∈ R and c2 ∈ R∗ are constant and

erf(x) = 2√
π

∫ x

0
e−t2 dt (D.0.4)

is the error function, is solution of the previous problem, as

lim
|x|→+∞

∂xh(s, x) = lim
|x|→+∞

− 1√
πs

exp
(
−x

2

4s

)
= 0

for any s > 0, and if lim
|x|→+∞

h′0(x) = 0. The latter is a kind of compatibility condition. In
practice, we need not explicitly take R as domain, as long as the solution h decreases fast
enough not to be affected by the Neumann’s condition. Eventually, to ensure the positivity of
h, assuming h0 > 0 in R, a necessary and sufficient condition is∣∣∣∣c1

c2

∣∣∣∣ > 1 (D.0.5)

as for any x ∈ R, erf(x) ∈]− 1, 1[.
Let us try to explicit constants c1 and c2. For instance, for any x ∈ R, h(·, x) will be

continuous if

lim
s→0+

h(s, x) = h0(x)

i.e. if

h0(x) =


c1 − c2 if x > 0
c1 if x = 0

c1 + c2 if x < 0
(D.0.6)

Here, we clearly have lim
|x|→+∞

h′0(x) = 0. For example, to have lim
x→+∞

h0(x) = 0, we should take
c1 = c2, in which case the initial condition should be equal to

h0(x) =


0 if x > 0
c1 if x = 0
2c1 if x < 0

(D.0.7)
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Case c1 = 1/2 is the one we have chosen in section 3.
Coming back to the general resolution, we reverse the change of scale in time we made to

get

h(t, x) =

 c1 − c2 erf
(√

α

γ
· x

2
√
t

)
if t > 0 and c1 − c2 erf

(√
α

γ
· x

2
√
t

)
> hc

h0(x) otherwise
(D.0.8)

From this relation, we deduce an explicit form for the front position at any time t ∈]0, tf ]:

xf (t) = 2 erf−1
(
c1 − hc
c2

)√
γ

α
t (D.0.9)

in which case, the tissue domain can also be defined by

Ωc(t) =

]−∞, xf (t)] if c2 > 0
[xf (t),+∞[ if c2 < 0

(D.0.10)

for any t > 0, since erf is an increasing function. Besides, to ensure the continuity of the front
in t = 0, we should take h0 > hc in R− if c2 > 0 (R+ if c2 < 0) and 0 elsewhere. Notice the
agreement between the continuity of h in time (equation (D.0.7)) and that of the front.

Finally, we can also give an explicit form to the velocity by using relation (D.0.1a):

u(t, x) =



γ
1/2 exp

(
−αx

2

4γt

)

α1/2

(
c1 − c2 erf−1

(
α

1/2x

2γ1/2
√
t

))√
πt

if t > 0 and c1 − c2 erf
(√

α

γ
· x

2
√
t

)
> hc

0 otherwise
(D.0.11)

Figure D.1 shows the curves (x, h(t, x)) and (x, u(t, x)) for t ∈ {1, 3, 5, 7}, c1 = c2 = 1/2, h0 as
in (D.0.7) and γ/α = 11.75.
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(a) (b)

Figure D.1: Exact solutions of the large α model at different times when c1 = c2 = 1/2, h0 is
like in (D.0.7) and γ/α = 11.75.
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