Non-Newtonian Spreading Simulation of Molten Nuclear Combustible

Thomas Schiano1,2, Barbara Bigot1, Jean-François Haquet1, Pierre Saramito2, Claude Smutek3

1CEA, DES/IRENE/DTN/15MTA/LMAG
Cadarache, Saint-Paul-lez-Durance, France, thomas.schiano@cea.fr

2Lab. J. Kuntzmann, CNRS and Grenoble Alpes University
700 Avenue Centrale, Saint Martin d’Hères, France

3Lab. Géosciences Réunions, Réunion University, Institut de Physique du Globe de Paris
15 Avenue René Cassin, Saint Denis

Abstract - In this paper, the non-dimensional 3D model for a free-surface non-Newtonian anisotherm flow is described. Its use for molten nuclear reactor core (corium) in the event of severe accidents is argued using similarity criteria. The model is then implemented in a finite element code based on the C++ library Rheolef. The resulting simulations are compared to experimental data from the prototypical corium spreading experiment VEU7.

Keywords: Viscoplastic Fluid, Spreading, Corium, Severe Nuclear Accidents, Simulation, Free Surface Flow

1. Introduction
During a hypothetical nuclear reactor severe accident the reactor core would melt fully or partially to form a mixture of nuclear combustible, its rod and assembly, in a metallic or oxidized form, called corium. Part of the Ex-Vessel Retention (EVR) strategy for the European Pressurized Reactor (EPR) concept [1] is to dedicate a section of the reactor to the melt spreading on a concrete basemat, to reduce surface heat load due to radioactive heat decay on the structure.

Prototypic corium spreading experiments such as the VULCANO tests [2] provide valuable experimental data on the laminar part of the spreading process, to check the validity of safety codes.

Current industrial corium spreading codes include THEMA [3] and CORFLOW [4] that use a regularized Binghamian description of the fluid. The viscoplastic corium description has been gathering interest in order to obtain a more accurate description of the stopping process and length, since the viscosity and yield stress measurements made by Roche et al. [5].

As pointed out by Saramito and Wachs [6], the regularization approach currently used in industrial codes lacks a general convergence result of the solution with the regularization parameter and cannot follow the unyielded regions of a yield stress fluid flow where the deformation rate tensor is equal to zero.

Here, we propose a non-regularized 3D height-averaged finite element approach. It has been described and simulated successfully for lava flows by Bernabeu et al. [7] using the finite element library Rheolef [8]. A second-order temperature polynomial approximation in the vertical direction is used with varying viscosity using the Shaw model [9].

2. Methods
The study domain \(\Omega \) is defined as the sum of the melt domain \(\Omega_f(t) \), substrate domain \(\Omega_s \) and environment \(\Omega_d(t) \) as described on Fig.1. The non-dimensional mass, momentum along \(x \) and \(z \) axes and energy conservation equations read:

\[
\frac{\partial}{\partial t}u_x + \frac{\partial}{\partial x}u_x + \frac{\partial}{\partial y}u_y + \frac{\partial}{\partial z}u_z = 0, \tag{1}
\]

with, \(u_x, u_y \) and \(u_z \) the components of velocity,

\[
\varepsilon^2 \Re (\frac{\partial}{\partial t}u_x + u_x \frac{\partial}{\partial x}u_x + u_y \frac{\partial}{\partial y}u_x + u_z \frac{\partial}{\partial z}u_x) = -\frac{\partial}{\partial x}p + \varepsilon^2 (\frac{\partial}{\partial x}\tau_{xx} + \frac{\partial}{\partial y}\tau_{xy} + \frac{\partial}{\partial z}\tau_{xz}), \tag{2}
\]

\[
\varepsilon^4 \Re (\frac{\partial}{\partial t}u_z + u_x \frac{\partial}{\partial x}u_z + u_y \frac{\partial}{\partial y}u_z + u_z \frac{\partial}{\partial z}u_z) = 1 - \frac{\partial}{\partial z}p + \varepsilon^2 (\frac{\partial}{\partial x}\tau_{zx} + \frac{\partial}{\partial y}\tau_{zy} + \frac{\partial}{\partial z}\tau_{zz}), \tag{3}
\]

with \(\varepsilon = H/L \) the aspect ratio of the characteristic height to the characteristic length, \(p \) the pressure, \(\tau \) the deviatoric part of the Cauchy stress tensor and \(\Re \) the Reynolds number. The momentum equation along the \(y \)-axis is similar, thus we do not give it here.

DOI: TBA

Paper No. ENFHT 198 (The number assigned by the OpenConf System)
The dimensionless numbers from this set of equations are computed for both a lava eruption of the Piton de la Fournaise volcano in 2010 [9,11] and the VEU7 spreading experiment [2,5], using their properties at their initial temperature, respectively 1423 K and 2450 K for lava and corium. The resulting numbers show regime similarities for both flows, mainly as they are both laminar, with radiative heat transfer at the free surface and can be considered viscoplastic.
Table 1: Dimensionless numbers computed using data from measurements on 2010 Piton de la Fournaise eruption and VEU7 corium spreading test. The eruption temperature for lava is $1423 \, \text{K}$ and that of corium at the inlet is $2450 \, \text{K}$.

<table>
<thead>
<tr>
<th>Similarity criterion</th>
<th>Definitions</th>
<th>Lava</th>
<th>Corium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds number Re</td>
<td>$Re = \frac{\rho UL}{\mu}$ with ρ the density, U and μ the characteristic velocity and dynamic viscosity</td>
<td>4.75×10^{-1}</td>
<td>1.40×10^{1}</td>
</tr>
<tr>
<td>Bingham number Bi</td>
<td>$Bi = \frac{\tau_{y,0}}{\mu U}$ with $\tau_{y,0}$ the initial yield stress</td>
<td>4.63</td>
<td>1.89×10^{-1}</td>
</tr>
<tr>
<td>Péclet number Pe</td>
<td>$Pe = \frac{\rho c_p UL}{k}$ with c_p the specific heat capacity</td>
<td>2.91×10^{6}</td>
<td>1.04×10^{6}</td>
</tr>
<tr>
<td>Brinkman number Br</td>
<td>$Br = \frac{U^2 \mu}{k (\theta_e - \theta_a)}$ with θ_a the ambient temperature</td>
<td>2.08×10^{-5}</td>
<td>1.25×10^{-2}</td>
</tr>
<tr>
<td>Stanton number St</td>
<td>$St = \frac{Nu}{Pe} = \frac{\lambda}{\rho U c_p}$ with λ the convective heat transfer coefficient</td>
<td>1.37×10^{-5}</td>
<td>1.85×10^{-4}</td>
</tr>
<tr>
<td>Radiation number R</td>
<td>$R = \frac{\epsilon \sigma_{SB} (\theta_e - \theta_a)^4 L}{k}$ with ϵ the emissivity and σ_{SB} the Stefan-Boltzmann constant.</td>
<td>3.78×10^{1}</td>
<td>2.70×10^{1}</td>
</tr>
</tbody>
</table>

The precedent equations are then reduced at the order 0 in ϵ by making the hypothesis that the aspect ratio $\epsilon = 0.15$ for the VEU7 experiment is small and then vertically-averaged. The problem becomes height and temperature dependent only, as the other unknowns can be deduced from them. This non-dimensional vertical averaged problem is then implemented using the C++ mesh adaptive finite element library Rheolef [8].

3. Results and Discussion
Simulations have been ran for different value of Fourier number, corresponding to property materials of the ceramic and concrete substrate given in the VEU7 benchmark by Journeau et al. [2]. The results in terms of spreading length are given on Fig. 2, showing good agreement between the simulation and experimental results for the concrete substrate in terms of dynamics and final length, though the ceramic substrate show greater discrepancies. This can be partially explained by the use of two connected channels in the experiment while only one was represented in the simulation, preventing backflow from one channel to the other from happening numerically.

![Fig. 2: Melt front evolution through time, comparison between experimental data from the VEU7 experiment and simulation.](image)

The evolution of temperature in the concrete substrate is of interest, as it is a criteria for its degassing and ablation, and ultimately its integrity is the condition of success of the EVR strategy. The results obtained from using eq. (8) show generally good agreement with the measurements from thermocouples. The main differences between experimental and simulation
data are found for the thermocouple located at \(z = -2 \pm 1.5 \, \text{mm} \), due to the large uncertainties on its depth and the potential degassing that occurs for the higher temperatures it reaches.

4. Conclusion

The viscoplastic simulation of corium spreading shows interesting results in terms of spreading length, time and substrate temperature evolution. Realizing a two channels simulation could provide greater validation of the model compared to the VEU7 experiment. Adding degassing of the substrate and its ablation might give greater insight on the EVR strategy for nuclear power plants severe accidents management.

References