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The mechanics of continua, which is based on the general concept of stress developed by
Cauchy, has so far been applied almost exclusively to fluid and solid elastic bodies. For
the field of plastic or permanent deformation of solid bodies, Saint-Venant! has outlined
a theory that does not, however, provide the necessary number of equations to determine
the motion. Other occasional attempts in this direction have also been unsuccessful?.

The following lines lead to a complete approach to equations of motion for plastically
deformable bodies — within the framework of Cauchy’s mechanics and based on certain
empirical facts characterizing the field of application.

1 Notations

The stress state in a coordinate system that is perpendicular to a point on the body is
given by the three normal stresses o,, 0y, 0, and the tangential stresses 7,, 7, 7.. In the
scheme
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the quantities in the first row represent the components of the stress vector o, for a surface
element whose outer normal is in the direction of the positive xz-axis, and so on. The vector
structure represented by (1), which is transformed in a known manner using equation

(2) 0, =0 cos(x,z") + 6, cos(y,x") + o, cos(z,z)

is also referred to as the stress dyad & for short.

Analogous concept formation leads to the deformation dyad & and to the deformation
velocity dyad A. If &, n, ¢ denote the infinitely small, elastic displacements of a point, then
the strains and angular changes are:
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and the dyad € has the scheme:
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If, instead of &, n, ¢, we take the components u, v, w of the velocity vector, we obtain the
strain and shear velocities:
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and the scheme for the dyad A:
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For each dyad, there is at least one coordinate system for which the scheme is reduced to
the elements of the main diagonal, e.g., for (1) to the form:
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Here, the main stresses o1, 0o, 03, the roots of the secular equation, are also determined
by the following three conditions:

01+09+03=0,;+0,+0,
0109 + 0903 + 0301 = 0,0y + 040, + 0,0, — (79? + Tyz + TZZ)

Ox T, Ty
(8) 010203 = | T, Oy Ty
Ty Tz O

Jiz .
I /
| /
i "I
by
;/ x
1
/
=== C=
/ -
/- /
Figure 1:

If a coordinate system is placed such that the third principal axis coincides with the z-
axis, while the z- and y-axes bisect the angles of the first two principal axes (Fig. 1), the
following diagram results according to (2):
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At the same time, it can be seen that the 7 values occurring here are extrema of the
tangential stress, i.e., the three variables
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always include the absolute largest and smallest tangential stresses. We call the 7, 7, 73,
whose sum is zero, the principal tangential stresses.

The simplest of all stress dyads is that of the ideal fluid —p. It has the following structure
in every coordinate system
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If a stress state of the form (11) is subtracted from the stresses represented by (1), the
tangential stresses remain unchanged and the following equation is obtained:
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The dyad (12) has the same principal directions as (1), and the principal values of, o},
ol are the principal values of (1) reduced by —p. It follows from (10) that the principal
tangential stresses for (12) and (1) are identical. All these relationships also apply, of
course, to the deformation dyad & or to A. We give another formula below that will be
used later, which is derived from a combination of (10) and (8). It is:
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2 Fundamental principles based on experience

(14) =

1
2
1
2
1
2
Lo
2

We now present the empirical facts that are taken into account in the equations of motion
below. We do not claim to provide an axiomatic structure, i.e., we refrain from using even
a minimum of assumptions.

a) All solid bodies behave like elastic bodies under sufficiently small stresses: there is a
one-to-one correspondence between stress and strain. This sentence distinguishes solid
bodies from viscous ones. "Solid" refers, for example, to malleable wax, which yields even
under slight external pressure, as well as iron, which only reaches its elasticity limit under
very high pressure. In contrast, pitch or similar substances are not plastically deformable
at normal temperatures, but are liquid. We will discuss the significance and form of the
elasticity limit further below. The relationship between stress and strain dyads & and € is
assumed to be linear in mathematical elasticity theory:

(15) G = L(3)

The most general linear relationship, in which no direction in space is preferred, is that
the two dyads have the same principal directions and the principal values are related as
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follows:

01 = 0é&q +6(€1 + &9 +€3), 09 = (€9 +6(€1 + &9 +€3),
(16) 0'3:CY€3+6(€1+€2+€3)

Here, o and f3 are the elastic constants. In a known manner, (16) can be transformed so
that relationships between the components related to arbitrary axes are created.

b) Once the elasticity limit has been reached, the solid body behaves essentially like a
viscous, almost incompressible fluid. The behavior of the fluid referred to here is charac-
terized by the fact that it is not the state of deformation, as in the case of an elastic body,
but the deformation process that causes stresses. However, one cannot simply assume the
stress dyad & as a function of the deformation velocity dyad X, but must note that a
volume element under external pressure that is the same on all sides does not experience a
finite deformation velocity. The resulting change in volume always remains, as observations
consistently show, of the same order of magnitude as the elastic displacements. It follows,
therefore, that in the mechanics of viscous fluids, a part —p must be subtracted from the
stress dyad & which corresponds to an equal pressure on all sides. The remainder o”,
see (1) in section 1, can then be written as a linear function:

(17) &' = L(N\)
If the same symmetry as above is observed, the analogous result is (16):
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But the expression in parentheses measures precisely the divergence or the change in vol-
ume, which was just mentioned as being negligible compared to A;. This gives us:

(19) O'{Zk)\l, U§=k>\2, O'é:k')\g

These equations simply state that &/ results from X when each component of X is multiplied
by k, i.e.:

0,=0,+p=k)\y, o, =0,+p=k\,, o,=0.+p=k\,,
(20) v =kve, 1) =kvy, T.=kv,

These are exactly the same equations that Navier-Stokes’ theory of viscous fluids leads
to. A significant difference only becomes apparent when we examine the meaning of the
variable & more closely. This leads to the following crucial empirical theorem.

c) If, while maintaining all other conditions, the absolute value of the velocities at which a
movement takes place is changed, the work required to achieve a certain change in shape
does not change in the case of plastically deformable bodies. We derive this statement from
all the observational data that has been gathered to date in the field of permanent changes
in shape, particularly in technology. For the most part, technology uses formulas for the
amount of work required that disregard the influence of speed from the outset. Where
this influence was particularly observed, it proved to be minor3. The constancy asserted in

3For references, see also bibliography, cf. my encyclopedia article IV 10, no. 5, p. 187.



sentence ¢) must be understood in a similar way to, for example, the constancy of friction
coefficients with respect to changing normal pressure in the sliding friction of solid bodies.
At least, accepting c) specifies an ideal case that allows for a certain theory and provides
a useful approximation for the actual behavior of the bodies. The work per unit volume
to be expended per second is generally given by:

(21) TLAg + Ol Ay + LN, + 27,0 + 27y + 27,0, = k(A2 4+ A2+ A2+ 202 + 207 + 202)

If all speeds are multiplied by a factor ¢, this expression changes proportionally to kc?. At
the same time, however, the duration of the deformation process is shortened in a ratio
of 1/e, so the total work becomes proportional to kc. Therefore, the proportionality factor &
introduced in (20) must be inversely proportional to the speed. Or, in other words: the
voltage dyad &' remains the same if all components of A are changed in the same ratio. It
follows from the latter formulation that the stresses in a plastically deformable body must
vary in a range of lower diversity than, for example, in an elastic body. It is clear that this
range can be nothing other than the elastic limit. This means that our statement c) can
also be formulated as follows:

¢’) In the case of plastic deformation, the stress always remains
at the elastic limit. This sentence implies the requirement that
G the elasticity limit must be independent of an additive compo-
nent of the formula (11), see below. One can verify ¢’) directly
LT through observation. In the one-dimensional case of tensile stress
on a rod, the stress-strain diagram according to ¢’) should have
the shape shown in Fig. 2 First, an inclined straight line for the
elastic state, then a horizontal line corresponding to the speed-
independent limit stress in the plastic region. Observation shows
that in iron, steel, and similar materials, a horizontal section con-
nects to the inclined straight line, but this soon transitions into
a slightly rising line. This is attributed to a process strongly
influenced by heat and related to the crystalline nature of the
body, which is called "hardening". Our theory does not take
this hardening into account. However, it must be borne in mind
that the actual scope of application of plasticity theory lies in the field of positive p. It
has not yet been sufficiently clarified whether such hardening also occurs when iron and
other materials are subjected to pressure. In any case, it does not seem unlikely that, in
the case of easily malleable bodies such as wax and other similar materials, "hardening"
plays a very limited role. We now turn to a final list concerning the nature of the elasticity
limit:

iﬁ\

Figure 2:

d) In a coordinate system where the principal tangential stresses are coordinates, the
elasticity limit appears as a closed curve in the plane

(22) T1+7'2+T3:O



Figure 3:

that includes the zero point. It is well known that O. Mohr was responsible for the first
detailed investigations into elasticity and breaking points*. According to Mohr, only the
largest and smallest of the three principal stresses, let’s say o; and o9, are relevant here.
In a coordinate system
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the fracture boundary, taking into account not only Mohr’s considerations but also the
new experiments by Karmén®looks something like Fig. 3.left. The big difference between
the behavior at positive x (tension) and negative z (compression) stems from the fact that
there is tearing when tension is applied on all sides, but no crushing when pressure is
applied equally on all sides. It is not very likely that the analogous contrast also exists
for the limit of elastic behavior. Since we are primarily concerned with conditions at high
mean pressure, it is permissible to regard the horizontal asymptotes in Fig. 3.left. as the
essential limitation. This view, which is widely held in other contexts, leads to the elasticity
limit:

(24) | < K, |n|<K, |3l<K

The cube (24) is cut by the plane (22) into a regular hexagon (Fig. 3.right), so that
our condition d) is fulfilled. However, we want to modify Mohr’s approach in another
direction. From the hexagon (22) and (24), only the corner points have been determined
by the experiments so far, i.e., states in which one of the 7 is zero and the absolute value of
the other two is the same. The straight-line connection is based on the assumption that the

40. Mohr, Abhandl. a. d. Gebiete der techn. Mechanik, Berlin 1906, p. 197.
5Zeitschr. d. Vereines deutscher Ingenieure 1911, p. 1749.



average principal stress and the smaller principal tangential stresses are irrelevant. This
assumption does not seem so plausible that one should not attempt to replace the hexagon
with a simpler structure, namely the circumscribed circle. Instead of the cube (24), we
then have the sphere:

(25) 2+ 1+ 78 = 2K?

In any case, (25) allows for a much simpler analytical treatment, without the difference
from (24) being greater than the margin allowed by the attempts made so far.

3 Equations of motion

We denote the specific mass of the body by p, and the components of the specific volume
force (gravity, etc.) by Xz, Xy, X-- Then the equations of motion are as follows:
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The six stress components o/, ... 7, are expressed after (20) and (5) by the three velocity
quantities u, v, w as follows:
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As in hydromechanics, the continuity equation is used to eliminate p:
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This assumes incompressibility in accordance with statement b) and the associated com-
ments, but our theory could also easily handle the more general case. Approaches (I)
to (III) are entirely consistent with those for viscous fluids. However, in those cases, the
variable k is the given viscosity coefficient, whereas in our case it is a reaction variable
that can only be calculated based on knowledge of the motion itself. This is supported by
the statement that the stress remains at the elastic limit during plastic deformation. If we
assume the limit to be a circle in the form (25) and insert the value (14) into it, we obtain:

(26) (U; +0,+ 02)2 -3 (0;0; ++0,0, ++0.0,, ) +3 (T + 7'2 + 7, ) 4K?
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This is because the last form of expression (14) implies that o can also be replaced by o’.
However, if we add the first three of (II) and take (III) into account, we find that:

(27) op+to,+0,=0
so that (26) reduces to:

(IV) i

=724 T; +72 - (0;0; + +az’/a; + +a;0;)

If we substitute the values from (II) here, we obtain the equation we are looking for
for k. Equations (I) to (IV) constitute the complete system of equations of motion for
plastically deformable bodies. The following boundary condition must also be added here:
the specification of the velocity components u, v, w for each surface point. It can be
replaced by specifying the surface tension across the entire surface or part of it. In the
case of plane motion, our approach reduces to Saint-Venant’s. This is partly because, in
the plane case, the difference between the elasticity limit according to (24) (hexagon) and
according to (26) (circle) disappears. Because now there are only two main tangential
stresses 7 and 7 with

(28) T +712=0
so that 72 + 77 < 2K? says the same thing as || < K, || < K. Equations (I) to (IV) can

be written very simply using vector symbols. If v denotes the velocity vector and x the
vector of specific force, then we have:

(I") p(fi—’;) =x—-gradp+ Vo’
(ID') &' = kX
(IID) divo =0
Y =/ 4K2
(Iv7) —(0'), = =

Here, the symbol V in (I') denotes the differentiation to be performed on the dyad, which
is determined by (I). The index 2 in (IV’) indicates that the second of the orthogonal
invariants written in section 1 Eq. (8) is to be taken from the dyad &’. From (I) to (IV?),
o’'. can also be easily eliminated, yielding:

dv

(a) P = X—gradp+V(/€A)
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If we multiply (I’) scalarly by © and integrate over the volume, we find, after appropriate
transformation, that the dissipation function is represented by (21), which proves the
consistency of the approach with our assumption ¢) in section 2.

Strasbourg, October 4, 1913.
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