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1 Introduction

In a recently published study, Grossman [1] has re-
formulated Weissenberg’s [2] concept concerning the
representation of a rheological equation of state that
is as universal as possible.

1. The set of permissible deformation and strain
measures contains a subset that is preferable
for representing the equation of state, insofar as
these measures are particularly closely related
to the stress tensor. Such a measure is given by
the tensor1 W , which assigns a body-fixed vec-
tor2 dw to a plane quantity df characterizing a
body-fixed flat element:

dw =W .dw, (1)

whereby a specific state (for example, the "natu-
ral state") is characterized by the equality3 of dw
and df and thus by W̊ = 1.
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1At Grossman, this is referred to as the separation tensor
and represented by the symbol S.

2dw is accordingly referred to as the separation vector and
represented by the symbol s.

3Since dw and df have different dimensions, but W is sup-
posed to be a dimensionless quantity, constant factor of the
dimension of a reciprocal length would actually have to be
added to the right-hand side of (1).

2. According to Weissenberg’s principle, the rheo-
logical equation of state of an elastic body can
be represented as a quasi-linear4 expression in
the tensors 1.W and the stress tensor σ

Gieskus has addressed questions relating to the same
set of problems in various studies. Therefore, the
following section will highlight the relationships be-
tween the results obtained by both authors and draw
some further conclusions from them. First, it is de-
duced that the tensor W represents the tensor den-
sity associated with the spatially contravariant de-
formation measure. First, it is deduced that the ten-
sor W represents the tensor density associated with
the spatial contravariant deformation measure. Sub-
sequently, it is shown that the state tensor S, which
characterizes the flow behavior of a large class of flu-
ids (Weissenberg fluids), can be related to the ten-
sor W . Finally, with the help of this connection,
Weissenberg’s principle is transferred to elastoviscous
fluids. The equation of state obtained in this way can
be represented as a quasi-linear relationship in the
contravariant kinematic tensors.

2 The tensor W in the carried
coordinate system

The following result was obtained in the study [3]: if
the rheological state equation is formulated using ten-
sor components of a coordinate system, it is appro-
priate for a very general class of bodies (characterized
by the existence of a scalar state function) to repre-
sent the stress tensor by a contravariant tensor den-
sity. Consequently, in the usual spatial (so-called Eu-
lerian) representation, contravariant measures, e.g.,
the spatial Green strain measure, and contravariant
convective derivatives are given preferential impor-
tance.
To examine the tensor W more closely, we represent
it in a concomitant coordinate system. Such a sys-
tem is determined – as in [3], Appendix I – by the
covariant basis ēν(t) fixed in the field, ēν(t) denotes

4Here, "quasi-linear" means that the coefficients may be
scalar functions of the tensor invariants.
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the associated contravariant basis, and the metric is
accordingly given by:

γνµ = ēν .ēµ, γνµ = ēν .ēµ, γ = ∣γνµ∣ = [ē1 ē2 ē3]2 (2)

Then the body-fixed vector dw is represented by

dw(t) = dψν ēν(t), (3)

the plan size df of the surface element fixed in the
body by

df(t) = dφµ(t) ēµ(t) (4)

and the tensor W linking both sizes is represented
by

W (t) = ψνµ(t) ēν(t)ēµ(t) (5)

so that (1) in component notation reads as follows:

dψν = ψνµ(t)dφµ(t). (1a)

While dψν is a time-independent quantity, this is not
the case for dφµ and consequently also for ψνµ. If dηρ

and dζσ are the components of the vectors spanning
the plan quantity df , then

dφµ =
√
γ(t)εµρσdηρdζσ, (6)

where εµρσ denotes the well-known permutation
symbol, therefore, γ−1/2dφmu and, correspond-
ingly, γ1/2ψνµ are time-independent quantities.
If we now want to equate the quantities dw and df at
time t = 0, this means for the above time-independent
quantities dψν and γ−1/2dφµ the existence of the re-
lation

dψν = γ̊1/2γ̊νµ(γ−1/2dφµ) (7)

By comparison with (1a), we immediately obtain the
convective components of W :

ψνµ = (̊γ/γ)1/2 γ̊νµ. (8)

If, in addition to the entrained system, a space-fixed
system is introduced by the time-independent ba-
sis ei, where for some body-fixed position vector

dx(t) = dξν ēν(t) = dxi(t)ei (9)

holds, then W can easily be expressed in terms of
components of this system. It is, in fact5

ēν(t) = xi,ν ei, γ1/2 = γ̊1/2 ∣xi,ν ∣ (10)

and therefore

W = ψνµēν ēµ = ψνµxi,νx
k
,µ ei ek

= γ̊νµ
xi,νx

k
,µ

∣xm,ρ ∣
ei ek. (11)

If one identifies the carried basis at time t = 0 with
the space-fixed basis, i.e. sets

dξL = dx̊L γ̊LM = gLM (12)

then

W = gLM
xi,L x

k
,M

∣xm,N ∣
ei ek

=
gLM xi,L x

k
,M

∣gLM xm,L x
n
,M ∣1/2

ei ek
[ē1 ē2 ē3]

. (13)

The expression on the right in the numerator means
precisely the spatial contravariant deformation ten-
sor6derived in [3]

ĉ = gLM xi,L x
k
,M ei ek (14)

and the denominator expression, the associated vol-
ume dilation, so that

W = ĉ

∣ĉ∣1/2 =
ĉ

III
1/2
ĉ

, (16)

5Indices preceded by a comma, as usual, signify differentia-
tion with respect to spatial coordinates. Specifically, these are
convective coordinates ξν when Greek indices are used, and
the initial coordinates x̊L when large Latin indices are used.

6From this, the spatial Green strain measure

ê =
1

2
(ĉ − 1) (14a)

is derived, whereas the material Green strain measure is rep-
resented by the expression

E =
1

2
(C − 1) (15a)

in which
C = gij x

i
,L xk

,M eL eM (15)
denotes the material covariant deformation tensor.
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as claimed, represents the tensor density associated
with the spatial contravariant deformation tensor7.
This also shows that the result formulated by Gross-
man under point 1 essentially agrees with the result
by Giesekus cited above. However, the latter investi-
gation contains a further addition, for it derives why
it is appropriate to refer the stresses to body-fixed
surfaces8, whereas Grossman assumes this without
further explanation.

3 The tensor W and the state
tensor S of a Weissenberg liq-
uid

Grossman applied Weissenberg’s principle essentially
to elastic bodies, whereas his considerations cannot
be readily transferred to liquids, except for New-
tonian and linear elastoviscious liquids. However,
Giesekus has now shown in a further investigation [4]
that a large class of liquids can be described to a good
approximation by an equation of state of the form

σ = −DS

Dt
= −DS

Dt
+S.∇v + v∇.S − (∇.v)S (17)

where σ is an additional stress due to suspended
(or loose) particles, DS/Dt is the contravariant con-
vective derivative of a symmetric tensor density S,
DS/Dt is its material derivative, and ∇v is the gra-
dient of the velocity field9. For such fluids, - just as
Weissenberg had demanded - in the direction of the
shear rate, the normal components of the stress dis-
appear in steady layer flows10, which is why Giesekus
referred to such liquids as Weissenberg liquids.

7This result is also contained in Grossman’s investigation.
However, it is not so clear there that W is a spatial ("Eule-
rian") measure, but by no means a material ("Lagrangian")
measure.

8This is just another way of expressing the statement that
the stress tensor in the entrained system is to be considered a
contravariant tensor density.

9In this equation, the anisotropic component of the distur-
bance of the suspension medium flow by the introduced parti-
cles is neglected.

10See also Giesekus [5] and [6].

The tensor S is, in general, an isotrope function of
the kinematic tensors. For particles, which consist
of cone-shaped resistive bodies, which are rigidly or
elastically bound to one another in groups, this quan-
tity can be represented in the form

S = ∑
i

ni
2Bi
⟨riri⟩ (18)

where ni is the number of particles of the i-th
type11in the unit volume, Bi is their mobility in the
suspension medium, ri their position vector (from an
arbitrary point at rest in the body), and the brackets
express the average over all orientations.
If we now assume that the rest state corresponds to
a uniquely determined isotropic tensor

S̊ = ∑
i

ni
2Bi
⟨̊ri̊ri⟩ = ∑

i

η̊i1 (19)

then we can at least formally assign the vectors ri to
a tensor

Ai = (xj,L ej e
L)i (20)

such that
ri =Ai .̊ri = r̊i.Ãi (21)

holds12. Then, however

⟨riri⟩ =Ai. ⟨̊ri̊ri⟩ .Ãi = ⟨̊ri̊ri⟩ .Ai.Ãi. (22)

The commutation between ⟨̊ri̊ri⟩ and Ai is there-
fore permissible because ⟨̊ri̊ri⟩ represents an isotropic
tensor. Furthermore

ni =
n̊i
∣Ai∣

(23)

and thus we can represent (18) in the form:

S = ∑
i

n̊i
2Bi
⟨̊ri̊ri⟩ .

Ai.Ãi

∣Ai∣
= ∑

i

η̊i
Ai.Ãi

∣Ai∣
(24)

However, the tensor expression on the right repre-
sents, as can easily be verified by substituting in (20)

11Note that i does not represent a tensor index and therefore
the Einstein convention does not apply here.

12

.Ãi = (x
k
,M eM ek)i (20a)

means the tensor adjoined to Ai.
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and (20a) and comparing with (13), precisely the ten-
sor W i belonging to the mapping tensor Ai. We
have thus assigned a continuum to each particle type
by (21) such that the change in the orientation and
distance statistics of the position vectors ri can be
understood as a deformation of this continuum, and
it has now turned out that W i represents precisely
the deformation measure by which the state tensor S
can be expressed in the simplest way. Let us perform
an averaging using the quantities η̊i, which intuitively
represent the initial viscosities corresponding to the
undeformed continua:

ĎW = 1

η̊
∑
i

η̊iW i, η̊ = ∑
i

η̊i (25)

then (24) takes the even clearer form

S = ∑
i

η̊iW i = η̊ĎW (24a)

We can clearly see from this how closely the equa-
tion of state (17) corresponds to the Weissenberg-
Grossmann basic concept.
eine quasi-1ineare Funktion des Spannungstensors ist

4 Weissenberg liquids, whose
state tensor is a quasi-linear
function of the stress tensor

The result of the previous section now enables us
to apply Weissenberg’s principle to the elastoviscous
fluid, more precisely: to the Weissenberg fluid, in
the sense of (17), by linking the tensor W i to the
associated additional stresses σ via a quasi-linear re-
lationship13:

σi = αiI + βiW i (26)

so that αi and βi are scalar functions of the invariants
of σi and W i, respectively. Solving this relationship

13These are the same stresses that, on the one hand, cause
the relative motion of the particles in the suspension medium
and, in connection with this, the anisotropic distribution of
the position vectors, and on the other hand, also appear as a
consequence of this anisotropic distribution.

for W i, substituting it into (24a) and then into (17),
we obtain the equation of state in a form where only
stress and strain rate quantities appear. However,
we do not want to carry this out explicitly for the
general case here, but rather restrict ourselves to the
simplest special case where there is only one particle
type and (26) is also strictly linear. Because of the
additional condition that W̊ = 1 and σ̊ = 0 must hold,
one of the two constants is also used, so that (26) can
be written in the form

σ = µ(W − I) (26a)

Thus

S = η̊W = η̊
µ
σ + η̊1 (27)

Considering that

−D1

Dt
= ∇v + v∇ = 2ϵ(1) (28)

represents twice the deformation rate, performing the
convective differentiation and substituting it into (17)
yields the equation of state

σ + η̊
µ

Dσ

Dt
= 2η̊ϵ(1) (29)

i.e., the equation of a Maxwell-Oldroyd-B fluid with
the relaxation time τ = η̊/µ. With the help of the
relation defining the contravariant kinematic tensors

−1
2

Dn1

Dtn
= ϵ(n) (30)

relation (29) can be solved for σ, yielding the series
expansion

σ = 2η̊
∞

∑
n=1

(−τ)n−1ϵ(n) (29a)

In the case that i different continua exist, the equa-
tion of state can be found simply by summing equa-
tions of the type above, i.e., a linear expansion in
terms of the kinematic tensors with constant coef-
ficients, where, however, these are no longer linked
to each other by a simple relationship as in (29a).
If the stress-strain relationship is finally quasi-linear
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according to (26), then an equation of state of the
form

σ = Γ(0)1 + Γ(1)ϵ(1) + Γ(2)ϵ(2) + . . . (31)

follows, in which the Γ(n) represent scalar functions
of the invariants of the kinematic tensors. This most
general equation of state of an elasto-viscous liquid,
which can be generated using Weissenberg’s princi-
ple, is therefore a quasi-linear relationship in the con-
travariant kinematic tensors.
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