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Synopsis

The Herschel–Bulkley rheological fluid model includes terms representing viscosity and plasticity.

In this classical model, below the yield stress the material is strictly rigid. Complementing this

model by including elastic behavior below the yield stress leads to a description of an

elastoviscoplastic (EVP) material such as an emulsion or a liquid foam. We include this

modification in a completely tensorial description of cylindrical Couette shear flows. Both the EVP

model parameters, at the scale of a representative volume element, and the predictions (velocity,

strain and stress fields) can be readily compared with experiments. We perform a detailed study of

the effect of the main parameters, especially the yield strain. We discuss the role of the curvature of

the cylindrical Couette geometry in the appearance of localization; we determine the value of the

localization length and provide an approximate analytical expression. We then show that, in this

tensorial EVP model of cylindrical Couette shear flow, the normal stress difference strongly

influences the velocity profiles, which can be smooth or nonsmooth according to the initial

conditions on the stress. This feature could explain several open questions regarding experimental

measurements on Couette flows for various EVP materials such as emulsions or liquid foams,

including the nonreproducibility that has been reported in flows of foams. We then discuss the

suitability of Couette flows as a way to measure rheological properties of EVP materials. VC 2012
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I. INTRODUCTION

Localization is a phenomenon often observed in two- or three-dimensional shear flows

of complex materials: Coussot et al. (2002) observed it for emulsions, Salmon et al.
(2003a) for colloids, Howell et al. (1999), Mueth et al. (2000), Losert et al. (2000), and

Huang et al. (2005) for wet granular materials. It consists of a coexistence between a

region localized near a moving boundary, where the material flows like a liquid, and

another region where the material behaves like a solid.

Since the pioneering experiment of Debrégeas et al. (2001) (Fig. 1), liquid foams [gas

bubbles dispersed within a continuous liquid phase, as explained by Weaire and Hutzler

(1999) and Cantat et al. (2010)] have been widely used for experimental, theoretical, and

numerical studies of localization [for reviews see, e.g., Höhler and Cohen-Addad (2005);

Schall and van Hecke (2010); Barry et al. (2011)]. Their discrete units, the gas bubbles,

are easy to observe (especially in two dimensions) and to manipulate. Moreover, they dis-

play simultaneous elastic, viscous, plastic behaviors (referred to as elastoviscoplastic or

EVP), thus covering a wide range of behaviors observed in many complex materials.

The aim of this paper is to show that including tensorial elasticity in the classical vis-

coplastic Herschel–Bulkley (VP) model leads to many improvements in the understand-

ing of Couette flows of nonthixotropic EVP fluids such as emulsions, liquid foams, or

carbopol gel. These materials exhibit normal stresses that arise from the local anisotropy

(hence, the necessity of a tensorial description) of the elasticity related to their micro-

structure. Localization can appear if the material yields, that is, if the material is plastic;

in the regions below the yield strain, the normal stresses can remain finite even in a

steady-state flow. If, in addition, viscous dissipation occurs during plastic events, elastic-

ity is coupled to viscosity in the flowing region, so that the normal stresses are coupled to

the velocity gradient, even in the Couette geometry.

Cheddadi et al. (2008, 2009, 2011a) have previously explored this approach with the

Saramito (2007) model (Bingham-like plastic dissipation), for cylindrical Couette flows

of liquid foams and other EVP flows around an obstacle; they have successfully

explained the observations of normal stresses components measured by Janiaud and Gra-

ner (2005) in the experimental data of Debrégeas et al. (2001).

In the present work, the theoretical predictions of the Saramito (2009) model are com-

pared with experimental measurements, including shear and normal stresses when

FIG. 1. Experimental setup for a two-dimensional circular shear flow of a foam confined between two horizon-

tal plates. (a) Definition of the geometric and kinematic parameters; (b) picture of the confined two-dimensional

liquid foam [from Debrégeas et al. Phys. Rev. Lett. 87, 178305, (2001). Copyright VC 2001 The American

Physical Society: the internal radius is r0¼ 71 mm.
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available. This model is an extension of the Saramito (2007) model that includes a

Herschel–Bulkley-like plastic dissipation.

We study the influence of the dimensionless rheological parameters, including the

yield strain and the cylindrical Couette geometry curvature (introduced in Sec. III). For

simplicity, we focus here on the low velocity regime corresponding to most published

foam Couette flow experiments; we postpone, for future work, analysis of both the quasi-

static regime where viscosity plays no visible role, studied in simulations [Wyn et al.
(2008); Raufaste et al. (2010)], and the high velocity regime where viscous and friction

effects are dominant [see, e.g., Katgert et al. (2008, 2009, 2010)]. The inclusion of elas-

ticity and tensorial descriptions is two essential features of the present modeling, leading

to three predictions not captured by scalar and=or VP models. First, we show that normal

stresses that depend on the preparation of the material [Labiausse et al. (2007)] can per-

sist as residues even in steady flow. Second, we predict that velocity flow profiles are

either smooth or nonsmooth depending on the measured value of the stress tensor. Third,

as a consequence of these two results, two- and three-dimensional cylindrical Couette

flows of EVP materials are nonunique, even in steady state. To summarize, the effect we

describe in this paper is not specific to a given material microstructure but is more gener-

ally a consequence of the material’s visco-elasto-plasticity and of the specifically tenso-

rial nature of the Couette flow.

The outline of the paper is as follows. Section II reviews and discusses the main open

questions found in the literature, which we address here. Section III discusses some con-

stitutive equations for EVP materials, in particular, the EVP model of Saramito (2009).

Section IV presents the solutions of this model and some of the main features which are

absent from VP models: the effect of initial conditions, memory effects, nonuniqueness,

and nonsmooth solutions; we also explain how such EVP model can be compared to

actual experimental data. Section V examines how variations of the EVP model parame-

ters affect these flow features and provides an approximate analytical expression for the

localization length [Eq. (15)]. Section VI discusses the consequences of our results.

Section VII summarizes our findings.

II. OPEN QUESTIONS

During the last 10 years there has been extensive debate on the Couette flow of various

complex fluids, raising some theoretical questions [see, e.g., Schall and van Hecke

(2010)]:

• What is the physical origin of localization?
• Where does the material localize?
• Why do some experiments report smooth profiles at the localization position and some

others experiments report nonsmooth ones?

Before we examine the status of these questions, we first need to clarify the vocabu-

lary and hypotheses used in the literature:

• We assume here that the materials of interest can be described using continuum

mechanics: this implies that there is a representative volume element (RVE). The RVE

should be smaller than the scale of the global flow, but large enough so that one can

define: (i) variables such as stresses, strains, and velocity gradient; and (ii) parameters,

such as elastic modulus, yield strain, and viscosity. Note that in an EVP material stress,

strain and deformation rate are variables which can be independently defined and meas-

ured in situ if the material can be imaged in full details [Graner et al. (2008)].
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• Since the phrase “shear banding” [Vermant (2001)] is used to describe different things,

we prefer not to use it. We instead use “smooth” (resp: “nonsmooth”) to indicate that

the velocity gradient is continuous (resp: discontinuous).
• The word “localization” is a historical term used consistently to mean “coexistence of

rigid and flowing regions.” We thus use it here.
• In cylindrical Couette flows, the localization radius, denoted as rc, admits several possi-

ble definitions [see Gilbreth et al. (2006) or Sec. VII C of Weaire et al. (2010)]. Here,

we choose to define rc as the position separating the flowing region from the rigid one,

or equivalently as the limiting value of the radius at which the deformation rate is zero.
• There are at least two different ways, one in mathematics and one in rheology, used to

define the norm of a tensor, and thus the von Mises criterion regarding the yield strain

and stress: we choose the mathematical one, presented below [see Eq. (4) and discus-

sion thereafter].

A. What is the physical origin of the localization?

There are several explanations for the origin of the localization; many of them are

reviewed and discussed by Schall and van Hecke (2010).

Coussot et al. (2002) used nuclear magnetic resonance imaging (MRI) methods to

measure the local velocity in three-dimensional cylindrical Couette flows of other EVP

materials such as carbopol gel, and more generally yield stress fluids such as bentonite

suspensions and cement paste. Despite the apparent simplicity of shear flows, a common

description of these experiments is still lacking [see Ovarlez et al. (2009) for a review]:

on the one hand, thixotropic materials exhibit an intrinsic critical shear rate, i.e., these

materials cannot flow homogeneously at a shear rate smaller than a critical value, which

is characteristic of the material; on the other hand, nonthixotropic materials may or may

not exhibit a critical shear rate (that does not seem to be intrinsic to the material), as dis-

cussed in Sec. II C. We focus here on nonthixotropic materials and try to explain this pe-

culiar behavior.

1. Intrinsic explanations invoking a nonmonotonic constitutive equation

In complex materials which display a shear-induced structural transition, a possible

source of localization is the coexistence of two different shear rates at the same stress,

that is, the shear stress versus shear rate curve is multivalued [Huseby (1966); Berret

et al. (1994); Porte et al. (1997); Decruppe et al. (2001); Bénito et al. (2010)]. In fact,

foam experiments [Khan et al. (1988)] and simulations [Kabla et al. (2007); Okuzono

and Kawasaki (1995); Raufaste et al. (2010)] suggest that in the quasistatic regime the

shear stress versus shear strain curve passes through an overshoot before reaching a

plateau, thus being multivalued [Clancy et al. (2006); Weaire et al. (2009, 2010)].

This explanation is probably not generally applicable to foams in Couette experi-

ments: foams usually contain at least a few percent liquid, so that their yield strain is

lower than for ideally dry foams [Marmottant et al. (2008)] and the overshoot becomes

undectable [Raufaste et al. (2010)]. Moreover, even in theory and simulations of dry

foams, the overshoot disappears if the foam is too disordered [Raufaste et al. (2010)].

This discussion is beyond the scope of the present paper, where we explore the complex

behavior emerging from a simple EVP constitutive equation.

2. Extrinsic explanations invoking a nonhomogeneous stress

In the case of a cylindrical Couette geometry, the curvature induces a spatial heteroge-

neity of the stress, the inner part being above the yield stress and flowing, and the outer

216 CHEDDADI, SARAMITO, and GRANER



part being below the yield stress and nonflowing [Adams and Olmsted (2009)]. This

explanation of localization requires a yield stress, and thus arises in VP and EVP models.

An alternative interpretation has been presented by Wang et al. (2006) for two-

dimensional foams. They performed experiments with two configurations in a plane
Couette geometry: either bubbles floating on water (bubble raft) or bubbles confined

between water and a glass plate. They observed localization only in the second case,

when a glass plate is present. Therefore, the competition between the internal viscosity of

the foam and the external friction from the glass plates has been suggested by Wang

et al. (2006) and Janiaud et al. (2006) as a possible cause for localization, even in the

case of circular geometries [Clancy et al. (2006)].

Cheddadi et al. (2008) have reconciled these views by comparing in detail the

Saramito (2007) EVP model with both steady and transient regimes of the Debrégeas

et al. (2001) experiment of a two-dimensional foam confined between two glass plates.

They have shown that the simple explanation of a nonhomogeneous stress is still valid for

such systems. The curvature of flow lines and the friction on the glass plates are only two

different possible causes for stress heterogeneity. In practice, the friction of glass plates is

so small [Cheddadi et al. (2008)] that it plays a visible role only in the absence of flow

line curvature, as in the plane geometry of Wang et al. (2006). In two-dimensional cylin-

drical Couette flows, the available data are not compatible with this friction-dominated

interpretation and are compatible with the stress heterogeneity that arises from geometry.

In what follows, we neglect the friction on plates, and use two-dimensional foams as

model systems for two- or three-dimensional nonthixotropic EVP fluids.

B. What is the localization position rc?

In cylindrical Couette flows, Weaire et al. (2010) have reviewed the dependency of

the localization position on the cylinder velocity. They find that in the low velocity

regime, it is basically undetermined: there is a range of possible values for the localiza-

tion position and, moreover, the size of this range diverges when the velocity decreases.

There are two questions: is there a hidden variable which fixes the localization position?

for a given experiment, is the position predictable?

To answer these questions, in Sec. V, we explicitly determine the localization position,

and study its dependence on model parameters and initial conditions.

C. Why smooth and=or nonsmooth profiles?

The first observation of foam Couette flows by Debrégeas et al. (2001) reported a

smooth velocity profile [Fig. 2(a)].

However, in 2002, Coussot et al. (2002) observed discontinuous shear rate profiles on

Couette flows of emulsions and suspensions [Fig. 2(b)]. A discontinuity (denoted _cc) of

the shear rate at r¼ rc was measured: so, the velocity profile is nonsmooth at r¼ rc, since

its derivative is related to the shear rate. Such nonsmooth profiles were found by others

between 2003 and 2008: for wormlike micelles by Salmon et al. (2003a), for lyotropic

lamellar systems by Salmon et al. (2003b), for Couette foam flows by Lauridsen et al.
(2004), Gilbreth et al. (2006), Dennin (2008), Krishan and Dennin (2008), and interpreted

theoretically by Denkov et al. (2009), Clancy et al. (2006), and Weaire et al. (2010).

Surprisingly, in 2008–2010, experiments published by Katgert et al. (2008, 2009,

2010), Coussot and Ovarlez (2010), and Ovarlez et al. (2010) showed smooth velocity

profiles and continuous shear rates at r ¼ rc : _cc equals zero. Note that some papers with

contradictory results shared either an author [Coussot et al. (2002); da Cruz et al. (2002);

Huang et al. (2005); Coussot and Ovalez, (2010)] or a set-up, the bubble raft [Lauridsen
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et al. (2004); Gilbreth et al. (2006); Dennin (2008); Krishan and Dennin (2008); Katgert

et al. (2008, 2009, 2010)].

Coussot and Ovarlez (2010) explained this discrepancy by questioning the quality of

the experiments: “previous data on a specific foam [Rodts et al. (2005)] were probably

affected by experimental artifacts.” Similarly, Ovarlez et al. (2010) explain that “Our

measurements demonstrate that three-dimensional foams do not exhibit observable signa-

tures of (discontinuous) shear banding. This contrasts with the results of Rodts et al.
(2005) and da Cruz et al. (2002) which we have shown to pose several experimental

problems” and mention that “the case of bubble rafts is still unclear.”

Our results emphasize the intrinsic sensitivity of the equations to the sample history

[Bénito et al. (2010)]; this could explain why experimental artifacts such as impurities [Rodts

et al. (2005)] or bubble rupture [da Cruz et al. (2002)] could yield drastic changes in observa-

tions. Even when experimental artifacts are eliminated, our results regarding the effect of

trapped stresses due to initial conditions provide a deep reason to explain why, according to

the set-up or foam preparation, either a smooth or a nonsmooth profile could appear.

III. CONSTITUTIVE EQUATION

A. Brief review of EVP models

A number of closely related models have appeared in the literature [see Saramito

(2007) for a review]. Table I distinguishes models with respect to their behavior before

and after yielding, their applicability to three-dimensional general flows, and to the exis-

tence of a proof that the dissipation is positive.

We now discuss the mathematical formulation and properties of some of these models.

The equations are written in two dimensions with polar coordinates to fit with the cylin-

drical Couette geometry. Table II lists the corresponding dimensionless parameters. In

FIG. 2. Smooth and nonsmooth velocity profiles. Experimental data are compared with our computations as dis-

cussed in Sec. IV D. (a) Smooth profile: comparison of experimental data on a foam by Debrégeas et al. (2001)

with the present computations (eY¼ 0.175, Bi¼ 10, Co¼ 0.41803, n¼ 1=3); (b) nonsmooth profile: comparison

of experimental data on a bentonite-water suspension from Fig. 1(a) of Coussot et al. (2002), with the present

computations (eY¼ 0.35, Bi¼ 27, Co¼ 1=3, n¼ 1). Inset: zoom around r¼ rc.
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each model, the constitutive equation is closed with equations for momentum and mass

balance, and appropriate Couette flow boundary and initial conditions. Since external

forces and inertia are negligible here [see Sec. II A and Cheddadi et al. (2008)], the

momentum balance reduces to

r � s ¼ 0; (1)

where s is the stress tensor. The material is assumed to be incompressible, so the mass

balance is

r � v ¼ 0; (2)

where v is the velocity.

B. VP model: Herschel–Bulkley

Herschel and Bulkley (1926) proposed a power-law variant of the viscoplastic Bing-

ham (1922) model [see also Oldroyd (1947)]

TABLE I. Summary of the referenced EVP models. The 3D column is marked when the model has been written

in a general tensorial sense, e.g., with objective derivatives. The TH column is also marked when the model has

a positive dissipation according to the second law of thermodynamics. The italic mark X in the 3D or the TH

columns means that the corresponding property was derived after publication of this model. For instance, the

Bingham and the Herschel–Bulkley models were first proposed in a one-dimensional simple shear flow context,

then extended to three dimensions, and finally found to satisfy the second law of thermodynamics.

Contribution Before yielding After yielding 3D TH

Schwedoff (1900) Rigid solid VE fluid

Bingham (1922) Rigid solid Newtonian fluid X X

Herschel and Bulkley (1926) Rigid solid Power-law fluid X X

Oldroyd (1947) Elastic solid Newtonian fluid X X

Isayev and Fan (1990) Elastic solid VE fluid X X

Doraiswamy et al. (1991) Elastic solid Power-law fluid X

Puzrin et al. (2003) Elastic solid VE solid X X

Saramito (2007) VE solid VE fluid X X

Bénito et al. (2008) VE solid VE fluid X X

Saramito (2009) VE solid Power-law VE fluid X X

TABLE II. Four dimensionless numbers (eY, Bi, Co, n), or equivalently (We, Bi, Co, n), which completely char-

acterize the Saramito (2009) model in the circular Couette geometry.

Symbol Name Definition Physical meaning Typical range

eY Yield strain
sY

2G
[Eq. (11)] Elastoplasticity [0,0.5]

Bi Bingham
sYDr

gV
[Eq. (5)] Viscoplasticity [0,100]

Co Curvature
re � r0

re
[Eq. (6)] Curvature [0,1]

n Power-law index [Eq. (3)] Shear thinning [0.3,1]

We Weissenberg
gV

GDr
¼ 2eY

Bi
[Eq. (9)] Viscoelasticity [0,0.04]
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s ¼ 2KjDjn�1Dþ sY
D
jDj when jDj 6¼ 0;

jsdj � sY otherwise;

8<
:

or equivalently: max 0;
jsdj � sY

2Kjsdjn
� �1=n

s ¼ D;

(3)

where D¼ (!vþ!vT)=2 is the deformation rate tensor, jDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
DijDij

p
its Euclidian

norm, and (!v)ij¼ (@jvi) is the velocity gradient tensor. The so-called deviatoric stress

sd is defined according to the spatial dimension in which the flow is investigated:

sd ¼ s� 1=Nð ÞI, where I is the identity matrix, and N¼ 1, 2 or 3. We focus here on two-

dimensional flows and take N¼ 2. Here, sY> 0 is the yield stress, K> 0 is the consistency

parameter, and n> 0 is the power-law index.

The von Mises criterion, jsdj � sY, involves the Euclidian norm of the deviatoric part

of the stress. In cylindrical coordinates, it is written

jsdj ¼ 2s2
rh þ
ðsrr � shhÞ2

2

 !1=2

: (4)

Note that, favoring the shear stress, some authors use a slightly different definition of the

deviatoric stress norm [Raufaste et al. (2010)]: s2
rh þ ðsrr � shhÞ2=4

� �1=2

. This rheologi-

cal definition would lead to an alternative, equivalent model: keeping the same Eq. (3), it

would only multiply the deviatoric stress norm jsdj by 2�1=2, the yield stress sY by 2�1=2,

and the consistency K by 2(n–1)=2.

In the circular Couette geometry, V denotes the velocity of the inner cylinder and

Dr¼ re� r0 the width of the gap. Note that g¼K(V=Dr)n�1 has the dimension of a

viscosity and that g¼K when n¼ 1. The dimensionless Bingham number is

Bi ¼ sYDr

gV
: (5)

It compares the yield stress sY with a characteristic viscous stress gV=Dr. Let us also

introduce the dimensionless number Co

Co ¼ 1� r0

re
; (6)

that quantifies the curvature of the circular Couette geometry. When the two radii are

close, this number is close to zero. Conversely, when the curvature is extreme, e.g., r0

becomes small, this number tends to one.

The Herschel–Bulkley model predicts localization in the circular Couette geometry,

as a result of the stress heterogeneity. Its position rc can be numerically computed [see

Appendix A, Eq. (A1)].

The Herschel–Bulkley model reduces to the Bingham one when n¼ 1, to a power-law

fluid when sY¼ 0, and to a Newtonian fluid when n¼ 1 and sY¼ 0. The shear thinning

behavior is associated with 0< n< 1 and the (less usual) shear thickening behavior with

n> 1.
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C. Viscoelastic (VE) model: Oldroyd

Oldroyd (1950) proposed the following VE model:

g
G

s
rþs ¼ 2gD; (7)

where G> 0 is the elastic modulus and g=G is a relaxation time. The total stress is

r¼ 2g2Dþ s where g2 is a second viscosity, often called the solvent viscosity in the

context of polymer solutions. When g2¼ 0, the Oldroyd model reduces to the so-called

Maxwell model. The upper-convected tensorial derivative s
r

is defined by

s
r ¼ @s

@t
þ v:rs� s:rvT �rv:s: (8)

The dimensionless Weissenberg number is

We ¼ gV

G Dr
: (9)

It compares the characteristic viscous stress gV=Dr with the elastic modulus G. When

1=G¼ 0, the Oldroyd model reduces to a Newtonian one.

D. EVP model: Saramito

Saramito (2007, 2009) and Bénito et al. (2008) derived (independently) tensorial EVP

models that combine viscoelastic and viscoplastic properties (see Fig. 3 and Table I).

They satisfy the second law of thermodynamics and match the behavior of nonthixotropic

EVP materials such as foams and emulsions: elastic solid before yielding and viscoelastic

flow after yielding.

The EVP model presented by Saramito (2009) is simple enough to allow for the

numerical resolution (with good convergence, see Appendix B) of the associated partial

differential equations even in intricate two- [Cheddadi et al. (2011a)] and three-

dimensional geometries and is thus suitable for practical and industrial purposes. It is

written

1

2G
s
rþmax 0;

jsdj � sY

2Kjsdjn
� �1=n

s ¼ D: (10)

When 1=G¼ 0 we obtain the Herschel–Bulkley model, Eq. (3). Conversely, when n¼ 1

and sY¼ 0 we obtain the Oldroyd model, Eq. (7). Finally, when both 1=G¼ 0, sY¼ 0 and

n¼ 1, the model is Newtonian.

FIG. 3. Schematic representation of the Saramito (2009) EVP model.
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In addition to the independent dimensionless numbers (We, Bi, Co, n) already introduced

for the Herschel–Bulkley and Oldroyd models, we define the elastic yield strain eY as

eY ¼
sY

2G
¼ Bi We

2
: (11)

This dimensionless parameter is a measure of the softness and deformability of the mate-

rial. It has been shown to be the main parameter for the characterization of EVP materials

[Cheddadi et al. (2011a)] and is often easier to measure from experiments than the yield

stress [Marmottant et al. (2008)]. The four independent dimensionless numbers (eY, Bi,
Co, n) completely characterize the problem (Table II), as do (We, Bi, Co, n).

From now on, the Saramito (2009) model will be referred to as “the EVP model,”

while the Herschel–Bulkley model will be referred to as “the VP model.”

IV. OVERVIEW OF THE EVP MODEL SOLUTIONS

A. Homogeneous flows: Transient response to a simple shear

Saramito (2007, 2009) studied simple flows in a geometry without stress heterogene-

ity, such as uniaxial extensional flow, oscillating shear flow, or simple shear flow. To

enable comparison with the circular Couette geometry (Sec. IV B), we first study the pre-

diction of the EVP model in simple shear flow. The fluid is initially at rest: at t¼ 0, s¼ 0.

Then, for t> 0, a constant shear rate _c is applied.

The solution s(t) is then computed from Eq. (10). As long as there is no stress hetero-

geneity, the EVP model does not predict any localization. Figures 4(a) and 4(b) plot the

normalized shear stress growth coefficient gþS ¼ s= _c and the first normal stress difference

N1¼ s11� s22 with respect to the applied shear _ct. At first, when the stress in the material

is still below the yield stress sY, the shear stress increases linearly with time, while the

first normal difference increases quadratically: the material behaves as an elastic solid

obeying the Poynting law [Höhler et al. (2004)]. Such a nonlinear phenomenon has been

seen experimentally in foams [Labiausse et al. (2007)]. After this initial elastic transient,

saturation occurs at large applied shear: the stress components tend to a constant value as

the applied shear tends to infinity. At the transition to the steady state, one can observe an

overshoot of the shear stress that is more pronounced for small values of n.

Figures 4(c) and 4(d) plot the steady shear viscosity gS ¼ limt!1 gþS versus We. For

0< n< 1, the shear viscosity decreases monotonically, while it tends to a plateau when

n¼ 1. Thus, when n< 1, the material is shear thinning. Observe that the value of Bi
controls the viscosity plateau at small values of We, while it has less influence on the

viscosity for large values of We.

In summary, before yielding, the material behaves as a linear elastic solid, while

after yielding it is described by a nonlinear viscoelastic model through the power-law

index n.

B. Cylindrical Couette geometry: Startup flow

We can now study how the stress heterogeneity due to the cylindrical Couette geome-

try modifies the simple shear flow presented in Sec. IV A.

Let us consider an EVP material described by Eqs. (1), (2), and (10), initially at rest,

i.e., such that v¼ 0 and jsdj< sY. For t> 0, the inner cylinder moves with a velocity

V> 0 and the flow develops throughout the gap. The initial spatial distribution of stress
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reflects the preparation of the material [Labiausse et al. (2007)]. At first, while jsdj <sY,

no plasticity occurs and the equations can be solved explicitly for n¼ 1 (Appendix C).

The component srr is constant and equal to its initial condition, while the shear stress

srh(r, t) is linear in the shear strain

srhðr; tÞ ¼ srhðr; 0Þ �
G

2

1� Co

Co2ð2� CoÞ
Dr

r

� �2 Vt

Dr
; (12)

and the material develops normal stresses which are quadratic in the shear strain

shhðr; tÞ ¼ shhðr; 0Þ þ
G

2

1� Co

Co2ð2� CoÞ
Dr

r

� �2 Vt

Dr

 !2

: (13)

FIG. 4. Start-up shear flow for We ¼ g _c=G ¼ K _cn�1=G ¼ 1 and Bi ¼ sY=ðK _cnÞ ¼ 1: (a) normalized shear stress

growth coefficient gþS ðt; _cÞ vs normalized time; (b) normalized first normal stress difference Nþ1 ðt; _cÞ vs normal-

ized time. Steady shear flow: shear stress coefficient gSð _cÞ vs We for various values of Bi: (c) n¼ 1; (d) n¼ 0.5.
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Below the yield stress, the material exhibits the same elastic behavior as in simple shear,

except for the 1=r2 spatial heterogeneity of the shear stress. Because of this heterogene-

ity, the norm of the deviatoric stress jsdj first reaches the yield stress sY at the inner

boundary. The plasticity dissipates the applied deformation and a steady state is rapidly

reached, as shown by Cheddadi et al. (2008). When no external force such as friction is

present, the saturation propagates instantaneously throughout the gap [see Cheddadi et al.
(2008)]; therefore, the duration of the transient is of the same order of magnitude as the

duration of the elastic regime.

C. Cylindrical Couette geometry: Steady-state solutions

We now review some of the new insights gained from the tensorial EVP model, with

an emphasis on the differences with scalar and=or VP models. Figure 5 shows all the

components of some solutions of the EVP model, for a set of parameters used as refer-

ence [Eq. (14) and Fig. 2(b)], and compares them to the VP model. The exploration of

these parameters will be presented in Sec. V. We define the critical shear rate _cc as the

jump of _c ¼ 2Drh at r¼ rc: it is visible as the slope of the velocity profile [see, for

instance, Fig. 5(a)].

1. Range of possible initial conditions

The EVP constitutive equation [Eq. (10)] includes derivatives of the elastic stress ten-

sor with respect to time and, therefore, allows the study of transient flows, as has been

done by Cheddadi et al. (2008). This in turn requires to specify an initial condition that

reflects the preparation of the material before the beginning of the experiment. In particu-

lar, the tensorial framework allows us to study various initial normal stresses.

Three different constant values for shh are chosen. We denote by EVP0 the case where

the components of the initial stress are all set to zero. We then explore two limit cases, in

which the component shh is such that the norm of the initial deviatoric stress tensor is

jsd(r, h, t¼ 0)j ¼ sY, while the other stress components are zero, srh(r, h, t¼ 0)¼ srr(r, h,

t¼ 0)¼ 0. We thus introduce the two cases EVP6 corresponding to initial stresses

shhðr; h; t ¼ 0Þ ¼ 6
ffiffiffi
2
p

sY . Note that the component srr(r, h, t) remains constant and equal

to its initial value zero in the cylindrical Couette geometry [see Eq. (10)]. We denote by

rþc ðresp: r�c Þ the critical radius corresponding to EVPþ (resp. EVP�).

2. Results

The results from the EVP model are dramatically different to the results from the VP

model, for which the (steady-state) velocity is unique, the normal stress components are

zero and the localization length rc is also unique for a given set of its parameters.

a. Effect of the initial conditions. Surprisingly, Fig. 5 shows that the steady-state

solution depends on the initial conditions. We find that they lead to three different

steady-state solutions, both for the velocity profile [Fig. 5(a)] and for the stress

[Figs. 5(b)–5(d)]. For a given set of parameters (eY, Bi, Co, n), when the initial condition

varies the EVP model predicts a continuous set of steady-state solutions.

b. Nonuniqueness of the localization length. Depending on the initial condition, the

critical radius rc can reach any value in the range ½rþc ; r�c �; the highest critical shear rate is

reached for the solution with EVP�. We find that rþc ¼ r0 þ 0:33Dr is close to the value

predicted by the VP model, but r�c ¼ r0 þ 0:24Dr is significantly smaller, while the criti-

cal radius r0
c ¼ r0 þ 0:28Dr for EVP0 is in between.
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c. Memory effects. Unlike the VP model, the EVP model exhibits nonzero normal

stresses [Fig. 5(b)]: in the flowing region (r< rc) where plastic rearrangements occur con-

tinuously (jsdj> sY), the normal stress is independent of the initial conditions, and the

material progressively loses memory of the initial condition. Conversely, in the nonflowing

region (r> rc and jsdj< sY), the normal stress depends strongly on the initial conditions.

The material thus keeps a record of the initial conditions through residual normal stresses.

d. Smooth and nonsmooth solutions. Unlike the VP model, the EVP model can

exhibit either smooth (EVPþ) or nonsmooth profiles (EVP0, EVP�): the velocity gradient

and the normal stress can be discontinuous at r¼ rc [Fig. 5(a)]. Compared to EVP0,

FIG. 5. Comparison between the steady-state solutions of the VP Herschel–Bulkley model and the EVP Sara-

mito model in cylindrical Couette geometry: (a) velocity, with same experimental data as in Fig. 2(b) (Coussot

et al., 2002) (b) normal stress; (c) shear stress; (d) norm of the deviatoric stress. Lines: solutions of the EVP

model for the reference set of parameters [Eq. (14)]: eY¼ 0.35, Bi¼ 27, Co¼ 1=3, n¼ 1, as shown in Fig. 2(b),

with different initial conditions. Thick solid line (denoted EVP0): s0
hh ¼ 0; thin dashed line (EVPþ):

s0
hh ¼

ffiffiffi
2
p

sY ; thin dotted line (EVP�): s0
hh ¼ �

ffiffiffi
2
p

sY ; thick dash-dotted line (VP): Co¼ 1=3, Bi¼ 27, n¼ 1. We

denote rþc ðresp: r�c Þ the critical radius of the EVPþ (resp. EVP�) solution.

225COUETTE FLOWS OF EVP FLUIDS ARE NONUNIQUE



EVP� exhibits a stronger localization ðr�c < r0
c Þ, a higher _cc, and a higher jump of the

normal stress [Fig. 5(b)].

3. Comment on the nonuniqueness of the steady-state solutions

First, we point out that, for each given initial condition, the corresponding time-

dependent problem is well-posed, its time-dependent solution is unique, and the

associated steady-state solution is unique too. Let us then analyze the sources of the non-

uniqueness of the solution.

First, from a qualitative point of view, the nonuniqueness of the steady-state solution

can be related to the transient elastic regime: in the extreme EVP� case, the component

shh starts with a negative value that quadratically evolves with time [Eq. (13)]; mean-

while, the shear stress develops throughout the gap [Eq. (12)], and as its contribution to

the von Mises criterion dominates that of the normal stresses [see Eq. (4) and Figs. 5(b)

and 5(c)], the yield stress value sY is reached, while the normal stresses are still negative.

In the flowing region near the inner cylinder, the plastic term is not zero anymore and

strongly couples the component of the normal stresses to the flow. Their value is pre-

scribed by the flow and no longer depends on the initial condition in the flowing region

[Fig. 5(b)]; it differs from the nonflowing region where the normal stresses profiles

strongly depend on the initial condition. When the steady-state regime is reached, these

two regions do not join up, which results in discontinuous normal stresses and shear

rate. The jump decreases as the initial stress is increased (solutions EVP0 and EVPþ,

Fig. 5).

Second, from a formal point of view, the VP model [Eq. (3)] contains one nonlinear-

ity, related to the von Mises criterion. The EVP model [Eq. (10)] adds a second nonli-

nearity contained in the Oldroyd derivative [Eq. (8)]. Due to the expression of this

Oldroyd derivative, the steady-state EVP equations do not reduce to the VP model. The

additional term couples the normal stresses components with the shear stress and the

velocity gradient (Appendix D). Therefore, even though the velocity gradient reduces

here to the shear component, the EVP steady-state solution develops nonzero normal

stresses. This additional nonlinearity, interacting with the von Mises criterion, causes

nonuniqueness of the stresses in the vicinity of jsdj ¼ sY, i.e., in the vicinity of r¼ rc.

D. Comparison with experiments

We explain here how the parameters of the EVP model were chosen in order to fit the

experimental data shown in Fig. 2.

1. Smooth velocity profiles: The Debrégeas et al. experiment

In the foam experiment shown in Fig. 2(a), image analysis was used to find the steady-

state velocity profiles [Debrégeas et al. (2001)]; it was reanalyzed by Janiaud and Graner

(2005) who measured the shear and normal components of the local elastic strain, in both

the transient and steady-state regime.

In the experiment, a steady state is reached after a transient regime. The rotation direc-

tion is then inverted, and after a second transient another steady state is reached: this is

when measurements are recorded [Debrégeas et al. (2001)]. To perform a comparison,

we use the experimental steady state as an initial condition, invert the rotation, compute

the numerical solution until a first steady state is reached, then again invert the rotation,

and compare the corresponding steady state with experiments.

226 CHEDDADI, SARAMITO, and GRANER



The value of the curvature number is fixed by the geometry,

Co ¼ 1� r0

re
¼ 1� 71

122
� 0:41803:

We have to adjust the value of the three remaining parameters: eY, Bi, n. We focus on the

steady-state measurements of elastic strain and velocity.

We start with the yield strain eY; this parameter is independent of the velocity and

exerts a large effect on the elastic strain e(e)¼ srh=(2G) [see Cheddadi et al. (2011b)]. We

find that eY¼ 0.175 allows a good fit of the measured value of the shear elastic strain

[Fig. 6(a)]. The initial normal components of the strain are not affected [Fig. 6(b)] by the

successive rotations in the region r> rc and remain below the yield strain eY: this region

undergoes reversible elastic deformation.

Then, we have to adjust the values of Bi and n. These parameters have much less

effect than eY on the profiles of e(e), but they do affect the localization length and the

smoothness of the solution (see supplementary material in document E-JORHD2-56-

005201. Information on accessing this document is contained at the end of the referen-

ces). As this experiment exhibits a very smooth transition from the flowing to the

nonflowing region (exponentiallike decrease of the velocity), our sensitivity analysis (see

Sec. V D) yields a good agreement with the data when using a small value of the power-

law index, n¼ 1=3.

The localization length can be measured from the experiment: rc� r0 � 0.3 Dr; we can

use this information in the EVP model, taking advantage of the fact that the localization is

a VP effect and is mostly determined by the underlying VP model. This last model yields a

relation between the values of rc, Bi, and n [see Appendix A, Eq. (A1)]: with the chosen

value of Co and n¼ 1=3, it yields Bi � 7.6. This value is slightly adjusted in the EVP

model in order to improve the fit: we obtain a better fit of the velocity profile with Bi¼ 10.

FIG. 6. The stress tensor: comparison of computations and experiments: (a) components; (b) norm of the tensor.

Lines: computations with eY¼ 0.175, Bi¼ 10, Co¼ 0.41803, n¼ 1=3. Symbols: experiments (Debrégeas et al.,
2001) analyzed by Janiaud and Graner (2005); errors bars have been provided by Janiaud (private communication).
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2. Nonsmooth profiles: The Coussot et al. experiment

The experiment shown in Fig. 2(b) was made with a bentonite-water suspension, using

MRI [Coussot et al. (2002)]. MRI measurements provide a precise and sharp velocity

profile that could not be obtained with foams (Sec. VI A). We use it here to explore the

solutions of the EVP model, without claiming to explain the particular properties of ben-

tonite (which is thixotropic) or any other specific material.

For this experiment, only the steady-state velocity has been measured, which makes it

more difficult to evaluate precisely the parameters of the EVP model. Since the normal

stresses are not measured, we take an initial condition set to zero for the sake of simplic-

ity. As the velocity profile is quite abrupt in the vicinity of r¼ rc, we choose n¼ 1 for the

power-law index. Then, as for the previous experiment, we evaluate the Bingham number

Bi under the condition that the critical radius predicted by the underlying VP model

matches the value in the experiment (rc� r0¼ 0.28 Dr). From this point, the slope of ve-

locity at r¼ rc (which is directly related to the critical shear rate) can be adjusted by tun-

ing the yield strain eY. The best fit is obtained with eY¼ 0.35 and Bi¼ 27.

V. SENSITIVITY TO THE PARAMETERS

Now, we study how the range ½r�c ; rþc � and the critical shear rate _cc depend on the

parameters of the EVP model. We explore the parameter space with the dimensionless

numbers (eY, Bi, Co, n). It allows us to probe the effect of the imposed velocity V, through

the Bingham number, as it is the only one that depends on V; the geometry, through the

curvature number Co; and the two material parameters: the yield strain eY, and the

power-law index n. These parameters are varied around a reference set of parameters

used for the comparison with Coussot et al. (2002) [Sec. IV D 2, Fig. 2(b)]

eY ¼ 0:35; Bi ¼ 27; n ¼ 1; Co ¼ 1=3: (14)

A. Effect of the inner cylinder velocity V

The effect of the imposed velocity V is probed through Bi, which is varied in the range

[10, 60] around the reference value Bi¼ 27. If V0 is the velocity associated with this

FIG. 7. Effect of the Bingham number Bi. (a) r�c and rþc . Red bars: five examples of the range in which

(rc� r0)=dr varies. Cross: parameters as Eq. (14) together with s(t¼ 0)¼ 0. Solid line: value predicted by

the VP model with the same parameters except that eY¼ 0. From Coussot et al. (2002), Fig. 1(a), we get V0=Dr
� 6.3 s�1. (b) Corresponding values of _cc.
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reference value, the range of Bi corresponds roughly to the range [V0=3,3V0] for the ve-

locity. Observe in Fig. 7(a) that when the Bingham number Bi increases then rc decreases

and the size of the zero-velocity zone increases. The critical radius rþc almost matches the

critical radius predicted by the VP model. The flow becomes more localized and the gap

between r�c and rþc also decreases slowly. The marker represents our reference solution

[in Fig. 7(a)]. We observe in Fig. 7(b) that _cc is almost constant when Bi varies. Varying

the velocity affects the size of the zero-velocity zone but has little effect upon the possi-

ble abruptness of the solution, nor on the range ½r�c ; rþc �.

B. Effect of the curvature Co

The curvature number Co explores the effect of the curvature of the geometry. Recall

that Co! 0 corresponds to the plane Couette, with a homogeneous stress throughout the

gap, while Co close to one corresponds to cylindrical Couette with a tiny central cylinder,

and a highly heterogeneous stress. Observe in Fig. 8 that the size of the zero-velocity

zone decreases when Co tends to one. The critical radius rþc of the smooth solution is

well predicted by the VP model. Note, also, that the difference rþc � r�c decreases with

Co: thus, when rc is close to r0, the effect of the initial condition on the localization

length is less visible. Also, the maximal discontinuity _cc of the critical shear rate

increases with Co.

FIG. 8. Effect of the curvature Co: legend as in caption of Fig. 7.

FIG. 9. Effect of the yield strain eY: legend as in caption of Fig. 7. Dashed lines: fits of the EVP� solutions to

the data.
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C. Effect of the yield strain eY

The yield strain eY has only a small impact on the EVPþ solution and a large effect on

the velocity profile of the EVP� solution: r�c decreases and _cc increases, both quasilinearly,

when eY increases (Fig. 9). A linear regression through our numerical data leads to

r�c � r0

Dr
� �0:23 eY þ 0:33;

� Dr

V
_cc � 5:5 eY :

(15)

Note that both the range rþc � r�c and the discontinuity _cc increase with eY. Accordingly,

when eY vanishes, r�c ¼ r�c and _cc ¼ 0: the solution is unique and smooth: there is no

elasticity and the model reduces to the VP one.

D. Effect of the power-law index n

From Fig. 10, the range rþc � r�c appears to remain roughly constant, while the size of

the yielded zone increases with n. The critical radius rþc decreases with n, as for the VP

model. The _cc discontinuity of the shear rate for the extreme EVP� solution decreases

with n. These effects are not intuitive.

Another way to explore the effect of n is to vary it, while rc is held fixed. In fact, the

critical radius rc is approximately given by the VP model and can then be predicted as a

function of (Bi, n, Co) (Appendix A). Inverting this function yields Bi(rc, n, Co): this

value of Bi (Table III) is then injected in the EVP model. Using this procedure, the values

of n and Bi are varied in such a way that rc remains constant.

The solutions to the EVP model are represented in Fig. 11. Figure 11(a) shows the

EVPþ smooth solution, associated with rþc � r0 þ 0:3Dr, while Fig. 11(b) plots the

EVP� nonsmooth one, with r�c � r0 þ 0:23Dr. Note that both rþc and r�c are now roughly

constant, and that the velocity profile is more curved when n is small.

FIG. 10. Effect of the power-law index n: legend as in caption of Fig. 7.

TABLE III. Effect of the power-law index n while rc remains fixed: values of n and corresponding values of Bi
(eY¼ 0.35, Co¼ 1=3).

n 1=3 1=2 2=3 1

Bi 9.54785 12.7851 16.6489 27
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Figure 11(c) shows _cc: observe that the discontinuity decreases rapidly when n
decreases. For n¼ 1=3, the nonsmoothness becomes imperceptible, while the EVPþ

smooth and EVP� nonsmooth profiles are very close and almost indiscernable, as shown

in Fig. 11(d). Note that even when n¼ 1=3, there are still multiple solutions, and the

range for rc remains as large as ½r�c � r0; rþc � r0� � ½0:23; 0:3�Dr, despite the fact that

these solutions share similar curved profiles.

VI. DISCUSSION

A. Smooth and nonsmooth profiles

The debate about smooth and nonsmooth velocity profiles, mentioned in the Introduc-

tion, is difficult to address experimentally, for two reasons.

First, since the steady-state solution is not unique, both smooth and nonsmooth pro-

files can be observed in the same experiment. This depends on the residual stresses due to

the initial preparation, which are usually not reproducible and are certainly difficult to

suppress [Labiausse et al. (2007); Raufaste et al. (2010)], or on the presence of some

impurities. This high sensitivity might explain some discrepancies in the literature, and

the difficulty to settle the debates regarding localization.

Second, the experiments in foams are not always precise enough to discriminate

between smooth and nonsmooth transitions. Figure 12 compares experimental measure-

ments and the two solutions: EVPþ, the smooth one, with dashed lines, and EVP�, the

nonsmooth one, with solid lines. Experiments were performed with bubble rafts, and in

order to reflect the absence of top and bottom plates, the fluid viscosity is introduced in

computations as a second Newtonian viscosity g2 with a viscosity ratio a¼ g=(gþ g2)

FIG. 11. Effect of the power-law index n at fixed rc: (a) EVPþ smooth and (b) EVP� nonsmooth velocity pro-

files, (c) _cc; (d) smooth (dashed) and nonsmooth (continuous) profiles for n¼ 1=3.
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[Saramito (2007, 2009)]. In that case, the smooth solution predicts rþc ¼ r0 þ 0:65Dr
and the nonsmooth one r�c ¼ r0 þ 0:43Dr together with a critical shear rate

_cc ¼ 0:33 V=Dr. Observe that neither the smooth nor the nonsmooth solutions can be

distinguished from the experimental measurements.

B. Is Couette flow suitable for characterizing EVP materials?

1. Flow geometry

We recommend to study flows where residual stresses do not affect the understanding

and measurements. Other requirements should include: well-defined boundary condi-

tions; a good separation of scale between the discrete units, the RVE and the global flow

scale; the possibility to have a large variation of the control parameters such as velocity

(and in foams, liquid fraction, and bubble size dispersity); a variety of measurements pro-

viding stringent tests on the EVP model and its parameters. We have shown using experi-

ments and models that a foam flow around an obstacle (Stokes flow) meets these

requirements [Cheddadi et al. (2011a)].

Couette flows, due to their simple geometry, have a long history of being used to

probe the rheology of Newtonian fluids. They are also suitable for complex liquids such

as VE or VP materials. However, the present study questions their use in EVP materials,

and especially in foams, which are usually excellent model materials to perform in-lab

experiments. In fact, in EVP materials, the initial conditions and the preparation method

create residual stresses which are difficult to remove and affect the flow, which thus

becomes nonunique and poorly controlled. Care is necessary to interpret the results.

Future experimental work could try to deepen our understanding of localization and to

test our predictions by working in the following two directions.

2. Sample preparation

The control of the sample preparation, and of the initial normal stresses, is important.

Obtaining different (although uncontrolled) initial conditions should be reasonably easy

by trying different methods to fill the experimental cell.

FIG. 12. Foam showing abrupt velocity profile. Comparison of experimental data, from Gilbreth et al. (2006),

Fig. 1, with model (eY¼ 0.2, Bi¼ 1.3, Co¼ 0.63333, n¼ 1, a¼ 0.2) for both smooth EVPþ and nonsmooth

EVP� ðshhðt ¼ 0Þ ¼ 6
ffiffiffi
2
p

BiÞ solutions.
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Choosing these initial stresses is less easy, but possible, for instance, by performing a

high velocity preshear in the reverse direction. If the shear rate is high enough so that no

localization is observed in the steady-state regime, the normal stresses reach a value

larger than
ffiffiffi
2
p

sY . Whatever the initial loading of the material, it has been irreversibly

erased by the plastic rearrangements. After such a preshear, one should observe smooth

velocity profiles, with no critical shear rate. We have numerically checked that after such

a high velocity preshear the EVP model predicts a smooth solution (similar to EVPþ),

even with the EVP� initial loading that would lead without preshear to a nonsmooth

solution.

Suppressing these initial stresses is approximately (but not completely) possible by a

careful sample deposition in the experimental cell [Labiausse et al. (2007)]. Complete

suppression would, for instance, require applying cycles of oscillating strain of amplitude

which begins at around twice the yield strain and then gradually decreases to zero

[Raufaste et al. (2010)]; since these cycles have to be performed in each of the three

dimensions, such suppression of initial stress would require a dedicated experiment and

is in fact easier in simulations.

Finally, some coarsening materials such as foams become gradually isotropic with

time, so that their trapped stresses slowly decrease [Höhler and Cohen-Addad (2005)].

We emphasize the fact that these two last procedures tend to suppress normal stresses

and, therefore, correspond to the EVP0 initial loading and nonsmooth solutions.

3. Measurements of parameters and variables

We recommend to perform local measurements of strain or stress. In situ measurement

of strain is purely geometric and independent of any knowledge of the sample physics: it

can be performed on most systems where the positions of each discrete constituent object

is measurable [Graner et al. (2008)], which includes two-dimensional foams [Janiaud and

Graner (2005); Marmottant et al. (2008)] or colloids. In situ measurements of stresses are

possible with similar methods by measuring the positions of the discrete constituents and

having some knowledge of their physical interactions, for instance, in two-dimensional

foams [Marmottant et al. (2008)], or in birefringent materials by using photoelasticity

[Miller et al. (1996)].

Model parameters are all measurable in principle. Note that the yield strain or stress

requires a tensorial measurement, and thus normal differences components [Labiausse

et al. (2007)]. Again, local measurements of strain can help in measuring the yield strain

directly [Marmottant et al. (2008)].

VII. SUMMARY

We solve here a tensorial model for the cylindrical Couette flow of elastic, viscous,

plastic materials. We provide an approximate expression for the rheology versus different

material parameters. In turn, our predictions are compared with experiments. We show

that there is a complex interplay between elasticity, viscosity, and plasticity, which to-

gether (but not separately) account for experimental observations. Even in such a simple

geometry, the orientational effects are important, so that a tensorial EVP description is

necessary to capture many aspects of the physics: reversible elastic deformation (both

shear and normal components) below sY, following the Poynting law; memory of the

preparation of the material through the initial stress condition, and consequently non-

uniqueness of the steady flow and persistent residual normal stresses; possible appearance

of nonsmooth solutions. The normal stresses can be interpreted as an intrinsic structure
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parameter at the macroscopic level, and therefore independent of the underlying micro-

structure. These features can be predicted neither by VP models nor by VE models.

We have computed numerically the value of the localization length versus different pa-

rameters so that we can guide experimentalists to design experiments that may or may not

exhibit such effects: the effects of the initial conditions are more visible, for instance, when

eY is large; or when the dissipation exponent n is large; or when the velocity is large, but

small enough to allow for a localization within the gap; or when the heterogeneity from the

geometry is small, but large enough to allow for a localization within the gap.

Altogether, our results provide a validation of the continuous material description, a

determination of EVP material parameters, and an in-depth understanding of their com-

plex rheology. Finally, it appears that the steady Couette flow, which has stimulated so

many debates, is neither robust nor unique. Despite its apparent simplicity, it involves

numerous parameters, such as the initial conditions for the stress tensor, and is difficult to

use in practice. Couette flow experiments could be complemented with flows in other

geometries, with a stronger dependence in time and=or space.
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APPENDIX A: HERSCHEL–BULKLEY SOLUTION IN CYLINDRICAL
GEOMETRY

When eY¼ 0 the EVP model reduces to the VP one, and the velocity profile is given by

vhðrÞ ¼
ffiffiffi
2
p

r2
c sY

K

� �1=n

r

ðrc

r

1=s
1

s2
� 1

r2
c

� �1=n

ds:

In the case, where the flow is driven by the inner boundary, the critical radius rc is given

by the following expression:

sY ¼
Kffiffiffi
2
p

r2
c

vðr0Þ

r0

Ðrc

r0

1
s

1
s2 � 1

r2
c

� �1=n
ds

0
BBB@

1
CCCA

n

:

It expresses also in dimensionless variables

Bi ¼
ffiffiffi
2
p Dr

rc

� �2 r0

Dr

ðrc=Dr

r0=Dr

1

s

1

s2
� Dr

rc

� �2
 !1=n

ds

0
@

1
A
�n

; (A1)

For fixed values of n and rc, the corresponding value of Bi for the VP model, denoted as

Bivp (n, rc), can be easily computed by using numerical integration. Conversely, for given

Bi and n, the value of rc associated with the VP model, denoted as rvp
c ðn;BiÞ, can be

obtained from a small numerical computation [Fig. 13(a)].
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Figure 13(a) plots rc as a function of the Bingham number Bi, for eY¼ 0 (VP model)

and Co¼ 1=3, and different values of the power-law index n. Note that the value

Co¼ 1=3 corresponds to the geometry of the experiment by Coussot et al. (2002) as

shown in Fig. 2(b). In this geometry, the localization is observed as long as

rc=Dr< re=Dr¼ 1=Co. The VP model predicts that rc decreases with the Bingham

number: the zero-velocity zone develops and the localization effect is more pronounced.

Observe also that the localization effect is more pronounced when n decreases at fixed

values of Bi and Co. The rc value associated with the VP model is denoted as rc,vp (n, Bi)
and its inverse function as Bivp (n, rc). At fixed n, rc depends on Bi roughly as a power-

law

rcðBi; nÞ � r0

Dr
� 1:82 Bibn : (A2)

Figure 13(b) represents bn vs n. A nonlinear regression leads to the dotted line of

equation

bn � �0:38 n2 þ 0:88 n� 1:02: (A3)

APPENDIX B: NUMERICAL METHOD

The velocity is approximated by continuous affine finite elements, while the

stress components are piecewise constant over the mesh. The code is implemented

by using the Cþþ Rheolef finite element library.1 The stopping criteria for a

steady solution are satisfied when the residual term is less than 10�8. Figure 14

shows the convergence versus the mesh size h at the vicinity of r¼ rc for the

EVP� nonsmooth steady solution presented in Fig. 5. Observe that the numerical

FIG. 13. VP model (eY¼ 0, Co¼ 1=3): (a) localization versus the Bingham number Bi, for different values of

the power-law index n ; (b) index bn vs n for the power-law ðrcðBi; nÞ � r0Þ=Dr � 1:82Bibn . Dotted line:

Eq. (A3).

1http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/rheolef.pdf.
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method presents excellent convergence properties, despite the nonsmoothness of the

solution: the velocity is nondifferentiable [Fig. 14(a)], while normal stress is

discontinuous [Fig. 14(b)].

APPENDIX C: CALCULATIONS FOR STARTUP FLOW

The initial condition is such that v¼ 0 and jsdj< sY throughout the gap. For t> 0, the

inner cylinder moves with a velocity V> 0. The calculations that follow are valid as long

as no plasticity occurs.

Equation (D5) yields srh¼�C(t)=r2, where C(t) depends only on time. With n¼ 1,

Eq. (D1) yields srr¼ 0 if we choose srr(r, 0)¼ 0 in the initial condition. As a results,

Eq. (D2) implies

Drh ¼ �
C0ðtÞ
2Gr2

:

Using the fact that Drh ¼ 1=2� r @ðv=rÞ
@r , and the boundary conditions v(r0, t)¼V;

v(re, t)¼ 0, we find

C0ðtÞ ¼ G

2

r0r2
e

r2
e � r2

0

V;

and

Drh ¼ �
r0r2

e

r2
e � r2

0

V

4r2
¼ � 1� Co

4Co2ð2� CoÞ
Dr

r

� �2 V

Dr
:

The expressions (12) and (13) of srh(r, t) and shh(r, t) follow from Eqs. (D2) and (D3).

FIG. 14. Convergence vs mesh refinement for the EVP� nonsmooth solution (eY¼ 0.35, Bi¼ 27, Co¼ 1=3,

n¼ 1) as shown in Fig. 5.
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APPENDIX D: EQUATIONS IN CYLINDRICAL GEOMETRY

The velocity field is v¼ (0,vh,0) in cylindrical (r,h,z) coordinates. The EVP constitu-

tive equation in cylindrical coordinates writes

1

2G

@srr

@t
þmax 0;

jsdj � sY

2Kjsdjn
� �1=n

srr ¼ 0;
(D1)

1

2G

@srh

@t
� 2Drhsrr

� �
þmax 0;

jsdj � sY

2Kjsdjn
� �1=n

srh ¼ Drh; (D2)

1

2G

@shh

@t
� 4Drhsrh

� �
þmax 0;

jsdj � sY

2Kjsdjn
� �1=n

shh ¼ 0; (D3)

with jsdj ¼ 2s2
rh þ 1

2
ðsrr � shhÞ2

� �1=2

. Here, D¼ (!vþ!vT)=2 is the rate of strain ten-

sor, K denotes a generalized viscosity [Saramito (2009)]. The conservation of momentum

writes

@p

@r
� @srr

@r
� srr � shh

r
¼ 0; (D4)

� 1

r2

@

@r
r2srh
� �

¼ 0 (D5)

This system of equations is closed by boundary conditions for the velocity at the inner

and external cylinders, respectively, r¼ r0 and r¼ re [Fig. 1(a)], and by initial conditions

for both the velocity vh and the elastic stress s.
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