Fluid mechanics and granular matter

At ENSIMAG, bat. H, room H102 Monday 14h-17h Lectures in two parts:

A. Fluid mechanics

Pierre Saramito, $6 \times 3h$

- 23, 30 September 2024
- 7, 14, 21 October 2024
- 4 November 2024
- B. Granular matter Didier Bresch, $6 \times 3h$
 - 18, 25 November 2024
 - ▶ 2, 9, 16 December 2024
 - 6 January 2025

Aim: computer science \implies natural hazards, health, industry

A. Fluid mechanics

Fives chapters:

- 1. Navier-Stokes equations : 3h
- 2. Quasi-Newtonian fluids : 3h
- 3. Visco-plasticity : 4h30
- 4. Visco-elasticity : 6h
- 5. Elasto-visco-plasticity : 1h30

1. Navier-Stokes equations

for simple fluids only : air & water

(P): find \mathbf{v} and p such that

$$\begin{cases} \rho \left(\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} \right) - \eta \Delta \boldsymbol{v} + \nabla \rho = \rho \boldsymbol{g} \\ \operatorname{div} \boldsymbol{v} = 0 \end{cases}$$

2. Quasi-Newtonian fluids: η non-constant

3. Visco-plasticity

= for mushy fluids : paste, mud

$$(P): \min_{v \in H_0^1(\Omega)} J(v)$$
$$J(v) = \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x + \sigma_0 \int_{\Omega} |\nabla v| \, \mathrm{d}x - \int_{\Omega} fv \, \mathrm{d}x$$

min : J is non-differentiable : $j(x) = x^2 + \sigma_0 |x| - fx$

- optimization & convex analysis
- automatic adaptive mesh

Pierre.Saramito@imag.fr

Fluid mechanics

4. Visco-elasticity

= for suspensions of long elastic molecules : polymers, biology

(P): find $(\boldsymbol{ au}, \mathbf{v}, p)$ such that :

$$\begin{cases} \boldsymbol{\lambda}\dot{\boldsymbol{\tau}} + \boldsymbol{\tau} - \boldsymbol{\nabla}\mathbf{v} - (\boldsymbol{\nabla}\mathbf{v})^T &= 0\\ \mathbf{d}\mathbf{i}\mathbf{v}\,\boldsymbol{\tau} + \boldsymbol{\varepsilon}\,\Delta\mathbf{v} &- \boldsymbol{\nabla}p &= f\\ \mathbf{d}\mathbf{i}\mathbf{v}\,\mathbf{v} &= 0 \end{cases}$$

$$\dot{oldsymbol{ au}} = \partial_t au + (oldsymbol{\mathsf{v}}.oldsymbol{
abla}) oldsymbol{ au} + oldsymbol{
abla} oldsymbol{ au} \, oldsymbol{ au} - oldsymbol{ au} \, oldsymbol{
abla}$$

- upwind schemes : discontinuous Galerkin methods
- mixed finite elements : inf-sup condition

5. Elasto-visco-plasticity

= for soft grains : biology, liquid foam

$$egin{aligned} oldsymbol{\lambda}\dot{oldsymbol{ au}}+\max\left(0,1-rac{\sigma_{m{0}}}{|m{ au}|}
ight)oldsymbol{ au}=m{
abla}oldsymbol{ extbf{v}}+(m{
abla}oldsymbol{ extbf{v}})^{T} \end{aligned}$$

 \implies combination of previous problems with (λ, σ_0)

Teaching material: on my web page

Evaluation of characteristics

 $X_m(x) \approx x - \Delta t \ \boldsymbol{u}_m(x)$

 \implies interpolation : $\boldsymbol{u}_m(X_m(x))$

≣ । ह

Searching: quadtree

Pierre.Saramito@imag.fr

Fluid mechanics

Mesh & sparse matrix

æ

イロト イヨト イヨト イヨト

Sparse factorization $A = LDL^{T}$: renumbering

Pierre.Saramito@imag.fr Fluid mechanics

Implementation with Rheolef (C++ library)

```
int main (int argc, char** argv) {
  geo omega (argv[1]);
  space Qh (omega, "P1");
  space Xh (omega, "P2", "vector");
  Xh.block ("boundary");
  trial u(Xh), p(Qh); test v(Xh), q(Qh);
  form a = integrate (2*ddot(D(u),D(v))):
  form b = integrate (-q*div(u));
  form m = integrate (p*q);
  field uh (Xh, 0), ph (Qh, 0);
  uh[1]["top"] = 0;
  solver abtb stokes (a.uu(), b.uu(), m.uu());
  stokes.solve(-a.ub()*uh.b(), -b.ub()*uh.b(),
      uh.set_u(), ph.set_u());
  cout \ll catchmark("u") \ll uh
       \ll catchmark("p") \ll ph:
```

```
so it \Omega \subset \mathbb{R}^d, d = 1, 2, 3

Q_h = \{q \in L^2(\Omega); q_{|K} \in P_1, \forall K \in \mathcal{T}_h\}

X_h = \{\mathbf{v} \in H^1(\Omega)^d; \mathbf{v}_{|K} \in (P_2)^d, \forall K \in \mathcal{T}_h\}
```

 $\begin{array}{l} \forall \; \mathbf{u}, \; \mathbf{v}, \mathrm{et} \; p, \; q, \; \mathrm{definissons} : \\ a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} 2D(\mathbf{u}) : D(\mathbf{v}) \\ b(\mathbf{u}, q) = -\int_{\Omega} \int_{\Omega} q \; \mathrm{div} \; \mathbf{u} \\ m(p, q) = \int_{\Omega} p \; q \end{array}$

trouver $\mathbf{u} \in X_h$, $\mathbf{u}_h = 0$ sur $\partial \Omega$, et $p_h \in Q_h$ tels que

$$a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p) = 0, \quad \forall \mathbf{v}_h \in X_h, \mathbf{v}_h = 0 \text{ sur } \partial\Omega$$
$$b(\mathbf{u}_h, q) = 0, \quad \forall q_h \in Q_h$$

}

\implies 15 lines of code

Stokes in the driven cavity

Navier-Stokes Re = 100: 4804 elements

æ

イロト イ団ト イヨト イヨト

Navier-Stokes Re = 400: 5233 elements

æ

イロト イ団ト イヨト イヨト

Navier-Stokes Re = 1000: 5873 elements

æ

イロト イ団ト イヨト イヨト

Viscosity : Carreau's law

▶ ∢ ≣

э

Poiseuille flow with power law

Poiseuille flow in a square pipe section

э

Example 3: arterial graft shape optimization

comparison: Newtonian and Carreau's law (Abraham et al. 2005)

Poiseuille flow with viscoplastic fluid

Pierre.Saramito@imag.fr F

Regularization: stress vs shear

Regularization: viscosity

문▶ 문

Dissipation: convexity

æ

Poiseuille in a square section

dimensionless number

$$Bi = \frac{\sigma_0}{Lf}$$

Terminology

Regularization: Taylor & Wilson (1997)

Bi = 0.8Bi = 1.0

 \Rightarrow badly shaped rigid zones...

Augmented Lagrangian algorithm

Viscoplastic fluids: space approximation

- ₹ 🖹 🕨

=

Finite differences

) Q (

포 🛌 포

★ ∃ → ★

3.9 Example: flow arround an obstacle

Terminology

・ロト ・四ト ・ヨト ・ヨト

æ

 $\operatorname{card}(\mathscr{T}_h) = 539$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

$$\operatorname{card}(\mathscr{T}_h) = 15\,466$$

After mesh adaptation

æ

イロト イヨト イヨト イヨト

$$\operatorname{card}(\mathscr{T}_h) = 41\,955$$

イロト イヨト イヨト イヨト

æ

Pierre.Saramito@imag.fr

Fluid mechanics

Viscoplastic fluid: augmented Lagrangian vs Newton

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Poiseuille: Oldroyd $\alpha = 8/9$

Poiseuille: Oldroyd $\alpha = 0.95$

Poiseuille: Maxwell $\alpha = 1$

э

C++ code with Rheolef: scalar transport

```
#include "rheolef.h"
1
   using namespace rheolef:
2
   using namespace std;
3
   int main(int argc, char**argv) {
4
     environment rheolef (argc, argv);
5
     geo omega (argv[1]);
6
     space Xh (omega, argv[2]);
7
     Float alpha = (\operatorname{argc} > 3) ? atof(\operatorname{argv}[3]) : 1;
8
     Float sigma = (\operatorname{argc} > 4) ? atof(\operatorname{argv}[4]) : 3:
9
     point u (1.0.0):
10
     trial phi (Xh); test psi (Xh);
     form ah = integrate (dot(u,grad_h(phi))*psi + sigma*phi*psi)
12
              + integrate ("boundary", max(0, -dot(u,normal()))*phi*psi)
13
              + integrate ("internal sides".
                     - dot(u,normal())*jump(phi)*average(psi)
15
                     + 0.5*alpha*abs(dot(u,normal()))*jump(phi)*jump(psi));
16
     field lh = integrate ("boundary", max(0, -dot(u, normal()))*psi);
17
     solver sah (ah.uu());
18
     field phi_h(Xh);
19
     phi_h.set_u() = sah.solve(lh.u());
20
     dout << catchmark("sigma") << sigma << endl</pre>
21
           << catchmark("phi") << phi_h;
22
23
```

3

Example: scalar transport

Viscoelastic fluids: space approximation

- ₹ 🖹 🕨

-

Example: abrupt contraction

Polymer solution flow

Pierre.Saramito@imag.fr

Fluid mechanics

æ

Oldroyd model: $We = \lambda U/L = 0.1$

Computations with Rheolef

Oldroyd model: $We = \lambda U/L = 0.3$

Computations with Rheolef

Oldroyd model: $We = \lambda U/L = 0.7$

Computations with Rheolef

Phan-Thien and Tanner model

-2Pierre.Saramito@imag.fr

0 2

0

-12

-10

-8

-6-4

-10 \square_8 < 🛱 2000

-20

0

Dowload all the PDFs: $\rightarrow zip$						
1.	NS(1)	Quelques résultats nouveaux 6 pages, 20				
	algorithm	sur les méthodes de projection	ightarrow pdf			
		ightarrow Luc Vandame				
2.	NS(2)	Derivation of a new dimensional	15 pages, 2007			
	asympt. anal.	viscous shallow water model	ightarrow pdf			
		ightarrow Michele Benedetti				
3.	QN(1)	Shape optimization in	17 pages, 2005			
	appl. biology	steady blood flow	ightarrow pdf			
		ightarrow Hadi Mazloum				
4.	VP(1)	Submerged jet shearing	9 pages, 2018			
	appl. envir.	of viscoplastic sludge	ightarrow pdf			
		ightarrow Eloïse Touron				
5.	VP(2)	Numerical modeling of shallow	18 pages, 2014			
	asympt. anal.	viscoplastic fluids	ightarrow pdf			
		ightarrow Karlotta Kilias				
6.	VP(3)	viscoplastic flows	15 pages, 2008			
	model	with stick-slip at the wall	ightarrow pdf			
		\rightarrow Arianna Pellizzaro				

7.	VP(4)	A damped Newton algorithm for	10 pages, 2016
	algorithm	computing viscoplastic fluid flows	ightarrow pdf
		ightarrow Fabio Marini	
8.	VE(1)	Oldroyd B, and not A ?	7 pages, 2021
	theor. phys.		ightarrow pdf
		ightarrow Maxime Renard	
9.	VE(2)	Constitutive laws for the	5 pages, 2004
	numer. meth.	matrix-logarithm	ightarrow pdf
		ightarrow Stefano Muzzolon	
10.	VE(3)	Stationary Oldroyd model	13 pages, 2015
	numer. math.	with diffusive stress	ightarrow pdf
11.	EVP(1)	Steady Couette flows	27 pages, 2012
	appli.	of elastoviscoplastic fluids	ightarrow pdf
12.	EVP(2)	A new operator splitting algorithm	9 pages, 2013
	appl. foam	for elastoviscoplastic flows	ightarrow pdf
		ightarrow Yiqun Liu	
13.	EVP(3)	Robust characteristics method for	23 pages, 2007
	appl. earth	elastoviscoplastic problems	ightarrow pdf
14.	EVP(4)	Particle migration in channel flow	8 pages, 2020
	suspension	of an elastoviscoplastic fluid	ightarrow pdf
		\rightarrow Camille Touron	

Exams

14h	Octave Crespel	Quelques résultats nouveaux sur les
		méthodes de projection
14h20	Basile Dubois	Shape optimization in steady
	Bonnaire	blood flow
14h40	Jules Treton	Submerged jet shearing of
		viscoplastic sludge
15h	Hanne Christiaensen	Numerical modeling of shallow
		viscoplastic fluids
15h20	Sara Avesani	Viscoplastic flows with
		stick-slip at the wall
15h40	Yannick Godammer	Constitutive laws for the matrix-logarithm
		of the conformation tensor
16h	Guilia Quarta	Stationary Oldroyd model with
		diffusive stress
16h20	Yann Vincent	A new operator splitting algorithm for
		elastoviscoplastic flows
16h40	Antoine Sese	Particle migration in channel flow of an
		elastoviscoplastic fluid

・ロト ・回 ト ・ ヨト ・ ヨト …