Finding collisions for SHA-1

Pierre Karpman

Based on joint work with Ange Albertini, Elie Bursztein, Yarik

Markov, Thomas Peyrin and Marc Stevens

Université Grenoble Alpes

Real World Crypto — Zürich 2018–01–11

The near-anniversary of not a birthday search

- ▶ On 2017-01-15, the first (public?) SHA-1 collision was found
- ... Coming after the first freestart collision in Oct. 2015
- ... Coming after the first "theoretical" attack in 2005
- ... Coming after the first standardization of SHA-1 in 1995

Aim of this talk:

- What's a SHA-1 collision like? How do you compute one?
- How do you measure the "complexity" of such an attack?

A simple collision

h_0	4e a9	62	69	7c	87	6е	26	74	d1	07	f0	fe	с6	79	84	14	f5	bf	45
M_1		7 <u>f</u>	46	dc	9 <u>3</u>	<u>a</u> 6	b6	7е	01	<u>3b</u>	02	9a	<u>aa</u>	<u>1d</u>	b2	56	0 <u>b</u>		
		45	ca	67	<u>d6</u>	<u>8</u> 8	с7	f8	<u>4</u> b	8c	4c	79	<u>1f</u>	<u>e0</u>	2b	3d	<u>f6</u>		
		14	f8	6d	b <u>1</u>	<u>6</u> 9	09	01	<u>c</u> 5	<u>6b</u>	45	c1	53	<u>0a</u>	fe	df	b <u>7</u>		
		<u>60</u>	38	е9	72	<u>7</u> 2	2f	е7	$\underline{\mathbf{a}}\mathbf{d}$	72	8f	0e	4 <u>9</u>	04	e0	46	<u>c</u> 2		
h_1	8d 64	<u>d6</u>	<u>17</u>	ff	ed	5 <u>3</u>	<u>5</u> 2	eb	с8	59	15	5e	с7	eb	34	<u>f</u> 3	8a	5a	7b
M_2		30	57	0f	e <u>9</u>	<u>d</u> 4	13	98	<u>a</u> b	<u>e1</u>	2e	f5	<u>bc</u>	94	2b	e3	3 <u>5</u>		
		42	a4	80	2d	<u>9</u> 8	b5	d7	$\underline{0}f$	<u>2a</u>	33	2e	<u>c3</u>	7f	ac	35	14		
		e <u>7</u>	4d	dc	0 <u>f</u>	<u>2</u> c	c1	a8	74	<u>cd</u>	0c	78	30	<u>5a</u>	21	56	64		
		61	30	97	89	<u>6</u> 0	6b	d0	<u>b</u> f	3f	98	cd	a <u>8</u>	04	46	29	<u>a</u> 1		
h ₂	1e ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bc	3a	17	b4	8a	с5
				_		_						_	_		_				_
h ₀	4e a9						_										_	bf	45
$M_1 \oplus \Delta_1$		_			91	_			_	_			_	_			_		
					CC														
		18	f8	6d	b <u>3</u>	<u>a</u> 9	09	01	<u>d</u> 5	<u>df</u>	45	c1	<u>4f</u>	26	fe	df	b <u>3</u>		
		<u>dc</u>	38	е9	<u>6a</u>	<u>c</u> 2	2f	е7	<u>b</u> d	72	8f	0e	4 <u>5</u>	bc	e0	46	<u>d</u> 2		
h_1	8d 64	<u>c8</u>	21	ff	ed	52	<u>e</u> 2	eb	с8	59	15	5e	с7	eb	36	<u>7</u> 3	8a	5a	7b
$M_2 \oplus \Delta_2$		3 <u>c</u>	57	Of	eb	14	13	98	<u>b</u> b	55	2e	f5	<u>a0</u>	<u>a8</u>	2b	e3	31		
		<u>fe</u>	a4	80	37	<u>b</u> 8	b5	d7	<u>1</u> f	<u>0e</u>	33	2e	<u>df</u>	93	ac	35	00		
		eb	4d	dc	0 <u>d</u>	ec	c1	a8	<u>6</u> 4	79	0c	78	<u>2c</u>	76	21	56	6 <u>0</u>		
		dd	30	97	91	<u>d</u> 0	6b	d0	<u>a</u> f	3f	98	cd	a4	bc	46	29	<u>b</u> 1		
h ₂	1e ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bc	3a	17	b4	8a	с5

A comic application

>sha1sum *.pdf 23aa25d9e0449e507a8b4c185fdc86c35bf609bc calvin.pdf 23aa25d9e0449e507a8b4c185fdc86c35bf609bc hobbes.pdf

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

SHA-1 quick history

Secure Hash Standard "SHA-1"

- Standardized by NIST in Apr. 1995
- ▶ Similar to MD4/5
 - ► Merkle-Damgård domain extender
 - Compression function = ad hoc block cipher in Davies-Meyer mode
 - ► Unbalanced Feistel network, 80 steps
- Quick fix of "SHA-0" (May 1993)
- ▶ Hash size is 160 bits \Rightarrow collision security should be 80 bits

That's nice, but we want to attack it!

A two-block attack in a picture

The result

- ► SHA-1 is not collision-resistant (Wang, Yin & Yu, 2005)
- Attack complexity $\equiv 2^{69}$ (theoretical)
- ▶ Eventually improved to $\equiv 2^{61}$ (ditto, Stevens, 2013)

The attack process

- Pick a linear path
- Find a non-linear path (first block)
- 3 Find accelerating techniques (first block)
- **4** Compute a *near-collision* (a solution for $(0, \delta_M) \to \Delta_C$))
 - ► Possible expected wall time estimation (first block)
- 5 Find a non-linear path (second block)
- 6 Find accelerating techniques (second block)
- **T** Compute a *collision* (a solution for $(\Delta_C, -\delta_M) \to -\Delta_C)$)
 - Possible expected wall time estimation (full attack)

Wall time estimation

Simple approach:

- Implement the attack
- ▶ Measure production rate $\#A_{xx}/s$
- ▶ Multiply by probability that a solution A_{xx} extends to A_{80}

Early variant (crude):

- \triangleright Partial solutions for the differential path up to A_{16} are free
- ► For A_{17...??}, count *path conditions* v. accelerating technique "efficiency"
- Estimate the "critical" step A_{xx} & corresp. production rate
- ▶ Multiply by probability that a solution A_{xx} extends to A_{80}

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Best practical attack progress (2005-2011)

- ▶ 2005 (Biham & al.): 40 steps (cost: "within seconds")
- ▶ 2005 (Wang & al.): 58 steps (cost: $\approx 2^{33}$ SHA-1 computations)
- ▶ 2006 (De Cannière & Rechberger): 64 (cost: $\approx 2^{35}$)
- ▶ 2007 (Rechberger & al.): 70 (cost: $\approx 2^{44}$)
- ▶ 2007 (Joux & Peyrin): $\frac{70}{10}$ (cost: $\approx 2^{39}$)
- ▶ 2010 (Grechnikov): 73 (cost: $\approx 2^{50.7}$)
- ▶ 2011 (Grechnikov & Adinetz): 75 (cost: $\approx 2^{57.7}$)

2014: time to improve things again!

- ► Eventual objective: full practical collision??
- Significant intermediate step: full practical freestart collision?
 - Easier in principle, but is it the case?

 \Rightarrow

- Search for a 76-step freestart collision (lowest # unattacked steps)
- Use the opportunity to develop a GPU framework

The point of freestart (in a picture)

First results

In Dec. 2014: a first 76-step freestart collision (with Peyrin & Stevens)

- Right on time for the ASIACRYPT rump session :P
- ► Cost: $\approx 2^{50}$ SHA-1 computations *on a GTX-970* \Rightarrow Freestart helps!
- ▶ ⇒ About 4 days on a single GPU (what we did)
- ▶ ⇒ About 1 day on a S\$3000 4-GPU machine

Now what?

Objective: full compression function collision

- ▶ Early (optimistic?) estimates: full freestart $\approx 32 \times$ more expensive than 76-step
- ► (Hard to know for sure w/o implementing it)
- ▶ ⇒ buy (a bit) more GPUs!
- + develop a new attack ("sadly" necessary)
 - ► Update path search tools
 - Settle on a linear path
 - Generate new attack parameters
 - Program the attack again
 - · ...

Let's do this!

Figure: Part of a homemade cluster to be

Second results

In Sep. 2015: a first 80-step (full) freestart collision (with Stevens & Peyrin)

- Right on time for EUROCRYPT submissions :P
- ightharpoonup cost: $pprox 2^{57.5}$ SHA-1 computations on a GTX-970
 - A bit more than expected
- ▶ ⇒ About 680 days on a single GPU
- ... or 10 days on a 64-GPU cluster (what we did)
- ... or US\$ 2000 of the cheapest Amazon EC2 instances

Some early impact

- ► SHA-1 TLS certificates are not extended through 2016 by CA/Browser forum actors
 - Ballot 152 (Oct. 2015!) of the CA/Browser forum is withdrawn
- Some major browsers (Edge, Firefox) sped-up deprecation/security warnings
- ▶ But (some) continued use in Git, company-specific certificates (e.g. Facebook until Dec. 2016, Cloudflare), etc.
 - Mostly because of legacy issues

Now what?

Objective: full hash function collision

- ▶ Early (optimistic?) estimates: full collision $\approx 50 \times$ more expensive than full freestart
- ► (Hard to know for sure w/o implementing it)
- \rightarrow buy a lot more GPUs? (No)
- ▶ ⇒ get help from GPU-rich people/companies? (Yes)
- + develop a new attack
- + add some cool exploitation features!

Let's do this!

A CWI/Google collaboration

- Prepare a prefix for future colliding PDFs
- Compute a first (actually two) near-collision block(s)
 - Done on CPU
- **3** Compute a second near-collision \Rightarrow the final one!!
 - Done on GPU
- Profit! Enjoy!
- cost: $\approx 2^{63}$ SHA-1 computations
 - A bit more/less than expected
- ightharpoonup \Rightarrow about 6500 CPU-year + 100 GPU-year
- ... or US\$100K+ of the cheapest Amazon instances (second block only)

Some more impact

- Finally got Git planning to move away from SHA-1
- Unwittingly broke SVN for a time
- ► Further deprecation of SHA-1 certificates

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Absolute cost v. "complexity"

- Determining the complexity of generic attacks is "easy"
- ▶ E.g. $\Theta(2^{n/2})$ for collisions on *n*-bit hash functions
 - ► Efficiently parallelizable (van Oorschot & Wiener, 1999)
- What about dedicated attacks?
 - ► Implement and measure?

A typical metric for cryptanalysis complexity:

- 1 Estimate the cost of an attack on some platform
- Divide by the cost of computing the attacked function
- Voilà

A '76 complexity example

Example: 76-step freestart collision On a GTX-970:

- Expected time to collision = 4.4 days
 - ▶ 0.017 solution up to A_{56}/s
- $ho \approx 2^{31.8}$ SHA-1 compression function/s
- $ightharpoonup 34.4 \times 86400 \times 2^{31.8} \approx 2^{50.3}$

BUT on an Haswell Core i5:

- Expected time to collision = 606 core days
 - ▶ 0.000124 solution up to A_{56}/s
- $ho pprox 2^{23.5}$ SHA-1 compression function/s
- $ightharpoonup \Rightarrow 606 \times 86400 \times 2^{23.5} \approx 2^{49.1}$
- Yet much slower & less energy efficient!!

A full hash example

Complexity for the full hash function (second block) collision:

- \triangleright 2^{62.1} on K80, or
- \triangleright 2^{62.8} on K20/40, or
- ▶ 2^{63.4} on GTX-970

Further code tuning/optimization may again change figures!

Some more issues

- Variation between CPU/GPU and optimized/unoptimized is not so large
 - ► About ×2–4
- What about reconfigurable/dedicated hardware?
 - ► FPGA/ASICs are fast and energy efficient
 - ► ⇒ Well-suited to generic attacks!
 - But what about complex ones???
- No reason for a generic attacker to use CPU/GPU over FPGA/ASIC
 - ▶ Potential increased development cost well worth it!
- What does a dedicated attack really improve on??

GPU v. ASIC brute force estimates

One generic SHA-1 collision in one year $\approx 2^{80}$ hash computations On GPU:

- $ho \approx 12.6$ million GPUs @ $2^{31.5}$ hashes/s
- $ho \approx 3.1$ GW 'round the clock (just the GPUs @ 250 W each)
 - A couple of dedicated nuclear powerplant needed

On ASIC (estimates courtesy of BTC mining hardware)

- $ho \approx 2900$ devices @ $2^{43.6}$ hashes/s (Antminer S9-like)
- $ho \approx$ 4 MW 'round the clock (at 1400 W each)
 - About a large wind turbine needed (with the wind)

An alternative cost measure: The fun calorie

- ► Introduced by A. Lenstra, Kleinjung & Thomé (2013): How much energy is wasted needed by an attack?
- Energy unit: "fun calorie"
 What volume of standard water can you boil (instead)?
- ▶ Used to estimate e.g. RSA-768 security
 - \Rightarrow 2 olympic pool security (Kleinjung et al., 2010)

Some complexity figures

(Ignoring CPU improvements between 2010 and today)

†: Estimate

‡: dagelijkse neerslagverdampingenergiebehoeftezekerheid

In the end...

- ▶ Full-GPU dedicated SHA-1 attack: ≈ 1 pool sec.
- $\Rightarrow \approx 100 \times \text{ better}$ than dedicated hardware (conjectured)
- Quite less than $2^{80-63} \approx 130000$

SHA-1 collisions recap

On the way to full practical attacks

What complexity for an attack

Conclusion & Future work

Potential future work

- ► Computing a *chosen-prefix* collision
 - ► More exploitation
- Computing a collision for the SHA-1||MD5 combiner
 - Wouldn't break SVN?
- Designing a SHA-1-based crypto-currency
 - Get shiny mining hardware!

For more details

- ► The papers: Eprints 2015/530, 2015/967, 2017/190
- ► The attack code: https://github.com/cr-marcstevens/ sha1_gpu_nearcollisionattacks
- Marc's talk @ CRYPTO'17
- Ange's talk @ BlackAlps'17

C'est fini!

